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Abstract: Recombinant vesicular stomatitis virus (VSV) is a promising platform for vaccine
development. M51R VSV, an attenuated, M protein mutant strain, is an effective inducer of Type I
interferon and dendritic cell (DC) maturation, which are desirable properties to exploit for vaccine
design. We have previously evaluated M51R VSV (M51R) and M51R VSV that produces flagellin
(M51R-F) as vaccine vectors using murine models, and found that flagellin enhanced DC activation
and VSV-specific antibody production after low-dose vaccination. In this report, the immunogenicity
of M51R vectors and the adjuvant effect of virus-produced flagellin were evaluated in nonhuman
primates following high-dose (108 pfu) and low-dose (105 pfu) vaccination. A single intramuscular
vaccination of African green monkeys with M51R or M51R-F induced VSV-specific, dose-dependent
humoral immune responses. Flagellin induced a significant increase in antibody production (IgM,
IgG and neutralizing antibody) at the low vaccination dose. A VSV-specific cellular response was
detected at 6 weeks post-vaccination, but was neither dose-dependent nor enhanced by flagellin;
similar numbers of VSV-specific, IFNγ-producing cells were detected in lymph node and spleen
of all animals. These results indicate that virus-directed, intracellular flagellin production may
improve VSV-based vaccines encoding heterologous antigens by lowering the dose required to
achieve humoral immunity.

Keywords: vesicular stomatitis virus; vaccine; vector; flagellin; nonhuman primate; African
green monkey

1. Introduction

Vaccines based on a live, attenuated vesicular stomatitis virus (VSV) platform are being developed
for a wide range of infectious diseases and cancer [1,2]. For example, recombinant VSV-based
vaccines against Ebola virus and HIV, which express Ebola glycoprotein or HIV gag, respectively,
have demonstrated safety and efficacy in clinical trials [3,4]. Attenuation of VSV for the purpose of
engineering safe vaccine vectors has been achieved by substituting or mutating the VSV glycoprotein
gene (G) which is essential for viral infectivity [5,6], by changing the order of the 5 genes that comprise
the VSV genome leading to insufficient production of viral proteins at key steps in the life cycle [7,8],
or by a combination of the two approaches [9–11]. An alternative attenuation strategy is to genetically
inactivate the ability of VSV to suppress host antiviral responses. Mutations at position 51 of the

Vaccines 2018, 6, 16; doi:10.3390/vaccines6010016 www.mdpi.com/journal/vaccines

http://www.mdpi.com/journal/vaccines
http://www.mdpi.com
http://dx.doi.org/10.3390/vaccines6\num [minimum-integer-digits = 2]{1}\num [minimum-integer-digits = 4]{16}
http://www.mdpi.com/journal/vaccines


Vaccines 2018, 6, 16 2 of 13

viral matrix (M) protein render the virus unable to suppress host antiviral responses but do not
compromise its ability to express viral gene products [12]. VSV with M51R and ∆M51 mutations in M
protein are robust inducers of Type I interferon (IFN) and IFN-induced genes and activate multiple
subtypes of murine and human dendritic cells to produce T cell-activating costimulatory molecules
and pro-inflammatory cytokines [13–17]. Further, M51R VSV induces robust immune responses in
mice [18,19]. These properties could be exploited and refined to develop the M51R VSV strain as a live
vaccine vector for delivery of heterologous antigens.

Bacterial flagellin has been widely investigated as an adjuvant for non-living vaccines, including
killed and protein nanoparticle influenza virus vaccines [20,21], and the fusion protein vaccine for
pneumonic plague, Flagellin/F1/V, which has completed preclinical evaluation in nonhuman primates
and a Phase I clinical trial [20,22,23]. The adjuvant activity of flagellin as a component of killed, subunit
and particle-based vaccines is mediated largely through its interaction with TLR5 [24], an extracellular
TLR expressed by hematopoietic and epithelial cells [25,26]. In addition to signaling via TLR5, bacterial
flagellin also has the capacity to stimulate cells through cytosolic pattern recognition receptors [26],
an activity for which less information is available in the context of vaccines. We have reported that
activation of murine and human dendritic cells by M51R VSV can be further enhanced by engineering
the virus to express the Salmonella enterica fliC gene (M51R-F) [19,27]. In this context, VSV-directed
flagellin production enhances dendritic cell activation through interaction with the cytosolic NOD-like
receptor C4 (NLRC4) inflammasome complex [26–28]. In addition, we demonstrated that flagellin
produced by M51R VSV improved VSV-specific IgG production in response to low-dose intranasal
vaccination of mice [19]. Based on these results, and to inform further development of M51R VSV as
a vaccine vector for delivery of heterologous antigens, we sought to evaluate the adjuvant potential
of cytosolic flagellin using a nonhuman primate vaccination model. The goal of the studies in the
current report was to evaluate the ability of the two vectors to induce adaptive immune responses
in adult African green monkeys. Specifically, we measured VSV (vector)-specific immune responses
after one intramuscular injection with M51R or M51R-F at low or high dose. The results demonstrate
an effective dose range for the induction of primary antibody responses, which were enhanced by
the expression of flagellin at the low vaccination dose. In contrast, the generation of VSV-specific
interferon γ-secreting cells in spleen and lymph nodes was neither dose-dependent nor enhanced by
the presence of flagellin.

2. Materials and Methods

2.1. Virus

Recombinant M protein-mutant VSV (M51R VSV) and M51R VSV that constitutively produces
flagellin (M51R-F VSV) as a result of introduction of the fliC gene encoding flagellin from
Salmonella enterica, serovar Enteritidis, between the viral M and G genes, were described
previously [19,27]. Briefly, the fliC gene was inserted as an independent transcription unit between
the M and G genes of the VSV genome. The production of flagellin in the intracellular compartment
following infection of permissive cells with M51R-F VSV was confirmed by western blot [27]. For the
flow cytometry-based neutralizing antibody assay, an M51R VSV strain that constitutively produces
enhanced green fluorescent protein (M51R-eGFP) was used [29]. All viruses, including wild-type VSV
(Indiana serotype, Orsay strain, used for the VSV-specific antibody ELISA) were propagated in BHK
cells, and titers were determined using a BHK cell plaque assay.

2.2. Animals, Vaccination and Tissue Collection

Sixteen female, adult African green monkeys (AGM, vervet subspecies, Chlorocebus aethiops sabaeus)
were used for the study. AGM were bred and housed at the Wake Forest School of Medicine Primate
Center. Animals ranged in age from 8.5 to 15.5 years, and in weight from 4.2 to 7.89 kg, and were
cared for and handled according to guidelines of the National Institutes of Health Guide for the Care
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and Use of Laboratory Animals and the Wake Forest Institutional Animal Care and Use Committee
(protocol A14-184). Animals were chosen for the study based on low pre-existing immunity to VSV
or flagellin as measured by the presence of antibodies in pre-immune serum. All procedures were
performed on animals that were anesthetized using ketamine (10–15 mg/kg, i.m.). After collecting
pre-immune blood samples by femoral venipuncture using standard heparin vacutainers, animals
were split into 4 cohorts (consisting of 4 animals/cohort) and vaccinated in the right bicep muscle with
0.5 mL of purified live, recombinant M51R VSV (M51R) or M51R VSV expressing the flagellin gene
(M51R-F) at 2 different doses (1 × 105 PFU, low dose and 1 × 108 PFU, high dose). At weeks 1, 2 and 4
post-vaccination, blood was collected, processed to obtain plasma, and frozen at −80 ◦C. At 6 weeks
post-vaccination animals were euthanized (15–20 mg/kg ketamine, i.m. followed by 60–100 mg/kg
pentobarbital, i.v.), and blood and tissue samples were harvested. For the current study, spleens
and axillary lymph nodes (right draining and left contralateral) were processed to obtain single cell
suspensions devoid of red blood cells, frozen and stored in liquid N2.

2.3. Cells

VSV-permissive mouse EL4 cells [30] were cultured in DMEM supplemented with 10% fetal
calf serum (FCS) and 2mM glutamine. For experiments with frozen AGM cells (spleen, lymph
node), the cells were thawed and subject to a recovery period at 37 ◦C, 5% CO2 for 2 h in RPMI
supplemented with 10% FCS, 2 mM glutamine, 100 Units/mL penicillin, 100 ug/mL streptomycin,
and 2-mercaptoethanol (2ME, (5 × 10−5 M)). The cells were then used as antigen presenting cells or as
responder cells in IFNγ Elispot assays, as specified below.

2.4. ELISA for Detection of VSV-Specific Antibody

Nunc MaxiSorp ELISA plates were coated with 0.2 µg/well purified VSV (Orsay strain) in sodium
carbonate coating buffer (pH 9.6). Wells without virus served as a negative control. Plates were
blocked with phosphate buffered saline containing 0.05% Tween 20 (PBST) + 5% skim milk. Plasma
samples were serially diluted in PBST (wash buffer). Antibodies specific for monkey IgG (Fitzgerald,
43R-1G020HRP, Acton, MA, USA) and IgM (LifeSpan Bioscience, LS-C61207, Seattle, WA, USA)
directly conjugated to horseradish peroxidase (HRP) were used for detection. Plates were developed
with 1-step Turbo TMB-ELISA substrate (Thermo Scientific #34022, Waltham, MA, USA), and the
absorbance at 450 nm was measured on a BMG Labtech POLARstar Omega microplate reader (Cary,
NC, USA). The absorbance for each sample was calculated by subtracting the absorbance obtained
from corresponding wells that were not coated with virus. The concentration of IgG or IgM was
determined from standard curves prepared with monkey IgG (#017-0102-0001) and IgM (#017-0107)
Rockland Immunochemicals (Pottstown, PA, USA).

2.5. Affinity ELISA

IgG affinity was measured by thiocyanate elution according to a published protocol [31] by
modifying the VSV-specific antibody ELISA as follows. Six-week plasma samples were diluted to
achieve a mid-curve OD450 value relative to the monkey IgG standard curve. After a 2 h incubation
of duplicate plasma samples on VSV-coated and blocked wells, the wells were washed 5 times with
PBST and 100 uL of buffer containing sodium thiocyanate (NaSCN, starting at 2 M and diluted 2-fold
serially to 0.06 M) was added for 15 min. The wells were again washed 5 times with PBST before
proceeding with the secondary antibody incubation (30 min) and substrate steps (15 min). The % IgG
remaining bound to the wells after NaSCN treatment relative to controls not treated with NaSCN,
was calculated as follows: (OD450 + NaSCN)/(OD450 −NaSCN)× 100. The data were expressed as the
concentration of NaSCN that removed 50% of bound IgG (EC50), and reported as the mean EC50 ± SD
for each cohort.
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2.6. Neutralizing Antibody Assay

A flow cytometry-based virus neutralization assay was developed according to a published
protocol [32], with modifications. Heat-inactivated (56 ◦C for 1 h) plasma samples from vaccinated
monkeys were serially diluted in DMEM supplemented with 2% heat-inactivated FCS in a 96 well
round-bottom plate. An equal volume of M51R-eGFP (1.5 × 105 pfu/well) was added to the wells,
and samples were incubated for 1 h at 37 ◦C, 5% CO2 to allow for antibody binding to the virus. In the
next step, 100 uL of pre-incubated sample was added to an equal volume of EL4 cells (3 × 106/mL in
DMEM supplemented with 7% heat-inactivated FCS and 2 mM glutamine) in a 96-well round bottom
dish. After a 5 h, 37 ◦C, 5% CO2 incubation to allow for virus infection, EL4 cells were harvested from
the wells, washed and fixed with 4% paraformaldehyde. Samples were acquired on a BD FACSCalibur
Flow Cytometer and analyzed with FlowJo software. The neutralizing antibody titer was defined as
the dilution of plasma that inhibited the infection of EL4 cells by 50%, which was determined using
GraphPad Prism software. Controls consisted of EL4 cells with no virus added, and EL4 cells infected
with M51R-eGFP in the absence of plasma (for maximum infection level). The infection protocol was
calibrated such that approximately 30% of the cells were infected with M51R-eGFP in the absence of
neutralizing antibodies.

2.7. IFNγ ELISPOT Assay

To measure the cellular immune response against VSV vectors, an IFNγ ELISPOT assay kit
was used according to manufacturer’s instructions (Mabtech, Inc. #3420M-2H, Cincinnati, OH,
USA). Cells from the left axillary lymph node (LLN) were used as antigen presenting cells (APC),
and autologous cells from the right (draining) axillary lymph node (RLN) or spleen were used as
responding cells. LLN cells were infected at a concentration of 1.0 × 106 cells/mL with M51R VSV
at MOI = 50, or were mock-treated, for 18 h at 37 ◦C, 5% CO2. Mock- or virus-infected APC were
irradiated using an MDS Nordion Gammacell 1000 Elite (Ottawa, ON, Canada) irradiation source
(2000R). APC (2.5 × 105/well) were mixed with an equal volume (100 µL) of autologous responder
cells (2 × 105/well). Cells were cultured for 48 h in ELISPOT plates (Millipore, #MAIPSWU10,
Darmstadt, Germany) coated with anti-IFN-γ capture antibody. Spot-forming cells were detected
using biotinylated secondary antibody and True Blue peroxidase substrate (KPL #50-78-02, Milford,
MA, USA) according to manufacturer instructions. Spots were photographed and quantitated using
an ImmunoSpot system (Cellular Technology, Ltd., Shaker Heights, OH, USA).

2.8. Murine Vaccination Study

Female 8 weeks old C57BL/6 mice (Charles River, Wilmington, MA, USA) were immunized
intranasally with 5 × 105 PFU of M51R or M51R-F. VSV-specific T cell responses were measured in
spleen on days 6, 8, 10 and 12. Splenocytes were re-stimulated in vitro with peptides corresponding to
an immunodominant N protein epitope for CD8+ T cells [33] or G protein epitope for CD4+ T cells [34].
Intracellular cytokine staining was performed using fluorescently-tagged antibodies against murine
CD4, CD8, CD44, IFNγ, TNFα, IL-4, IL-17A, with appropriate isotype controls (BD Biosciences, San
Jose, CA, USA). Fluorescence data were acquired using a BD Canto instrument, and data were analyzed
using FlowJo software. Mouse experiments were performed according to a protocol approved by the
Wake Forest School of Medicine Animal Care and Use Committee (#A13082).

2.9. Statistical Analysis

Antibody data were analyzed as either the antibody titer (neutralizing antibody) or plasma
antibody concentration (virus-specific IgM and IgG). Data were analyzed by two-factor analysis of
variance (ANOVA), with time and cohort as the two factors, using SigmaStat for Windows version
3.5 software (Systat Software, Inc., San Jose, CA, USA). Post-hoc multiple comparisons were made by
the Holm-Sidak and Bonferroni methods with an alpha level of p < 0.05 after correction for multiple
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comparisons. Cellular immune response data were analyzed by one-way ANOVA for comparison of
multiple cohorts.

3. Results

3.1. Anti-VSV Antibody Response

The cohorts for the study were as follows: C1: low dose M51R (1 × 105 PFU); C2: high dose
M51R (1 × 108 PFU; C3: low dose M51R-F (1 × 105 PFU); C4: high dose M51R-F (1 × 108 PFU).
For each animal and time point, plasma samples were tested to quantify VSV-specific neutralizing
antibodies (NA), IgM and IgG from low-dose- (Figure 1a) and high dose- (Figure 1b) vaccinated
animals. The NA titer was defined as the dilution of plasma that inhibited infection of a permissive
cell line with VSV-eGFP by 50%, as determined by flow cytometry analysis (Figure 1, left panels).
Two of 4 animals in the low-dose M51R cohort 1 (1407 and 1208) produced NA that was ≥4-fold
above pre-immune levels, with titers of 12 and 43, respectively. In comparison, low dose vaccination
with M51R-F (cohort 3) induced NA in 3 of 4 animals (1411, 1178 and 1405). The NA titers for those
animals were 45, 170 and 234, respectively. The increase in NA titer in the low dose M51R-F relative to
M51R-vaccination group was significant as determined by two-factor ANOVA with time and cohort as
the two factors. In contrast to low dose vaccination, animals that received high dose M51R (cohort 2)
or M51R-F (cohort 4) produced NA well above pre-immune levels, with the exception of one animal
(1286) in cohort 2 that was a low responder relative to the others. In the high dose groups, there was no
significant difference in the NA response after vaccination with M51R-F relative to M51R. NA levels
peaked between 1 and 2 weeks, and by 6 weeks had declined for all animals in all cohorts.

Anti-VSV IgM production (Figure 1, middle panels) was low (1407 and 1208) or undetectable
(1272 and 1215) relative to pre-immune levels in the low dose M51R group (cohort 1), consistent with
NA results. In the low dose M51R-F group (cohort 3), IgM responses were greatest in AGM 1178 and
1405, similar to NA results (Figure 1a). Again, the difference in IgM responses in the low dose M51R-F
as compared to the low dose M51R group was statistically significant. Animals vaccinated with high
dose M51R (cohort 2) produced IgM at levels 3-13-fold above pre-immune at 2 weeks (Figure 1b).
Animal 1286 was again the low responder in cohort 2. The presence of flagellin (cohort 4) did not
improve IgM responses at the high dose (4-19-fold increase above pre-immune).

Low dose M51R vaccination (cohort 1) induced minimal or undetectable IgG responses (<2-fold
above pre-immune) (Figure 1a, right panels) similar to results for IgM and NA. In the low dose
M51R-F-vaccinated group (cohort 3) however, 3 of 4 animals produced IgG that was ≥4-fold above
pre-immune levels at peak (1114, 4-fold; 1405, 5-fold; 1178, 74-fold). IgG responses in the low dose
M51R versus M51R-F-vaccinated groups were significantly different.

In contrast to low dose IgG results, high dose vaccination with M51R-F did not enhance IgG
responses relative to the high dose M51R group (Figure 1b, right panels). This finding is consistent with
NA and IgM responses showing no effect of flagellin at the high vaccination dose. For the high dose
groups, IgG peaked at 2 or 4 weeks, and was still elevated in some cases at 6 weeks post-vaccination.
In addition, the data indicate that the humoral response to both VSV vectors was dose-dependent.
There was a significant difference in low dose as compared to high dose antibody responses for each
vector (compare cohort 1 to cohort 2 (M51R) and cohort 3 to cohort 4 (M51R-F), noting scale differences).
The response to vaccination by criteria of all 3 parameters measured (NA, IgM and IgG) was consistent
for individual animals. However magnitude of response did not necessarily correlate, in part due to
the VSV-specific NA assay reflecting the humoral response to G protein, while the ELISAs reflect the
response to all viral proteins.
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with M51R-eGFP by 50%. IgM (middle panel) and IgG (right panel) levels are expressed in ng/mL 
(mean ± SD, triplicate values), measured by ELISA with extrapolation from standard curves. Data for 
low dose (a) and high dose (b) vaccinations with M51R and M51R-F are shown. Note scale differences 
for low and high dose data. Statistical significance was determined by two-factor analysis of variance 
with cohort and time as the two factors. For all three antibody types, statistical significance of p < 0.05 
(after correction for multiple comparisons) was obtained for comparisons of cohort 1 versus cohort 3 
(low dose M51R vs. M51R-F), cohort 1 versus cohort 2 (low dose M51R vs. high dose M51R), and 
cohort 3 versus cohort 4 (low dose M51R-F vs. high dose M51R-F), but not for cohort 2 versus cohort 
4 (high dose M51R vs. high dose M51R-F). The data shown represent 1 of 2 analyses with similar 
results performed on plasma from each animal.  

As an additional measure of flagellin adjuvant potential, IgG affinity was measured. The 
rationale for this experiment was based on the report of a vaccine comprised of Pseudomonas 
aeruginosa outer membrane proteins fused to flagellin that induced antigen-specific IgG with high 
affinity and protective function in mice and AGM [33,34]. We therefore subjected anti-VSV IgG in 6 
week post-vaccination plasma samples to analysis using a modified VSV ELISA protocol as described 
in Materials and Methods. Using this assay, relative IgG affinities can be compared by measuring 
resistance to elution from antigen-coated wells by sodium thiocyanate (NaSCN) treatment [31]. The 
data are expressed as NaSCN concentration necessary to remove 50% of bound IgG from the wells 
after 15 min of treatment [EC50]. This analysis performed on 6 week plasma from each of the 16 

Figure 1. Humoral immune response. Plasmas were analyzed before vaccination (week 0, pre-immune)
and at weeks 1, 2, 4 and 6 post-vaccination for anti-VSV antibodies. Neutralizing antibody (NA)
titer (left panel) was defined as the dilution of serum that inhibited infection of mouse EL4 cells
with M51R-eGFP by 50%. IgM (middle panel) and IgG (right panel) levels are expressed in ng/mL
(mean ± SD, triplicate values), measured by ELISA with extrapolation from standard curves. Data for
low dose (a) and high dose (b) vaccinations with M51R and M51R-F are shown. Note scale differences
for low and high dose data. Statistical significance was determined by two-factor analysis of variance
with cohort and time as the two factors. For all three antibody types, statistical significance of p < 0.05
(after correction for multiple comparisons) was obtained for comparisons of cohort 1 versus cohort 3
(low dose M51R vs. M51R-F), cohort 1 versus cohort 2 (low dose M51R vs. high dose M51R), and cohort
3 versus cohort 4 (low dose M51R-F vs. high dose M51R-F), but not for cohort 2 versus cohort 4 (high
dose M51R vs. high dose M51R-F). The data shown represent 1 of 2 analyses with similar results
performed on plasma from each animal.

As an additional measure of flagellin adjuvant potential, IgG affinity was measured. The rationale
for this experiment was based on the report of a vaccine comprised of Pseudomonas aeruginosa outer
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membrane proteins fused to flagellin that induced antigen-specific IgG with high affinity and protective
function in mice and AGM [35,36]. We therefore subjected anti-VSV IgG in 6 week post-vaccination
plasma samples to analysis using a modified VSV ELISA protocol as described in Materials and
Methods. Using this assay, relative IgG affinities can be compared by measuring resistance to elution
from antigen-coated wells by sodium thiocyanate (NaSCN) treatment [31]. The data are expressed as
NaSCN concentration necessary to remove 50% of bound IgG from the wells after 15 min of treatment
[EC50]. This analysis performed on 6 week plasma from each of the 16 monkeys yielded no significant
differences among cohorts, (mean EC50 ± SD): Low dose M51R: 1.00 ± 0.70 M; Low dose M51R-F:
0.84 ± 0.33 M; High dose M51R: 1.20 ± 0.05 M; High dose M51R-F: 1.17 ± 0.14 M (p > 0.05, one way
analysis of variance). Therefore by this criteria, expression of flagelin by the M51R vector did not
modulate affinity maturation of the anti-VSV IgG response.

3.2. Anti-VSV Cellular Response

IFNγ ELISPOT assay was used to measure the cellular response to in vitro restimulation with
live VSV at 6 weeks post-vaccination. Antigen-presenting cells (APC) were prepared by infection of
left axillary lymph node cells with M51R VSV for 24 h followed by X-irradiation prior to addition of
responder cells from the draining (right) lymph node. Results are expressed as the number of spot
forming cells (SFC) per 106 responder cells (Figure 2). Lymph node cells from all animals produced
IFNγ in response to re-stimulation with M51R VSV-infected APC (gray bars), while IFNγ production
was minimal when APC were mock-infected (black bars) The magnitude of the IFNγ response was
similar among the 4 cohorts; all animals produced a response that ranged from 100–900 SFC/106

cells regardless of vaccine dose or the presence of flagellin. Monkey 1286 from the M51R high-dose
group (cohort 2), was a low-responder as measured by IFNγ-producing cells, consistent with its low
responder status with regard to antibody production (Figure 1). Using spleen rather than lymph node
as responder cells, a dose-independent production of IFNγ was again observed (Figure 2). Therefore,
by the criteria of IFNγ production after VSV-restimulation, cellular responses of similar magnitude
were generated after vaccination with live M51R at 105 and 108 PFU. Further, flagellin encoded by the
M51R-F vector did not enhance the response relative to M51R vector without adjuvant.
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Figure 2. Cellular immune response in lymph node and spleen. Cells from the 6 week right axillary
lymph nodes were re-stimulated with autologous APC infected with M51R VSV, and IFNγ production
was measured by ELISPOT (gray bars). The number of spot-forming cells (SFC) per 106 lymph node
responder cells is shown for each animal (mean ± SD, triplicate values). Data from responder cells
restimulated with mock-infected APC are shown by the black bars. The same experiment was done
with spleen cells (right panel) from low and high dose M51R-vaccinated animals (cohorts 1 and 2,
respectively). For both lymph node and spleen experiments, no significant differences between the
4 cohorts were found by ordinary one-way ANOVA (p > 0.05).
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4. Discussion

This study presents data using nonhuman primates to evaluate dosage and adjuvant function
of flagellin when produced by M51R VSV, which has been previously evaluated in mice as a live
virus vaccine vector [19]. The results contribute new information with regard to this vaccine
platform. First, a single intramuscular vaccination of adult AGM with 108 PFU of M51R VSV induced
substantial VSV-specific humoral responses as measured by VSV-specific IgM, IgG and neutralizing
antibodies. Second, a VSV-specific cellular response was detected in lymph node and spleen at
6 weeks post-vaccination, as measured by IFNγ production after in vitro restimulation with VSV.
Third, the VSV-specific humoral but not cellular immune response was dose-dependent. Fourth,
M51R-directed intracellular flagellin production enhanced anti-VSV antibody production in the context
of low dose vaccination only (105 PFU), and did not affect the generation of a cellular response at either
vaccination dose.

Many studies to date have tested flagellin mixed with antigen, flagellin-antigen fusion proteins, or
flagellin associated with noninfectious particles, all of which stimulate cells through TLR5 [20–22,25,37].
In contrast, flagellin produced by replicating VSV, as evaluated in this study, activates the intracellular
NLRC4 inflammasome complex, which among other effects activates caspase-1 and IL-1β production
by innate immune cells [27,28]. We observed a significant effect of M51R-driven flagellin production
in augmenting antibody production at the low vaccination dose (105 PFU), which is consistent with
our previously published data using the same vectors to vaccinate mice via an intranasal route [19].
This finding is consistent with previous reports that when administered along with weak vaccines,
IL-1β mediates enhanced immunogenicity and protection in several models of bacterial and viral
infection, possibly through its capacity to augment T cell expansion and effector function [38,39].
With regard to our data, flagellin-driven IL-1β production may have augmented antibody production
via the promotion of T cell help, or indirectly via the production of pro-inflammatory cytokines by
infected innate immune cells. The current study was not designed to test the utility of M51R-encoded
flagellin for inducing protective immunity in a pathogenic context. It remains possible that the
inflammasome-stimulating activity of flagellin could augment protection against viral or bacterial
infections for which IL1-β is a key component, such as influenza [40,41] and Pseudomonas aeruginosa [42].
With regard to the potential for a T cell-mediated mechanism driving enhanced humoral immunity
at low vaccination dose, we used the same vectors in the murine intranasal vaccination model and
did not find that flagellin enhanced primary VSV-specific T cell responses, as measured by cytokine
production following in vitro re-stimulation of splenocytes with immunodominant G protein [34] and
N protein [33] peptides, respectively (Appendix A Figures A1 and A2). The mechanism by which
M51R-encoded flagellin improves humoral immunity in mice and AGM in the context of low dose
vaccination, and the potential for M51R vectors to confer protective immunity will be the subject of
future studies.

A VSV-specific cellular response, as measured by the number of IFNγ-producing cells in lymph
node and spleen after in vitro re-stimulation, was detected in all animals at 6 weeks post-vaccination.
Interestingly, the generation or maintenance of these cells did not depend on vaccine dose; similar
numbers of IFNγ producing cells were detected in all animals in both spleen and lymph node,
regardless of vaccine dose. Further, the presence of flagellin in the system (M51R-F-vaccinated animals)
had no effect at either vaccination dose. The cells produced IFNγ in response to VSV-infected antigen
presenting cells, with minimal cytokine produced in cultures that were stimulated with mock-infected
APC (Figure 2), indicating that IFNγ production was indeed VSV antigen-driven. Dose independence
of the cellular response could reflect a low viral antigen requirement for T cell activation. For example,
replication defective (single cycle) viruses, including VSV, have been shown to induce CD8+ T cell
responses of similar magnitude as their replication-competent counterparts [43,44]. Although we did
not identify the cell type producing IFNγ in the ELISPOT assay, preliminary fractionation experiments
indicated that IFNγ was produced by both CD3+ and CD3− cells, suggesting that in addition to
T cells, IFNγ-producing long-lived NK cells [45] or B cells [46] could contribute to the host response to
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M51R vectors in nonhuman primates. Given the importance of IFNγ in immune responses against
intracellular pathogens and tumors, this possibility warrants future studies with the AGM model to
phenotype the cells that produce IFNγ in response to M51R vectors.

M protein mutant VSV is one of a number of attenuated VSV strains that have potential as vaccine
vectors [9,47]. An advantage of the M protein-mutant is its capacity to undergo multiple cycles of
replication in several subtypes of DC while preserving cell integrity and inducing maturation [13–15,17].
These properties would be expected to increase the availability of vector-encoded antigens for
presentation to T cells and to activate other innate immune cells, as demonstrated for example in
a DC-based cancer vaccine model [17]. Another advantage is the high capacity of M protein mutant
VSV to induce production of Type I IFN, which supports the activation of functional T and B cell
responses [48]. The significantly greater humoral immune response that we observed after high dose
relative to low dose administration of M51R vectors could reflect a greater viral load and higher Type
I IFN levels early after vaccination, which could in turn enhance VSV-specific B cell functionality as
reported previously [49].

Further development of M51R and M51R-F as vaccine platforms raises several considerations.
First, an assessment of efficacy in inducing an immune response against a cloned heterologous antigen
(from an emerging virus or tumor, for example) is needed. Second, to more rigorously evaluate
vector-directed flagellin production will require engineering the virus to efficiently produce both
antigen and adjuvant. Third, a safety evaluation will be necessary. There is precedent for addressing
these issues successfully [1]. The 11 kb VSV genome can tolerate up to 6 kb of additional sequence with
modest effects on viral titer [50,51]. We’ve reported that expression of the 1.6 kb fliC gene as a separate
transcription unit between the M and G genes did not affect viral titers [19]. One possible strategy
going forward would be to engineer the antigen of choice as an independent transcription unit into
the first position of the M51R and M51R-F genomes. This positional strategy has yielded high level
heterologous gene expression in conjunction with virus attenuation [1,2]. The availability of a sensitive
NHP model for safety testing [52] could be leveraged to assess the combined M protein and positional
antigen placement strategies for attenuation.

5. Conclusions

This study demonstrates efficacy of 108 PFU of M51R VSV for inducing substantial adaptive
immune responses in the absence of a boost. This may be attributed in part to the robust response of DC
to infection with M protein mutant VSV strains [13,14,19,27,53], the proinflammatory nature of which
is key to the development of effective adaptive immune responses against viruses and cancer. Further,
M51R-directed flagellin production enhances antibody responses in AGM vaccinated with as little as
105 PFU of vector, raising the possibility that virus-directed intracellular flagellin production could
improve the performance of M51R VSV as a vaccine vector by lowering the dose necessary to achieve
humoral immunity against target antigens. These results form the basis for further development of
M51R VSV as an alternative vaccine platform.
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Figure A1. Murine CD8+ T cell activation after vaccination with M51R and M51R-F vaccine vectors.
Eight week-old mice were immunized intranasally with 5× 105 PFU of M51R or M51R-F, and VSV-specific
CD8+ T cell responses in the spleen were measured at days 6, 8, 10 and 12 post-vaccination. Splenocytes
were re-stimulated in vitro with peptides corresponding to an immunodominant N protein epitope for
CD8+ T cells or G protein epitope for CD4+ T cells. Intracellular cytokine staining and flow cytometry
were used to measure T cell activation. Points shown are the percentage of cytokine-producing T cells
within the CD8+ CD44 high splenic population for individual mice. The lines (solid, M51R; dotted,
M51R-F) indicate the mean of 9 mice (6 days and 8 days) or 6 mice (10 days and 12 days) per vaccination
group. (A) IFNγ-producing cells (B) TNFα-producing cells. No significant differences were found
between the 2 groups at any time point except for day 10 (indicated by a *), in which vaccination with
M51R induced a greater IFNγ response than did M51R-F (p < 0.05, Student’s t-test).
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CD4+ T cell responses were measured as per CD8 T cell responses. Points shown are the percentage of
cytokine-producing T cells within the CD4+ CD44 high splenic population for individual mice. The lines
(solid, M51R; dotted, M51R-F) indicate the mean of 9 mice (6 days and 8 days) or 6 mice (10 days and
12 days) per vaccination group. (A) IFNγ-producing cells (B) IL-4-producing cells (C) IL-17A-producing
cells. No significant differences were found between the M51R and M51R-F-vaccinated groups at any
time point (p > 0.05, Student’s t-test).
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