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ABSTRACT
Honey bees and, more recently, bumblebees have been domesticated and are now
managed commercially primarily for crop pollination, mixing with wild pollina-
tors during foraging on shared flower resources. There is mounting evidence that
managed honey bees or commercially produced bumblebees may affect the health of
wild pollinators such as bumblebees by increasing competition for resources and the
prevalence of parasites in wild bees. Here we screened 764 bumblebees from around
five greenhouses that either used commercially produced bumblebees or did not, as
well as bumblebees from 10 colonies placed at two sites either close to or far from a
honey bee apiary, for the parasites Apicystis bombi, Crithidia bombi, Nosema bombi,
N. ceranae, N. apis and deformed wing virus. We found that A. bombi and C. bombi
were more prevalent around greenhouses using commercially produced bumblebees,
while C. bombi was 18% more prevalent in bumblebees at the site near to the honey
bee apiary than those at the site far from the apiary. Whilst these results are from only
a limited number of sites, they support previous reports of parasite spillover from
commercially produced bumblebees to wild bumblebees, and suggest that the impact
of stress from competing with managed bees or the vectoring of parasites by them on
parasite prevalence in wild bees needs further investigation. It appears increasingly
likely that the use of managed bees comes at a cost of increased parasites in wild
bumblebees, which is not only a concern for bumblebee conservation, but which may
impact other pollinators as well.

Subjects Conservation Biology, Entomology, Parasitology
Keywords Pathogen spillover, Pollinator conservation, Commercial bumblebee production,
Honeybee

INTRODUCTION
In recent years several bumblebee species as well as other pollinators have suffered range

declines in parts of Europe, the Americas and Asia (Biesmeijer et al., 2006; Cameron et al.,

2011; Goulson, Lye & Darvill, 2008; Potts et al., 2010). Changes in anthropogenic land-use

is a major contributing factor to these declines, with agricultural intensification reducing

floral diversity and nesting habitats from many pollinators (Goulson et al., 2005; Ricketts et

al., 2008; Vanbergen et al., 2013). This has left some bumblebee species fragmented, in small

populations with low genetic diversity, something which may make bees more vulnerable
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to stresses such as parasites (Darvill et al., 2006; Ellis et al., 2006; Evison et al., 2013; Oldroyd,

2007; Whitehorn et al., 2011).

In addition to the stresses of habit loss, pesticide exposure and natural parasites,

(Goulson, 2003), the use of managed bees may place additional stresses on bumblebee

populations. Honey bees have been managed commercially for crop pollination and honey

production for centuries, and are often kept in commercial apiaries with tens to thousands

of colonies, substantially increasing the density of bees in an area. Bumblebees are also

now commercially produced and used mainly in greenhouses, but also sometimes in

polytunnels and open crops, in Europe, North America, South America, New Zealand and

Asia to enhance the yields of soft fruit crops (Velthuis & van Doorn, 2006). Although the

greenhouses in which commercially produced bumblebees are most commonly used are

meant to be closed, the commercially produced bumblebees are frequently found foraging

outside the greenhouses, and wild bees have been found foraging inside them (Kraus et

al., 2011; Morandin et al., 2001; Murray et al., 2013; Whittington et al., 2004). By freely

mixing with wild bumblebees, the deployment of commercially produced bumblebees

effectively increases the local density of bumblebees. Bumblebee parasites can be dispersed

between bumblebees following shared flower usage (Durrer & Schmid-Hempel, 1994),

and, as a result, the rate of parasite transmission between bees will predictably rise

with increased pollinator density (Arneberg et al., 1998). In areas utilising commercially

produced bumblebees, higher parasite prevalence may be expected to be the result, due

to either the spillover of parasites from the commercially produced bumblebees, parasite

spillback from wild bumblebees, or stress related to the high pollinator density (Kelly et al.,

2009; Power & Mitchell, 2004; Schmid-Hempel, 2011).

The spillover of parasites from one host to another, either intraspecifically or

interspecifically, is well known for many organisms (Power & Mitchell, 2004). There is

now good evidence that the honey bee parasites Nosema ceranae and deformed wing

virus have spilled over to bumblebees, with both being virulent and now widespread in

their new bumblebee host (Evison et al., 2012; Furst et al., 2014; Genersch et al., 2006;

Graystock et al., 2013a; Plischuk et al., 2009). In addition, parasites may also spill over to

wild bumblebees from the commercially reared bumblebees used in greenhouses. Colonies

of commercially produced bumblebees have been shown in many studies to carry parasites

(Colla et al., 2006; Gegear, Otterstatter & Thomson, 2005; Manson, Otterstatter & Thomson,

2010; Meeus et al., 2011; Murray et al., 2013; Otterstatter & Thomson, 2007; Singh et al.,

2010; Whittington & Winston, 2003), with the most recent study using sensitive molecular

methods finding that three-quarters of the colonies investigated were infected by at least

one parasite and confirming that these parasites were in many cases infectious (Graystock

et al., 2013b). The introduction of commercially produced bumblebees has been associated

with the introduction of foreign parasites and correlated declines in native bumblebee

species in Japan, South America and North America, suggesting that the spillover of

parasites has occurred on multiple occasions (Arbetman et al., 2012; Colla et al., 2006;

Goka et al., 2001; Meeus et al., 2011; Otterstatter & Thomson, 2008; Szabo et al., 2012).
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Although attention has focussed on parasite spillover, it is also possible that the use of

managed honey bees and commercially produced bumblebees may increase the prevalence

of parasites in wild bumblebees via parasite spillback or heightened stress from increased

competition when foraging. Managed honey bees or commercially produced bumblebees

may become infected with parasites carried by the wild bees, and their unnaturally high

density in apiaries or greenhouses may then result in them acting as a reservoir in which

the prevalence of parasites becomes high, from which the parasites can then spillback

into wild bees (Kelly et al., 2009). The increased competition for resources caused by

the introduction of high densities of managed honey bees or commercially produced

bumblebees may also stress wild bees due to the increased competition when foraging,

which can have negative effects on various fitness components including resistance to

parasites (Brown, Loosli & Schmid-Hempel, 2000; Elbgami et al., 2014; Foley et al., 2012;

Goulson & Sparrow, 2009; Lafferty & Gerber, 2002; Mallon, Brockmann & Schmid-Hempel,

2003).

The prevalence of parasites in wild bumblebees appears to be greater when the bees

are in proximity to greenhouses using commercially produced bumblebee colonies

(Colla et al., 2006; Murray et al., 2013; Otterstatter & Thomson, 2008). However, whether

this is due to parasite spillover, parasite spillback, or stress, is not always clear. Here

we investigate the relationships between commercially reared bumblebees or managed

honey bees and the prevalence of a range of parasites in bumblebees. We first examine the

relationship between the prevalence of parasites in wild bumblebees and proximity to three

farms in which commercially reared bumblebees being used and two greenhouse farms in

which they were not being used. In addition, we examine the effect of proximity to honey

bees on bumblebee parasite prevalence, using bumblebee colonies located at two sites,

either near or far from an apiary.

MATERIALS AND METHODS
The effect of proximity to commercially reared bumblebees
To determine the prevalence of parasites at sites either using commercially produced

bumblebees or not, five greenhouse farm sites in England were selected. Sites were selected

based on the presence of large scale commercial fruit farms (ca. 50–75 ha) that utilised

greenhouses and/or polytunnels for crop growing. Sites were all of comparable size, located

in areas of open farmland with no other sites known to be deploying bumblebees within

10 km. Three of the sites in Cambridgeshire, Kent and Essex, were a focal greenhouse in

which commercially produced bumblebees were used for the pollination of the greenhouse

crops (≈200–300 hives at each site), and two sites in Merseyside and Oxfordshire were

a focal greenhouse in which commercially produced bumblebees had not been used

(all sites were at least 70 km apart). Bumblebees were collected with a sweep net within

0.5 km of points 0.5, 3 and 5 km from the focal greenhouse sites, with approximately

50 bumblebees collected at each of the three distances for each of the five sites. All bees

were collected over a 16 day period in the summer of 2011 (Cambridgeshire, Kent and

Essex on 2nd July, 9th July and 11th July respectively, Oxfordshire and Merseyside on 1st
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and 16th July respectively). A total of 471 bumblebees were collected from around the

sites using commercially produced bumblebees (222, 151 and 98 at the Cambridgeshire,

Kent and Essex sites respectively) and a total of 293 bumblebees from around the

sites not using commercially produced bumblebees (143 and 150 at the Merseyside

and Oxfordshire sites respectively). The samples consisted of B. terrestris, B. hortorum,

B. hypnorum, B. lapidarius, B. lucorum, B. pascuorum and B. pratorum, with most being

either B. terrestris or B. lapidarius (40% and 25% of samples respectively; see Table 1 for

detail of the number of each species sampled at each distance at each site). All of these 764

bumblebees were screened for parasites.

The effect of proximity to managed honey bees
Ten commercially produced Bombus terrestris audax bumblebee colonies (Biobest) with

80–100 workers were used to determine the effect of proximity to managed honey bee

colonies on parasite prevalence within bumblebee colonies. The colonies were placed on

a farm near Tadcaster, West Yorkshire (53◦52′N, 1◦20′W). Five of the bumblebee colonies

were situated on the edge of an agroforestry field containing an apiary with 50, full-size

honey bee hives, and the remaining five bumblebee colonies were sited at the edge of a field

1 km away from the apiary, with bees at both locations being in the same landscape with

access to similar floral resources (Elbgami et al., 2014). The colonies were placed in a row

at the edge of each site, with the same distance between hives in each case. The bumblebee

colonies remained at these sites for one month, during which they could forage freely.

After this period, 20 bumblebee workers were taken from each colony and screened for the

presence of the parasites.

Molecular screening for parasite presence
A ca. 0.5 cm3 sample of midgut, malpighian tubules and fatbody from each bee was

homogenised and DNA extracted from the homogenate using 5% Chelex. All DNA

samples were amplified for the 18S Apidae host control gene to confirm the quality of

the DNA extraction. Samples were then screened for the presence of the Apicystis bombi,

Crithidia bombi, Nosema bombi, N. ceranae, N. apis and deformed wing virus (DWV)

parasites using parasite specific primers and conditions (Chen, Higgins & Feldlaufer,

2005; Gisder & Genersch, 2013; Klee, Tek Tay & Paxton, 2006; Meeus et al., 2010; Table

S1). Products were run alongside a size standard on a 1% agarose gel stained with ethidium

bromide to confirm amplicon size. Each assay included a negative and a positive control.

Statistical analysis
The prevalence and richness of parasites was compared between sites in which greenhouses

did or did not use commercially produced bumblebees, and between the sites near to or far

from the honey bee apiary using generalized linear models (GLM) with the likelihood ratio

χ2 statistic. The parasite richness (number of parasite species detected in a single host)

was compared between sites using a negative binomial distribution and log link function

and changes in the prevalence of individual parasites with a binomial distribution and

logit link function. When looking at the effect of commercially produced bumblebees, site
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Table 1 Summary of the bumblebees surveyed. A variety of wild bumblebees were captured to assess
the prevalence of parasites in bumblebees sampled at three distances from greenhouses that either were
or were not using commercially produced bumblebees. The species, frequency, sex and location of wild
bumblebee collected are shown along with their collection site specifics.

Location Species N Distance from greenhouses ±0.5 km

0.5 km 3 km 5 km

F M F M F M

B. hortoum 6 3 0 1 0 2 0

B. hypnorum 9 3 0 3 0 3 0

B. lapidarius 99 16 4 43 5 25 6

B. lucorum 33 6 5 4 2 12 4

B. pascuorum 15 5 0 3 0 6 0

B. pratorum 16 0 5 5 2 3 2

Cambridgeshire
Latitude: 52◦18′0.79′′N
Longitude: 0◦3′2.46′′W
Area: ≈50 acre
Number of hives: ≈200a

B. terrestris 44 15 5 6 0 16 2

B. lapidarius 21 6 1 5 1 8 0

B. lucorum 12 4 0 3 1 4 0

B. pascuorum 5 3 0 2 0 0 0

B. pratorum 19 8 0 3 1 6 1

Kent
Latitude: 51◦21′13.64′′N
Longitude: 1◦17′8.00′′E
Area: ≈75 acre
Number of hives: ≈300a

B. terrestris 94 26 3 31 3 28 3

B. lapidarius 30 6 0 5 9 7 3

B. lucorum 2 0 0 2 0 0 0

B. pascuorum 38 16 2 10 1 9 0

B. pratorum 25 21 2 0 1 0 1

Essex
Latitude: 51◦56′0.67′′N
Longitude: 1◦0′18.17′′E
Area: ≈60 acre
Number of hives: ≈240a

B. terrestris 3 3 0 0 0 0 0

B. hypnorum 9 2 0 2 0 5 0

B. lapidarius 17 6 0 2 1 8 0

B. lucorum 30 5 0 11 1 11 2

B. pascuorum 2 0 0 0 0 1 1

B. pratorum 12 6 0 2 0 3 1

Merseyside
Latitude: 53◦30′40.61′′N
Longitude: 2◦47′17.78′′W
Area: ≈75 acre

B. terrestris 73 28 3 23 1 15 3

B. lapidarius 25 9 0 8 1 6 1

B. lucorum 9 3 0 2 0 4 0

B. pascuorum 12 5 0 4 0 3 0

B. pratorum 16 5 0 2 3 6 0

Oxfordshire
Latitude: 51◦40′10.01′′N
Longitude: 1◦22′38.79′′W
Area: ≈50 acre

B. terrestris 88 27 1 29 1 28 2

Notes.
a Numbers of hives estimated based on size of farm. As a general rule, producers recommend using 4 bumblebee hives/acre

at the beginning of the season, then systematically introducing more hives as the original ones age. The estimates here
are based on 4 hives/acre.

type (greenhouses in which commercially produced bumblebees were or were not used),

transect distance, and site location nested within site type were included as factors, with

the species and sex of bumblebees sampled also included as factors. We did not include

sampling dates in these models because it covaried with site, but checked for temporal

autocorrelation using Box–Ljung tests and retested the GLM without site and instead

including sampling date (number of days after the first sample was collected) as a covariate.

We checked for spatial autocorrelation using Moran’s I (Rogerson, 2010). When looking
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at the effect of managed honey bees, location (near to or far from the apiary), and colony

nested within location, were used as factors. Nonsignificant terms were removed stepwise

based on log-likelihood ratio tests in all cases to obtain the minimum adequate models

(Table S2). All analyses were carried out in PASW Statistics 20 (IBM, Armonk, NY, USA).

RESULTS
The effect of commercially produced bumblebees on parasite
prevalence in wild bumblebees
Overall, most wild bumblebees had either no infections (40.7%) or infection by a single

parasite species (40.3%), with cases of bumblebees infected by two or three parasite species

being rare (16.8% and 2.1% respectively). There was a significant interaction between the

distance from the greenhouses and whether they were or were not using commercially

produced bumblebees on the numbers of parasite species that infected bumblebees

(χ2
= 6.78, d.f. = 2, P = 0.034), and this was not affected by either the species or sex

of the bumblebee (χ2
= 3.04, d.f. = 6, P = 0.804 and χ2

= 0.874, d.f. = 1, P = 0.35,

respectively). The numbers of parasite species recorded decreased with distance from

the greenhouses at sites which were using commercially produced bumblebees, but were

unaffected by distance at the sites which were not using these bees (Fig. 1A). There was also

a significant difference between individual sites nested within categories of using or not

using commercially produced bumblebees (χ2
= 29.0, d.f. = 3, P < 0.001), but the bees

sampled from around sites using commercially produced bumblebees nevertheless had

significantly more parasite species overall when controlling for this (χ2
= 23.2, d.f. = 1,

P < 0.001). The samples were collected within a relatively short 16 day period and showed

no temporal autocorrelation (Box–Ljung tests all P > 0.05), with there being no effect of

sampling date on the number of parasite species found (χ2
= 2.86, d.f. = 1, P = 0.091).

There was also no spatial autocorrelation (Moran’s I = 0.062; a value of 1 indicates

perfect correlation and of 0 indicates random dispersion). Of the individual parasites, the

prevalence of both A. bombi and N. ceranae were affected significantly by the interaction

between distance and whether sites were using commercially produced bumblebees or

not (χ2
= 44.5, d.f. = 2, P < 0.001, and χ2

= 7.98, d.f. = 2, P = 0.019, respectively).

A. bombi was more commonly close to greenhouses when those greenhouses were using

commercially produced bumblebees but showing little effect of distance when they were

not (Fig. 1B). N. ceranae, in contrast, increased with distance from the greenhouses at the

sites not using commercially produced bumblebees but was little affected by distance at the

sites where they were (Fig. 1D). Crithidia bombi was more prevalent in bumblebees caught

from around sites using commercially produced bumblebees than those not using them

(χ2
= 15.1, d.f. = 1, P < 0.001) but displayed no proximity effect (χ2

= 0.756, d.f. = 2,

P = 0.685; Fig. 1C). N. ceranae was the only parasite to show a significant effect of the

species or sex of bumblebee sampled (Table S2), which was due to all 7 of the B. hortorum

bees sampled being workers that were infected by N. ceranae. The prevalence of N. bombi,

N. apis and DWV in bumblebees caught were all under 1% and were not affected by any

variables (Table S2; Fig. 1).
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Figure 1 The effect of commercially produced bumblebees on parasite prevalence. Prevalence of
parasites in bumblebees sampled within 0.5 km of locations that were 0.5, 3 or 5 km from greenhouses
that were either using (grey columns) or not using (white columns) commercially produced bumblebee
colonies. (A) The mean ± s.e. parasite richness (number of species) infecting individual bees. (B–G) The
proportion of bumblebees sampled which were positive for the A. bombi, C. bombi, N. ceranae, N. bombi,
N. apis and deformed wing virus (DWV) parasites.
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Figure 2 The effect of managed honeybees on parasite prevalence. The mean ± s.e. parasite richness
(number of species) per bumblebee (A), and the prevalence of six parasites per bumblebee colony (B),
that were located either at a site near to (grey columns) or 1 km away from (white columns) a honey bee
apiary. Asterisks indicate columns for which there was a significant difference between colonies located
near to and far from the apiary (* P < 0.05; *** P < 0.001).

The effect of managed honey bees on parasite prevalence within
bumblebee colonies
The mean parasite richness varied between bumblebee colonies but was significantly

higher overall in colonies located in close proximity to honey bees (χ2
= 5.66, d.f. = 1,

P = 0.017; Fig. 2A). The average prevalence of C. bombi in bumblebee colonies near honey

bees was 58%; significantly higher than the 30% found in colonies far from honey bees

(χ2
= 17.9, d.f. = 1, P < 0.001; Fig. 2B). The prevalence of A. bombi and N. ceranae in

colonies located near honey bees averaged 30% and 43%, respectively, which did not differ

from the prevalence of these parasites in colonies far from honey bees (χ2
= 0.83, d.f. = 1,

P = 0.36; χ2
= 0.27, d.f. = 1, P = 0.61). N. ceranae prevalence did, however, differ between

colonies within sampling sites (χ2
= 25.07, d.f. = 8, P = 0.002). N. apis was only found

in bumblebee colonies located near to honey bee hives, but had a very low prevalence and

thus did not differ significantly between the sites (χ2 < 0.01, d.f. = 1, P = 0.993). Nosema

bombi and DWV were not detected in any of the 200 bumblebees sampled.

DISCUSSION
Although the study involved only a very limited number of sites and must thus be

interpreted with caution, the results suggest that the prevalence of parasites in bumblebees

may be affected by the presence of managed bees. The prevalence of A. bombi and C. bombi

was respectively 12% and 15% higher in bumblebees near greenhouses at the three sites

using commercially produced bumblebees compared to the two sites not using these bees,

and the prevalence of Apicystis bombi was also much higher 0.5 km from the greenhouses

compared with 5 km away from them. The samples were collected during a relatively

short 16 day period and the differences between sites were not due to spatial or temporal

autocorrelation. Bumblebees in colonies located close to the managed honey bee apiary

had higher levels of the parasite C. bombi compared to bumblebees in colonies that were

located 1 km away from the apiary. Although data from more sites are obviously needed to
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draw firm conclusions, the results suggest that the presence of managed colonies of either

bumblebees or honey bees may increase the prevalence of parasites in wild bumblebees.

A wide diversity of parasites were detected in the wild bumblebees collected near

greenhouses, including the bumblebee parasites A. bombi, C. bombi and N. bombi, and the

honey bee parasites N. ceranae, N. apis and DWV, all of which have also been identified in

commercially produced bumblebees (Graystock et al., 2013b). N. bombi, N. apis and DWV

were very rare (<1% prevalence) but the other parasites were more common. In general,

the parasite richness within wild bumblebees increased with proximity to greenhouses

utilising commercially produced bumblebees and bumblebees caught from around such

greenhouses had a higher prevalence of A. bombi and C. bombi than those caught around

greenhouses not using commercially reared bumblebees. Whether through parasite

spillover, parasite spillback, or the stress of increased competition, commercially produced

bumblebees appear to be increasing the prevalence of parasites in local bumblebees. These

findings support previous, microscopy-based studies that found a higher prevalence of

parasites near sites using commercially produced bumblebees (Colla et al., 2006; Murray

et al., 2013; Otterstatter & Thomson, 2008). The effect of greenhouses using commercially

produced bumblebees on the prevalence A. bombi appeared to be influenced by proximity

to the focal glasshouse site. This perhaps suggests either a recent introduction from the

greenhouses or that the dispersal of the parasite through the environment is relatively

limited. There have been no studies of the horizontal transmission of A. bombi, although it

has been commonly found at a low prevalence when bees are examined using less sensitive

microscopy methods (Goulson, Whitehorn & Fowley, 2012; Shykoff & Schmid-Hempel,

1991). Worryingly this parasite has been implicated in bumblebee declines in South

America (Arbetman et al., 2012). Crithidia bombi was also found to be more prevalent

at sites using commercially produced bumblebees. Unlike A. bombi, there was no proximity

effect found, but C. bombi is known to readily transmit between bumblebees and may

therefore disperse rapidly through the environment (Durrer & Schmid-Hempel, 1994).

The prevalence of none of the other parasites investigated differed between sites with or

without commercially produced bumblebees. Nosema ceranae was abundant at some sites

but completely absent at other sites. Nosema ceranae, is an emergent honey bee parasite

that is implicated in the collapse of honey bee colonies in some, but not all, areas (Fries,

2010; Higes et al., 2008; Klee et al., 2007; Paxton, 2010; Paxton et al., 2008; Roberts & Hughes,

2014), and which has been shown to be widespread and virulent in bumblebees (Furst et al.,

2014; Graystock et al., 2013a; Plischuk et al., 2009).

Although based on only two sites, the comparison of the site with honey bee hives and

the site 1 km from the hives suggested that proximity to managed honey bee colonies

may also have an effect on parasite prevalence in bumblebee colonies. Although the

levels of N. bombi, N. apis and DWV were too low for any conclusions, and A. bombi and

N. ceranae did not differ between the two sites, C. bombi was significantly more prevalent

in bumblebee colonies that were near to the honey bee hives. This effect could not be due to

spillover, because C. bombi is unable to infect honey bees (Ruiz-González & Brown, 2006).

It could, however, be due to stress from competition leading to the bumblebees close to
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the honey bee apiary being more susceptible to infection (Brown, Loosli & Schmid-Hempel,

2000; Elbgami et al., 2014; Goulson & Sparrow, 2009; Lafferty & Gerber, 2002; Mallon,

Brockmann & Schmid-Hempel, 2003), or to the honey bees vectoring C. bombi. The

potential role of stress and parasite spillback in driving elevated parasite prevalence in

wild pollinators has been largely ignored and would warrant further investigation.

Our results suggest that managed colonies of bees may increase the prevalence of

parasites in bumblebees. The results here are based on only very few sites and clearly

further studies are needed using far more sites to establish their generality. It will be

important for such studies to consider the potential for parasite spillback and stress-related

effects, in addition to parasite spillover. It is clear that as long as there is mixing between

managed and wild bees, there is the potential for wild populations to be at risk from the

effects on host-parasite dynamics. These effects could prove to be a major conservation

threat to bumblebees.
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del Nozal MJ, Bernal JL, Jiménez JJ, Palencia PG, Meana A. 2008. How natural infection by
Nosema ceranae causes honeybee colony collapse. Environmental Microbiology 10:2659–2669
DOI 10.1111/j.1462-2920.2008.01687.x.

Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM. 2009. Parasite spillback: a
neglected concept in invasion ecology? Ecology 90:2047–2056 DOI 10.1890/08-1085.1.

Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Ruz JM,
Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ. 2007. Widespread dispersal
of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis
mellifera. Journal of Invertebrate Pathology 96:1–10 DOI 10.1016/j.jip.2007.02.014.

Klee J, Tek Tay W, Paxton RJ. 2006. Specific and sensitive detection of Nosema bombi
(Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of
partial rRNA gene sequences. Journal of Invertebrate Pathology 91:98–104
DOI 10.1016/j.jip.2005.10.012.

Graystock et al. (2014), PeerJ, DOI 10.7717/peerj.522 12/14

https://peerj.com
http://dx.doi.org/10.1038/nature12977
http://dx.doi.org/10.1016/j.anbehav.2004.09.025
http://dx.doi.org/10.1016/j.jip.2005.10.002
http://dx.doi.org/10.1016/j.jip.2013.01.004
http://dx.doi.org/10.1046/j.0962-1083.2001.01323.x
http://dx.doi.org/10.1016/j.biocon.2004.06.017
http://dx.doi.org/10.1146/annurev.ento.53.103106.093454
http://dx.doi.org/10.1007/s10841-008-9140-y
http://dx.doi.org/10.1111/j.1365-2311.2011.01334.x
http://dx.doi.org/10.1016/j.jip.2013.06.005
http://dx.doi.org/10.1111/1365-2664.12134
http://dx.doi.org/10.1111/j.1462-2920.2008.01687.x
http://dx.doi.org/10.1890/08-1085.1
http://dx.doi.org/10.1016/j.jip.2007.02.014
http://dx.doi.org/10.1016/j.jip.2005.10.012
http://dx.doi.org/10.7717/peerj.522


Kraus FB, Szentgyorgyi H, Rozej E, Rhode M, Moron D, Woyciechowski M, Moritz RFA. 2011.
Greenhouse bumblebees (Bombus terrestris) spread their genes into the wild. Conservation
Genetics 12:187–192 DOI 10.1007/s10592-010-0131-7.

Lafferty KD, Gerber LR. 2002. Good medicine for conservation biology: the intersection of
epidemiology and conservation theory. Conservation Biology 16:593–604
DOI 10.1046/j.1523-1739.2002.00446.x.

Mallon EB, Brockmann A, Schmid-Hempel P. 2003. Immune response inhibits associative
learning in insects. Proceedings of the Royal Society B: Biological Sciences 270:2471–2473
DOI 10.1098/rspb.2003.2456.

Manson J, Otterstatter M, Thomson J. 2010. Consumption of a nectar alkaloid reduces pathogen
load in bumble bees. Oecologia 162:81–89 DOI 10.1007/s00442-009-1431-9.

Meeus I, Brown MJF, De Graaf DC, Smagghe GUY. 2011. Effects of invasive parasites on bumble
bee declines. Conservation Biology 25:662–671 DOI 10.1111/j.1523-1739.2011.01707.x.

Meeus I, Smagghe G, Siede R, Jans K, de Graaf DC. 2010. Multiplex RT-PCR with broad-range
primers and an exogenous internal amplification control for the detection of honeybee viruses
in bumblebees. Journal of Invertebrate Pathology 105:200–203 DOI 10.1016/j.jip.2010.06.012.

Morandin LA, Laverty TM, Kevan PG, Khosla S, Shipp L. 2001. Bumble bee (Hymenoptera:
Apidae) activity and loss in commercial tomato greenhouses. Canadian Entomologist
133:883–893 DOI 10.4039/Ent133883-6.

Murray TE, Coffey MF, Kehoe E, Horgan FG. 2013. Pathogen prevalence in commercially reared
bumble bees and evidence of spillover in conspecific populations. Biological Conservation
159:269–276 DOI 10.1016/j.biocon.2012.10.021.

Oldroyd BP. 2007. What’s killing American honey bees? PLoS Biology 5:e168
DOI 10.1371/journal.pbio.0050168.

Otterstatter M, Thomson J. 2007. Contact networks and transmission of an intestinal pathogen in
bumble bee (Bombus impatiens) colonies. Oecologia 154:411–421
DOI 10.1007/s00442-007-0834-8.

Otterstatter MC, Thomson JD. 2008. Does pathogen spillover from commercially reared bumble
bees threaten wild pollinators? PLoS ONE 3:e2771 DOI 10.1371/journal.pone.0002771.

Paxton RJ. 2010. Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey
bees (Apis mellifera)? Journal of Apicultural Research 49:80–84 DOI 10.3896/IBRA.1.49.1.11.

Paxton RJ, Klee J, Korpela S, Fries I. 2008. Nosema ceranae has infected Apis mellifera in Europe
since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565
DOI 10.1051/apido:2007037.

Plischuk S, Martı́n-Hernández R, Prieto P, Lucı́a M, Botı́as C, Meana A, Abrahamovich AH,
Lange C, Higes M. 2009. South American native bumblebees (Hymenoptera: Apidae) infected
by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera).
Environmental Microbiology Reports 1:131–135 DOI 10.1111/j.1758-2229.2009.00018.x.

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global
pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25:345–353
DOI 10.1016/j.tree.2010.01.007.

Power AG, Mitchell CE. 2004. Pathogen spillover in disease epidemics. American Naturalist
164:S79–S89 DOI 10.1086/424610.

Graystock et al. (2014), PeerJ, DOI 10.7717/peerj.522 13/14

https://peerj.com
http://dx.doi.org/10.1007/s10592-010-0131-7
http://dx.doi.org/10.1046/j.1523-1739.2002.00446.x
http://dx.doi.org/10.1098/rspb.2003.2456
http://dx.doi.org/10.1007/s00442-009-1431-9
http://dx.doi.org/10.1111/j.1523-1739.2011.01707.x
http://dx.doi.org/10.1016/j.jip.2010.06.012
http://dx.doi.org/10.4039/Ent133883-6
http://dx.doi.org/10.1016/j.biocon.2012.10.021
http://dx.doi.org/10.1371/journal.pbio.0050168
http://dx.doi.org/10.1007/s00442-007-0834-8
http://dx.doi.org/10.1371/journal.pone.0002771
http://dx.doi.org/10.3896/IBRA.1.49.1.11
http://dx.doi.org/10.1051/apido:2007037
http://dx.doi.org/10.1111/j.1758-2229.2009.00018.x
http://dx.doi.org/10.1016/j.tree.2010.01.007
http://dx.doi.org/10.1086/424610
http://dx.doi.org/10.7717/peerj.522


Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A,
Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A,
Viana BF. 2008. Landscape effects on crop pollination services: are there general
patterns? Ecology Letters 11:499–515 DOI 10.1111/j.1461-0248.2008.01157.x.

Roberts KE, Hughes WOH. 2014. Immunosenescence and resistance to parasite infection in the
honey bee, Apis mellifera. Journal of Invertebrate Pathology 121:1–6
DOI 10.1016/j.jip.2014.06.004.

Rogerson PA. 2010. Statistical methods for geography: a student’s guide. London: SAGE Publications
Ltd.
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