
Citation: Mu, L.; Ge, B.; Xia, C.; Wu,

C. Multi-Task Offloading Based on

Optimal Stopping Theory in Edge

Computing Empowered Internet of

Vehicles. Entropy 2022, 24, 814.

https://doi.org/10.3390/e24060814

Academic Editor: Éloi Bossé

Received: 16 May 2022

Accepted: 9 June 2022

Published: 11 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Multi-Task Offloading Based on Optimal Stopping Theory in
Edge Computing Empowered Internet of Vehicles
Liting Mu 1, Bin Ge 1,* , Chenxing Xia 1,2 and Cai Wu 1

1 College of Computer Science and Engineering, Anhui University of Science and Technology,
Huainan 232001, China; ltingmu@163.com (L.M.); cxxia@aust.edu.cn (C.X.); wuc17855370929@163.com (C.W.)

2 Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
* Correspondence: bge@aust.edu.cn

Abstract: Vehicular edge computing is a new computing paradigm. By introducing edge computing
into the Internet of Vehicles (IoV), service providers are able to serve users with low-latency services,
as edge computing deploys resources (e.g., computation, storage, and bandwidth) at the side
close to the IoV users. When mobile nodes are moving and generating structured tasks, they can
connect with the roadside units (RSUs) and then choose a proper time and several suitable Mobile
Edge Computing (MEC) servers to offload the tasks. However, how to offload tasks in sequence
efficiently is challenging. In response to this problem, in this paper, we propose a time-optimized,
multi-task-offloading model adopting the principles of Optimal Stopping Theory (OST) with the
objective of maximizing the probability of offloading to the optimal servers. When the server
utilization is close to uniformly distributed, we propose another OST-based model with the objective
of minimizing the total offloading delay. The proposed models are experimentally compared and
evaluated with related OST models using simulated data sets and real data sets, and sensitivity
analysis is performed. The results show that the proposed offloading models can be efficiently
implemented in the mobile nodes and significantly reduce the total expected processing time of the
tasks.

Keywords: mobile edge computing; computational offloading; optimal stopping theory; structured
tasks; time optimization; sequential decision making

1. Introduction

The Internet of Vehicles (IoV) is an emerging concept in intelligent transportation
systems that aims to improve traffic safety and passenger comfort through integration
with the Internet of Things (IoT), and it is an important implementation of the IoT [1].
Based on Vehicle to Everything (V2X) technology, the IoV connects vehicles, roadside
units (RSUs), and service providers into a whole organic network, enabling all-round
communication between them [2]. Smart vehicles in the IoV can communicate via V2X.
Specifically, smart vehicles can share information with other vehicles through Vehicle
to Vehicle (V2V) communication; thus, it can obtain a wider view of the road condition
information shared by surrounding vehicles and greatly reduce the traffic accidents caused
by blind spots [3].

As the number of vehicles on the road continues to increase, the IoV continues to
evolve, smart vehicles accounting for an increasing share of Internet-connected devices. In
the IoV paradigm, smart vehicles are equipped with computing units and communication
technologies that provide services such as intelligent control, traffic management and
interactive applications for vehicles. The edge-side computing architecture for autonomous
vehicles (AVs) relies on the communication infrastructure and services provided by
the edge-cloud collaboration and the (Long-Term Evolution/5th Generation Mobile
Communication Technology) LTE/5G. The edge side mainly refers to on-board edge

Entropy 2022, 24, 814. https://doi.org/10.3390/e24060814 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24060814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9050-1105
https://doi.org/10.3390/e24060814
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060814?type=check_update&version=3

Entropy 2022, 24, 814 2 of 21

computing units, RSUs, Mobile Edge Computing (MEC) servers, etc. AVs are equipped
with a large number of sensors that collect data for different types of traffic systems and
navigation applications, etc. [4]. Currently, each AV is equipped with more than 60 to
100 electronic control units to support various functions such as communication, engine,
dashboard, seat control, entertainment, etc. AVs generate a large amount of data in real
time while driving; for example, AVs will generate and consume about 40 TB of data for
every eight hours of driving (e.g., a city’s High-Definition (HD) map is about 1.5TB) [5].
Although AVs have small-scale computational and storage resources, the computational
capacity of vehicle terminals is relatively limited due to the huge computational tasks and
the very high demand for real-time system response; e.g., in hazardous situations, the
response time of the vehicle braking system is directly related to the safety of the vehicle,
passengers, and the road, so they rely on other computational resources [6]. The MEC
servers in the rear seat unit of AVs can play an important role in improving the performance
of mobile vehicle terminals [7].

Since MEC servers operate at the edge of the radio access network, connecting to RSUs
and performing transmission tasks with their help, their service area may be limited by the
radio coverage of the RSUs. Due to the high mobility of the nodes, moving vehicles may
pass through multiple RSUs and MEC servers during task offloading and can offload their
computational tasks to any MEC server they have access to that provides computational
resources for the tasks offloaded by the mobile nodes [8], as shown in Figure 1. The load
on the MEC servers varies greatly from moment to moment; sometimes, there are a large
number of users using the same server at the same time, causing a high load situation,
while at other times, only a few users are connected to the server and the server load is
low [9]. Therefore, the key to the problem is how the mobile node defines the offloading
decision by which it selects the appropriate edge servers to offload the computational tasks
so that the total computational latency is minimized [10].

TOTAL
DELAY X

RSU1

MEC Server1

RSU2

MEC Server2

RSUm

MEC Serverm

...

TOTAL
DELAY X

Task 1

RSU1

MEC Server 1

RSU2

MEC Server 2

RSUm

MEC Server m

...

Task K

...

Figure 1. MEC in the Internet of Vehicles.

A centralized offloading strategy has been used in some studies, where vehicles can
request information about MEC servers available for offloading along the road from a
centralized server located at a higher level [11]. The centralized server is connected to
the MEC servers through a wired network. However, this centralized architecture is not
visible, and as the number of vehicles on the road continues to increase, the centralization
of road information puts a higher load on the network [9]. Offloading strategies based
on Vehicle-to-Vehicle communication (V2V) architectures are discussed in other studies,
where vehicles can send tasks to the MEC server through other vehicles, each of which
can act as an intermediate node for data delivery [4]. This solution requires the presence
of other vehicles, but there is no guarantee that other vehicles will be present. Therefore,
considering the scenario that if the mobile node only knows the MEC server that is being

Entropy 2022, 24, 814 3 of 21

observed sequentially and has no global information about the candidate MEC server or
only local information, how should it choose the optimal MEC server for offloading?

Such problems are known as Optimal Stopping Theory (OST) problems. A basic
question about OST is that nodes autonomously decide when to act based on sequentially
observed random variables with the goal of increasing expected benefits or decreasing
expected costs [12]. The Secretary Problem (SP), the House Sale (HS) problem or the
Fair Coin Problem are some well-known OST problems [12]. Single-node OST offloading
problems have been studied, and in this paper, we attempt to study OST-based offloading
problems for structured tasks with multiple subtasks and provide lightweight local
algorithms that can be implemented in mobile nodes (vehicles or smartphones) so that
mobile nodes can make offloading decisions independently.

The remainder of this paper is organized as follows: we provide a summary of the
related work and outline our contributions in Section 2, while details of the system model
and the problem formulation are described in Section 3. The OST-based task offloading
models are described in Sections 4.1 and 4.2. Performance evaluation is provided in
Section 5. Finally, Section 6 concludes the paper and outlines future research directions.

2. Related Work and Contributions
2.1. Related Work

In dealing with the issue of how to offload computational tasks and data to edge nodes,
various pieces of research have emphasized whether data or tasks should be offloaded to
servers or computed locally. The offloading decision has two main goals: minimization of
computational delay and energy consumption.

Ref. [13] proposed the ST-CODA algorithm for computing offloading decisions based
on space and time in this paper to design mobile devices’ decisions in terms of time and
location for offloading tasks by considering computing nodes and transmission costs in
heterogeneous networks supported by edge clouds, where the time decision refers to
postponing the offloading decision until a low-cost network, such as a wireless network, is
found. Unlike ST-CODA, the approach studied in this paper will only offload tasks to edge
servers and not further to the cloud, and the decision is deferred until a less loaded server
is found.

Ref. [14] used Device-to-Device (D2D) communication technology to establish a direct
link between mobile devices (MDs) and proposed a Secure and Energy-aware Collaborative
Task Offloading for D2D communication (Sec2D) considering the data security. A new
security model is constructed in terms of CPU cores, CPU frequency, and data size to
measure the secure workload on heterogeneous MDs with guaranteed data security, a
collaborative task offloading problem is proposed to minimize the time-averaged delay
and energy consumption of MDs, and the Lyapunov optimization framework is applied to
achieve online decision making. Greedy approach and optimal approach with different
time complexity are proposed to deal with the generated mixed-integer linear programming
(MILP) problem. The D2D technique mentioned in the paper is similar to the V2V
communication architecture in the vehicular network, which can reduce the communication
delay and improve the network capacity of the underlying wireless network.

In [15], OST was employed in order to obtain a good balance between the benefit
of selecting the best edge device and the cumulative cost of deep resource detection.
The authors tried to enhance the OST-based model by using a hierarchical learning
mechanism to define the OST threshold and the sequence of edge nodes used for offloading.
However, as it implements deep neural networks and deep Q-networks, it leads to a
significant increase in the computational overhead and battery consumption of mobile
nodes. Moreover, in their application, it is assumed that once the task is generated, the
mobile node will have a list of edge devices, and then, the mobile node will define which
edge node strikes a good balance between detection cost and execution delay of the task in
advance.

Entropy 2022, 24, 814 4 of 21

In [16,17], the authors proposed a set of lightweight sequential decision models using
the OST principle. In particular, Delay-Tolerant Offloading (DTO) decisions in the MEC
environment are proposed, in which the unloading decision should be made within a
predefined time horizon. This can be considered as a finite time horizon OST problem. This
has been further investigated in [18], and two OST-based models have been introduced.
The first one is the Best Choice Problem-based optimal task offloading policy (BCP), where
the objective is to maximize the probability of offloading to the best edge server. The
advantage of this model is that task offloading decisions can be made independently by
mobile nodes, and it only needs to provide the number of observations (the number of
edge nodes). Another one is the Cost-based Optimal Task Offloading Policy (COT), which
enhances the BCP model by further considering the cost per observation of the server and
obtaining more metric information about the performance. In [19], the authors summarized
this series of OST-based offloading models, introduced the concept of contextual data
quality awareness, proposed a timeliness function, injected offloading decisions, proposed
an OST-based optimal selection method, and provided detailed evaluation and analysis by
modeling and experimenting the application of OST models in MEC environments.

In [20], the authors considered the possible existence of the situation of multi-tasks
and structured tasks offloading. A system model for a multi-user, multi-offload point and
structured task environment is first developed to formalize the offload decision problem in
this environment as a cost minimization problem, and then, a backtracking-based approach
is designed to obtain its exact solution. To reduce the complexity, a method based on an
improved genetic algorithm and a method based on a greedy strategy are designed. Finally,
the three methods are verified and compared in terms of total cost and resource utilization
at the unloading point and execution time for all users.

In this work, we consider the case of dividing the tructured tasks into multiple
subtasks [20]. To solve the multi-task sequential offloading problem, inspired by the work
of [19], we design distributed multi-task offloading model based on OST. The offloading
models should be as lightweight as possible to facilitate local execution by mobile nodes.
We also introduce the time-optimized function to ensure the timeliness of the offloading
process. Additionally, we provide a comparative evaluation of all the OST-based models
found in the literature with other offloading methods using simulation-based evaluation
and real data set evaluation.

2.2. Contribution

In summary, our contributions are:

• We consider the multi-task offloading problem based on OST, where structured tasks
are divided into multiple subtasks and offloaded to the MEC servers with the goal of
minimizing the total task processing time.

• We propose a time-optimized function to simulate the situation where a mobile node
needs to perform offloading as far as possible before the task data become obsolete in
a realistic scenario and inject it into the decision model.

• We propose a time-optimized multi-task offloading model based on OST aiming
at maximizing the probability of offloading to the optimal servers for general
distribution scenarios.

• We propose a better time-optimized multi-task offloading model based on OST with
the objective of minimizing the total task processing time for some realistic road
scenarios where the CPU utilization may have an approximately uniform distribution.

• We provide an experimental comparison, performance evaluation and sensitivity
analysis of the models in this paper and a series of models in other research using
simulated and real data sets.

3. System Model and Problem Description

Consider a vehicle networking application scenario studied in [4,10]: mobile nodes
travel on the road with RSUs and base stations deployed on the roadside, where a limited

Entropy 2022, 24, 814 5 of 21

set of MEC servers with storage units and computation units are deployed [21]. Vehicles
traveling on the road generate computational tasks and try to offload them to the MEC
servers along the road. As user requirements become more complex, individual tasks
gradually fail to meet user needs, and mobile nodes may generate a large number of
structured tasks. For example, a structured task that is generated to meet business travel
needs can be divided into three subtasks: weather forecasting (t1), flight reservation (t2),
and hotel reservation (t3). t2 and t3 are independent of each other and thus can be executed
in parallel, but they all depend on the results provided by t1 [22]. So, the three subtasks can
be executed in the order of t1, t2, and t3 for offloading, and thus, they can be offloaded in
chunks by dividing the structured task into multiple subtasks [20].

The MEC server can operate at the edge of the network with the help of the RSU, so its
communication range will be limited by the RSU communication range [5]. Since the input
data for the vast majority of tasks are much larger than the output data of the computation
results, to ensure the continuity of task completion, it can be assumed that there are mobility
management entities in the server that implement mobility management algorithms, such
as path selection, power control algorithms [23,24] or as the prediction model in [4]. If the
node needs to obtain some results from a server other than the one selected for offloading
this task, and the mobile node is outside the range of this MEC server, the selected MEC
server should use a high-bandwidth wired connection to transmit the task results to the
node through the next MEC server [25], thus solving the problem of continuity in the
transmission of computational results after the vehicle is out of communication range of
the MEC server.

The mobile node observes the MEC servers along the route in order at this point,
and Xi is the random variable of the ith server processing time observed. When a node
generates tasks locally and needs to offload, the node can observe n MEC servers; the
mobile node uses the network and server analyzer to check each MEC server it passes and
obtains the X values. Assuming that K blocks of tasks need to be unloaded, in n observation
durations, then K unloading decisions need to be made.

The current goal is to optimize the decision to offload multiple targets to available
servers. Overall, the offloading objectives are twofold: (1) maximize the probability of
offloading to K optimal servers; (2) minimize the expected value of the total X for K tasks.
We first propose an offloading model that is generalizable to the distribution of X for the
first objective, and then, we propose a better offloading model with the second objective
(minimizing the expected value of the total X for K tasks) for certain road scenarios where
there may be a uniform distribution of X. Table 1 provides the key notations used in
this paper.

Table 1. Key notations used in the paper.

Notation Explanation

X Random variable for server processing time
i Random variable for server processing time
n The serial number of the observed server
θ Threshold in the offloading model
K Number of tasks that need to offload
rn Stop node in the BCP model
Pn Maximum probability in the BCP model
Ti Time-optimized function
ci The i-th decision number that has been selected

Pi(jk) The probability of the i-th possible offloading branch in the K-Best model
α Mandatory candidate in the K-Best model
β Edge candidate in the K-Best model
jk Stop nodes in the K-Best model

Vk,k′ (n) Total time delay in KBU model
t(ρ, k) Optimal threshold after time optimization in KBU model

P The probability P in the p-model

Entropy 2022, 24, 814 6 of 21

4. Computational Model
4.1. General Model

Consider first the OST problem model in the K = 1 case, where the goal is to maximize
the probability of offloading to the best node, thus achieving the effect that the total
processing time of the system is as small as possible. In the previous BCP model [18], the
offloading scenario considered in this paper can be equated to the scenario discussed in this
paper K = 1 where the mobile nodes know in advance the number of MEC servers that are
available for offloading as n(n > 0, n ≥ K). The value of the specific n can be defined by
the user or estimated by the application based on the deadlines of the tasks to be offloaded.
Each node can only check the servers in a sequential and random order and will rank them
relatively based on the previously observed servers. At each observation, the node should
decide whether to select the current candidate server, and once selected, it cannot revoke its
decision. The node should maximize the probability of selecting the best candidate among
n probability of choosing the best among the candidates. This is a best choice problem [12].
The offloading rules in BCP are described as follows.

Call the first i server as the candidate server, the i = 1, . . . , n, assuming that it is the
best in terms of Xi. We define a positive integer rn in {1, . . . , n}, which is defined as:

rn = min
{

r ≥ 1 :
1
r
+

1
r + 1

+ . . . +
1

n− 1
≤ 1

}
. (1)

For n ≥ 2, according to BCP, the best strategy is to reject the first rn − 1 server and
then select the first candidate server (if any) to offload the task. The maximum probability
of selecting the best candidate for BCP in (1) is given by the following equation:

Pn(rn) =
rn − 1

n

n

∑
i=rn

1
i− 1

. (2)

For smaller values of n, the optimal stop node rn can be calculated using (1). When
n→ ∞, we obtain the well-known secretary problem, where the optimal probability tends
to 1

e [26]. Figure 2 shows the values of the probability of offloading to the best candidate
and Rn for different values of n. It can be seen that as n increases, there is at least a 36%
probability of offloading to the best node [19].

0 200 400 600 800 1000

the Number of servers

36

38

40

42

44

46

48

50

P(
X)
%

(a)

3 4 5 6 7 8 9 10

the Number of servers

0

2

4

6

8

10 Number of servers n

Rn

(b)

Figure 2. The probability of offloading to the best (a) and the value of Rn (b) for different numbers of
servers n.

4.2. Time-Optimized Multi-Task Offloading Model

In this section, the situation that arises when a mobile node wants to offload a
structured task into K subtasks to the MEC server and perform a data analysis task on the
move is investigated. Data analysis tasks can be data correlation analysis, inference and
predictive analysis [27], statistical learning model building, model selection [28,29] or data
from HD maps, as shown in [21]. Data can be collected through different applications such

Entropy 2022, 24, 814 7 of 21

as Mobile Crowd Sensing (MCS) or Vehicle Crowd Sensing (VCS) [30,31]. The mobile node
sequentially observes the MEC server deployed in the RSU and decides whether to offload
or not, and once rejected or selected, it cannot be reversed. The mobile node can perform a
relative ranking of the historical observed X values, and within the observation time n, a
total of K decisions are required to ensure that all K blocks of tasks are offloaded.

In addition, the tasks that need to be offloaded have contextual data time limits, so it is
necessary to advance the offloading as much as possible to prevent data from being obsolete
and not being processed. Using the observed server serial number i as the variable, where i
can be interpreted as the time of the whole offload decision process, the i = 1, 2, . . . , n. The
time-optimized function T, adapted from [32], is constructed to consider the timeliness of
the offloading decision:

• T is linear non-increasing in i.
• When i = 1, the observable time starts, the value of T is maximum, T = 1.
• When i = n, the observable time is over, the value of T is minimum.

The specific T function is defined as follows:

Ti =

{
n+1−i

n , 1 ≤ i ≤ n.
0, i > n.

(3)

The following two multi-tasks offloading decisions are proposed for the structured
task offloading problem:

1. For the general distribution scenarios of X, a time-optimized K-Best Choice (K-Best)
strategy is proposed with the objective of maximizing the probability of selecting the
best servers.

2. For some realistic road scenarios where the CPU utilization may have an
approximately uniform distribution, a time-optimized K-Best selection based on
Uniform distribution (KBU) strategy is proposed with the goal of minimizing the total
processing time for K selections.

4.2.1. The K-Best Model

The offloading problem of such structured tasks can be abstracted as a K-best selection
problem based on the OST; with the goal of maximizing the probability of selecting the best
servers, the offloading algorithm is designed with the idea of K iterations. The description
of K-Best model is given below: First, we define K stop nodes: 1 ≤ j1 < j2 < . . . < jk ≤ n;
here, ci denotes the first i decision sequence number that has been selected. Then, we
define two types of offload candidate servers, and the mobile node determines the type of
candidate servers based on the relative ranking of the selected server utilization and the
given threshold value θ. For example, if m offload selections have been made so far, the
selected m servers are sorted in ascending order of utilization as: 1 < 2 < . . . < m. The
candidate server types are defined follows:

1. Compulsory candidate server α: the current server utilization detected by the mobile
node is Xi; if Xi < θ and the relative ranking Xi ≤ m, then it is a compulsory candidate
server α.

2. Marginal candidate server β: the current server utilization detected by the mobile
node is Xi; if Xi < θ or the relative ranking Xi ≤ m + 1, then it is a marginal candidate
server β.

The Algorithm 1 is described as follows:

Entropy 2022, 24, 814 8 of 21

Algorithm 1 the K-Best algorithm.

Require: stop node 1 ≤ j1 < j2 < . . . < jK ≤ n, random variables X, time optimization
function Ti.

Ensure: total time delay.
for p = 1, 2, 3, . . . , n do

for m = 1, 2, . . . , K do
if m == 1 then

if p ≥ jm and p = α or β then
perform offload;
jm = p;

end if
else if m > 1 and p = α and p ∈ (jm − 1, jm) then

perform offload;
jm = p;

else if m > 1 and no α is in (jm−1, jm) then
if p ≥ jm and p = α or β then

perform offload;
jm = p;

end if
end if

end for
end for

According to [33], it is difficult to give the general closed forms of the stopping nodes
when K > 1, but the structure of the process of calculating the solution and the asymptotic
form of the solution can be given.

With the consideration of time-optimized function T, taking K = 2 as an example,
there are two possible decisions:

c1 < j1 ≤ c2 or c1 < c2 ≤ j2, the probability of the first case is:

P1(j2) =
n

∑
c2=j2

j2−1

∏
k=c1+1

Tk

(
1− 1

k

) c2−1

∏
l=j2

Tl

(
1− 1

l

)
2
c2

n

∏
s=c2+1

Ts

(
1− 2

s

)

=
n

∑
c2=j2

n

∏
i=c1+1

Ti
c1

n
2

c2 − 2
j2 − 2
n− 1

.

(4)

Let P1(j2) =
c1(n−c1)!

nn−c1
F1(c1, j2), the probability of the second case is:

P2(j2) =
j2−1

∑
c2=c1+1

c2−1

∏
k=c1+1

Tk

(
1− 1

k

)
1
c2

Tc2

n

∏
l=c2+1

Tl

(
1− 2

l

)

=
j2−1

∑
c2=c1

n

∏
i=c1+1

Ti
c1

n(n− 1)
.

(5)

Let P2(j2) =
c1(n−c1)!

n(n−c1)
F2(c1, j2), the total probability can be expressed as:

P(j2) = P1(j2) + P2(j2). (6)

Entropy 2022, 24, 814 9 of 21

When n → ∞, we use the Euler–McLaughlin formula to replace the sum of
probabilities; then, the total probability can be expressed as:

V1(c1, j2) =
c1(n− c1)!

n(n−c1)

(∫ 1

j2
2

j1
c2

dc2 +
∫ j2

c1

1dc2

)
=

c1(n− c1)!
n(n−c1)

(−c1 + j2 − 2j2ln(j2)).
(7)

Since the function V1(c1, j2) is unimodal in j2, the maximum P value is given when
dV1
dj2

= 0:
dV1

dj2
= c1(1− 2lnj2 − 2) = 0, (8)

j∗2 = e−
1
2 = 0.6065306596 . . . (9)

Next, we find the value of j1; again, there are two cases: j2 = j∗2 (i f c1 < j∗2) or
j2 = c1(i f c1 ≥ j∗2); the probability of the first case is:

P1(j1) =
j∗2−1

∑
c1=j1

c1−1

∏
i=j1

Ti

(
1− 1

i

)
1
c1

c2[F1(c1, j∗2) + F2(c1, j∗2)]

=
j∗2−1

∑
c1=j1

∏c1−1
i=j1

n + 1− i

n(c1−j1+2)
j1 − 1
c1 − 1

[F1(c1, j∗2) + F2(c1, j∗2)].

(10)

P1(j1) is unimodal in j1; the probability of the second case is:

P2(j1) =
n−1

∑
c1=j∗2

n

∑
c2=c1+1

c1−1

∏
i=j1

Ti

(
1− 1

i

)
1
c1

Tc1

c2−1

∏
l=c1+1

(
1− 2

l

)
2
c2

Tc2

n

∏
s=c2+1

(
1− 2

s

)

=
(n + 1− j1)!

n(n+1−j1)

n−1

∑
c1=j∗2

n

∑
c2=c1+1

2
c2 − 2

j1 − 1
n

1
n− 2

,

(11)

P2(j1) is monotonic in j1; the total probability can be expressed as:

P(j2) = P1(j2) + P2(j2). (12)

Because P1(j1) is unimodal in j1, P2(j1) is monotonic in j1, so P(j1) is unimodal in
j1. Similarly, when n → ∞, we use the Euler–Maclaurin formula to replace the sum of
probabilities; then, the total probability can be expressed as:

V2(j1) =
∫ j∗2

j1

1
c1

V1(c1, j∗2)dc1 + j1
∫ 1

c1=j∗2

∫ 1

c2=c1

2
c2

dc2dc1. (13)

Since V2(j1) is unimodal in j1, the maximum P value is given when dV2
dj1

= 0:

j∗1 = e−
1
2 W
(
−e(−3+e

1
2)

)
= 0.2291147286 (14)

Entropy 2022, 24, 814 10 of 21

Here, W(x) is the Lambert function. Based on a similar solution structure, we can derive
in advance the form of the asymptotic solution for the stop nodes at K = 3 for the
subsequent experiments:

j1
n
→ 0.1666171752

j2
n
→ −e−

1
3 W
(
−exp

(
−2

5
+ e

1
3

))
= 0.4369818602

j3
n
→ 0.7165313106

(15)

The stop nodes can be calculated in advance and stored in the initialization parameters
of the model without delaying the unloading. The space complexity of the K-Best algorithm
is S(n) = O(n) and the time complexity is T(n) = O(n).

4.2.2. The KBU Model

In some realistic road scenarios, the distribution of utilization X of edge servers
deployed in the RSU may be closer to a uniform distribution. In this case, the threshold
corresponding to each observation node can be bounded in reverse by using the function
of uniform distribution [34]. We propose the KBU model with the objective of minimizing
the total K processing delays, and the thresholds are bounded by the time optimization
function Ti at the same time.

In this model, nodes are required to select online K servers, and in order to tolerate a
certain rate of offloading failures, we define a parameter K

′
that represents the expectation

of the number of global offloads. K
′

does not have to be an integer, K
′ ≥ K. A set of metrics

I1, I2, . . . , In is defined, which indicate whether the ith server is selected or not. Ii = 0
indicates that the ith server is not selected, and Ii = 1 shows the opposite, while δn denotes
the set of all Ii indicators.

K and K
′

satisfy the following two constraints:
Constraint 1:

n

∑
i=1

Ii ≥ K, K ∈ N, 0 ≤ K ≤ n. (16)

Constraint 2:

E

(
n

∑
i=1

Ii

)
≥ K

′
, K
′ ∈ R, 0 ≤ K

′ ≤ n. (17)

The total time delay under different constraints is denoted by VK,K′ (n); the objective
of the strategy is to minimize the total time delay VK,K′ (n):

VK,K′ (n) = min
(I1,...,In)∈Γn

E

(
n

∑
i=1

IiXi

)
, n ≥ K

′ ≥ K, r, n ∈ N. (18)

Hk = (X1, I1), (X2, I2) . . . , (Xk, Ik) is the offload history, there are Nk tasks that have been
offloaded, 0 ≤ N − k ≤ K; then, there is the structure of the basic solution as:

VK,K′ (n) = VK−Nk ,K′−Nk
(n− k) +

k

∑
j=1

IjXj. (19)

Let δ be the minimum time to satisfy constraint 1, so that:

VK,K′ (n) = V0,K′−K(n− δ) +
δ

∑
j=1

IjXj. (20)

Entropy 2022, 24, 814 11 of 21

Among them:

V0,K′−K(i) =

(
K
′ − K

)2

2i
. (21)

Now, we can get the double recursive solution form of VK,K′ (n):

VK,K′ (n) = VK,K′ (n− 1)− 1
2

[
VK,K′ (n− 1)−VK−1,K′−1(n− 1)

]2
. (22)

The optimal threshold t∗(ρ, k) denotes the threshold value for the kth server detected
in the offload decision for the ρth task. t∗(ρ, k) can be given by the inverse of the structure
of the optimal total time cost VK,K′ (n):

t∗(ρ, k) = t∗
K,K′

(ρ, k)

= VK−ρ,K′−ρ
(k− 1)−VK−ρ−1,K′−ρ−1(k− 1).

(23)

That is, for the first ρth task, if the currently observed Xi ≤ t∗(ρ, n− k), the server i
should be taken into account.

Considering that offloading should be performed as far as possible before the task data
become obsolete, the time-optimized function is further used to constrain the threshold to
obtain a new threshold defined as t(ρ, k):

t(ρ, k) = t∗(ρ, k) ∗ T(n−k). (24)

For example, when K = 3, n = 10, the KBU model gives different thresholds for the
three subtasks, and a comparison of t(ρ, k) and t∗(ρ, k) before and after optimization is
shown in Figure 3.

1 2 3 4 5 6 7 8 9
Observation k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
re

sh
ol

d

t*
t

Figure 3. Comparison of the threshold t before and after the time-optimized function constraint.

The Algorithm 2 is given as follows:

Entropy 2022, 24, 814 12 of 21

Algorithm 2 the KBU algorithm.

Require: distribution of random variable X, time-optimized function Ti.
Ensure: total time delay VK,K′ (n).

A Obtain the minimum time delay:
(A1)
for i = dK′e − K, dK′e − K + 1, . . . , n do

V0,K′−K(i) = (K
′ − K)

2
/(2i);

end for
(A2)
for i = dK′e − K, dK′e − K + 1, . . . , n− k;s = 1, 2, . . . , k do

Vs,i(i) = i/2;
end for
(A3)
for s = 1, 2, . . . , K and the initial conditions (A1) and (A2) do

Vs,K′−K+s(i) = K
′ − K + s, . . . , n− K + 1, n− K, . . . , n;

end for
B Obtain the optimal threshold:
(B1)
for i = dK′e − K, dK′e − K + 1, . . . , n + K do

t(K, i) = V0,K′−K(i) = (K
′ − K)

2
/(2i);

end for
(B2)
for ρ = 0, 1, . . . , K− 1 do

for i = K− ρ, K− ρ + 1, . . . , n do
t∗(ρ, i) = VK−ρ,K′−ρ

(i− 1)−VK−ρ−1,K′−ρ−1(i− 1);
end for

end for
t(ρ, k) = V∗(ρ, k)Vn−k;
for p = 1, 2, 3, . . . , n do

for m = 1, 2, 3, . . . , K− 1 do
if number of nodes left ≤ number of unloaded tasks left then

perform offload;
else if Xp < t(m, n− p) then

perform offload;
end if

end for
end for

Same as the K-Best model, the K thresholds here can be calculated in advance and
stored in the initialization parameters of the model without delaying the unloading. The
space complexity of the KBU algorithm is S(n) = O(n), and the time complexity is
T(n) = O(n).

5. Experimental Evaluation

We use two settings to evaluate the two proposed OST-based multi-task offloading
models: simulation-based evaluation and real-world data sets based. In both settings,
we compare our models: namely, K-Best (Section 4.2.1) and KBU (Section 4.2.2) with
the Optimal model [19], BCP model [17], Random selection model (Random) and the
p-stochastic model (p-model). We will discuss these models next.

The four offloading models used for comparison in a multitask offloading scenario are
described as follows:

The optimal model takes the number of observations n, the probability distribution
function of X, the quality-aware function and the threshold θ as inputs, and outputs the

Entropy 2022, 24, 814 13 of 21

index s where nodes start checking the MEC servers. If the subsequent observed X does
not exceed θ, i.e., X ≤ θ, then we perform offloading; otherwise, we continue to observe.
When the number of remaining unselected servers m does not exceed the number of
remaining unloaded tasks, i.e., m ≤ K− Kp, then the remaining tasks are offloaded to the
corresponding servers sequentially without comparing so that all tasks are guaranteed to
be offloaded.

The BCP model takes the number of observations n and the probability distribution
function of X as inputs and calculates the stop node rn, rejects the first rn − 1 servers, and
then selects the first server with the best relative previous ranking (if any) to offload the
task. When there are Kp tasks that have been offloaded, there are still K− Kp tasks left to
be offloaded. If the number of remaining unselected servers m does not exceed the number
of remaining unloaded tasks, i.e., m ≤ K− Kp, then the remaining tasks are offloaded to
the corresponding servers in turn to ensure that all tasks can be offloaded.

In the p-model model, we use p = 0.8 as the offload probability for each server in the
following experiments, i.e., the node connects to the MEC server during the move and has
an 80% probability of offloading to the server it is currently observing. In the random model,
the mobile node randomly selects K servers for task offloading, and again, when the number
of remaining unselected servers m does not exceed the number of remaining unloaded
tasks, i.e., m ≤ K− Kp, then the remaining tasks are offloaded to the corresponding servers
sequentially without further observation, so that all tasks are guaranteed to be offloaded.

To simulate the MEC environment, we use Simpy [35] in Python. Simpy is a
process-based framework for discrete-event simulation. Each MEC server is modeled
as a resource, and during the simulation, the server publishes its processing time X, and
the connected mobile node can receive the information. The mobile node is modeled as a
process that detects the processing time of the server in a one-direction mobile model and
chooses whether to offload it or not. The values of the simulation experiment are shown in
Table 2.

Table 2. Simulation experiment parameters’ values.

Parameters Value/Rang

X N (50,10), U (0,1)
Number of mobile nodes 1000

K 3
n 10

Threshold θ of K-Best 48
Threshold θ of Optimal 50

P for the p-modle 0.8

5.1. Evaluation Based on Simulated Data

In the evaluation based on simulated data, the node would know in advance the
distribution function of the random variable X, i.e., server utilization or CPU utilization.
We consider experiments in the case of K = 3, n = 10. A series of random numbers will
be generated by Python functions, which obey a specific distribution, such as normal or
uniform distribution. Consider first the case where X follows a normal distribution.

As shown in Figure 4, the results between the K-Best model and the four comparison
models are compared when the distribution of X presents a case of normal distribution. The
K-Best model clearly performs best in terms of total delay of offloading. We can observe a
clear overlap between the K-best model and Optimal model in Figure 4a, and this overlap
is significantly reduced in the comparison plots with the other three models. It can be seen
that the K-Best model works significantly better than the last three models and presents
Optimal. Overall, the OST-based models (K-Best, Optimal and BCP) are significantly more
effective than several other models that are not based on OST. It can be seen in Figure 5
that the OST-based models achieve a lower expected total processing delay, and the K-Best

Entropy 2022, 24, 814 14 of 21

model has similar results to the Optimal and BCP models, while it differs more from the
p-model and random model.

(a) (b)

(c) (d)

Figure 4. Simulation results for all the models when X is normally distributed. (a) Optimal and
K-Best selections. (b) BCP and K-Best selections. (c) P-model and K-Best selections. (d) Random and
K-Best selections.

Figure 5. Confidence interval of simulation results for each model when X is normally distributed.

In the previous experiments, the random variable X observed by the mobile nodes
followed a normal distribution. Now, let X be uniformly distributed scaled in [0,1]; X is the
server utilization or CPU utilization. For example, X = 0.5 means that the CPU utilization
of the server is 50%. For all models, the following experiments follow the same steps as in
the previous experiments.

As shown in Figure 6, the KBU model clearly performs the best compared to the
remaining four models, and it can be seen in Figure 6a that the KBU model overlaps
significantly with the K-Best and Optimal models. Overall, the four OST-based models
perform better than the other models. The KBU model achieves the smallest expected

Entropy 2022, 24, 814 15 of 21

processing delay with X following a uniform distribution, and the K-Best model also
achieves a more desirable expected processing delay, which is significantly better than the
p-model and the Random model, as can be seen in Figure 7.

(a) (b)

(c) (d)

Figure 6. Simulation results for all the models when X is uniformly distributed. (a) Optimal, K-Best
and KBU selections. (b) BCP, K-Best and KBU selections. (c) P-model, K-Best and KBU selections.
(d) Random, K-Best and KBU selections.

Figure 7. Confidence interval of simulation results for each model when X is uniformly distributed.

Sensitivity Analysis

As shown in Figure 8, the total processing delay of the K-Best model tends to decrease
as the number of servers increases with a constant number of tasks K = 3. Figure 8a shows
the case when the random variable X obeys a normal distribution, and the case when the
random variable X obeys a uniform distribution is shown in Figure 8b. We can see that
when the number of observable servers increases, the K-Best model allows mobile nodes
to select the best possible server for task offloading and has general applicability to the
distribution of X.

Entropy 2022, 24, 814 16 of 21

As shown in Figure 9, as the number of servers increases, the total processing latency
of the KBU model tends to decrease with a constant number of tasks K = 3. It means that
the KBU model enables mobile nodes to select the best possible server for task offloading
as the number of observable servers increases.

20 40 60 80 100
the Number of servers

120

122

124

126

128

Pr
oc

es
sin

g
Ti

m
e

(a)

20 40 60 80 100
the Number of servers

0.60

0.65

0.70

0.75

0.80

Pr
oc

es
sin

g
Ti

m
e

(b)

Figure 8. Total latency of the K-Best model varies with the number of servers n. (a) X normally
dstributed. (b) X uniformly distributed.

20 40 60 80 100
the Number of servers

0.45

0.50

0.55

0.60

0.65

0.70

Pr
oc

es
sin

g
Ti

m
e

Figure 9. Total latency of the KBU model varies with the number of servers n.

5.2. Evaluation Based on Real Data

We also consider real data sets to evaluate our models. The purpose of this evaluation
is to see how our models perform when dealing with real data sets. We use the CABS data
set provided by the Shenzhen Smart City project [36] to simulate the movements of the
mobile nodes. The data set contains four attributes of the vehicles: vehicle ID, GPS location,
movement time and movement speed. The use of mobility trace here is not for studying
the mobility of users; in our experiment, for each movement, the car picks a server from
the servers’ data set, checks that server utilization, and makes a decision of whether the
car should offload at that time or continue observing based on the decision suggested by
the models, as explained earlier in the Simulation Evaluation section. An example of one
connection observation is shown in Table 3; we can see that Cab 178 made connections
to three servers at different times, where two connections were made to server m_1938 at
almost the same location but at different times, while obtaining server information, i.e.,
CPU utilization.

Table 3. A sample of the data set used in the experiment.

Taxi ID Movement ID Location Machine Name CPU Utilization

178 2014/10/22 8:00:20 (22.5965, 114.114601) m_1935 (23)
178 2014/10/22 8:00:50 (22.5966, 114.1182 02) m_1937 (35)
178 2014/10/22 8:01:20 (22.5968, 114.1194) m_1938 (54)
178 2014/10/22 8:01:50 (22.5965, 114.119598) m_1938 (26)

The processing time of the servers is provided by the actual CPU utilization obtained
in the Alibaba Cluster Tracking Program [37]. There are more than one billion rows of CPU

Entropy 2022, 24, 814 17 of 21

utilization data from about 150 servers that are recorded in the data set. One million of
these data are used in the experiment; Figure 10 shows the probability distribution of the
CPU utilization of all servers in the data set. We can see in Figure 10 that the CPU utilization
follows a normal distribution with µ = 36, σ = 16. The values of the key parameters’
values in the experiment are given in Table 4.

Table 4. Real data set experiment parameters’ values.

Taxi ID Movement ID

X Real servers CPU utilization in N(36, 16)
Number of mobile nodes 1000

K 3
n 10

Threshold θ of K-Best θ 48
Threshold θ of Optimal θ 50

P for the p-modle 0.8

Figure 10. The distribution of the servers’ CPU utilization.

At the beginning of the experiment, the mean and the standard deviation were taken
once for the whole servers’ utilization data set to feed the models (K-Best, KBU, Optimal and
BCP). In a realistic scenario, the mobile nodes do not know the mean and standard deviation
of a particular MEC server, but they can obtain the information about the historical data
of the MEC servers in one area in a specific time with the help of MEC servers operators.
Therefore, we take this information once when we start the experiment.

Similar to the experiments based on simulated data, the results of each model are
aggregated and compared in the experiments based on real data sets. Each model selects K
servers for mobile nodes to offload to minimize the total offload delay. The total delay is
expressed in terms of the total server utilization.

Figure 11 shows the average server utilization for the offloading decisions suggested
by each model. We can see that in the results based on real data sets, the OST-based model
still performs better at minimizing the total offloading delay, and the KBU model and the
K-Best model perform the best. Since in real data sets, the distribution of CPU utilization is
closer to a normal distribution than a uniform distribution, the KBU model fails to show a
more significant advantage over the K-Best model.

Figure 12 shows the average waiting time for the offloading decision suggested by
each model. We can see that the p-model with p = 0.8 suggests the smallest average
waiting time. However, the average offloading time is too long, so that choosing an instant
server is not a wise offload strategy. Moreover, the optimal server is unknown, and the

Entropy 2022, 24, 814 18 of 21

mobile node cannot know exactly which server is the best choice, so using the OST-based
model can achieve a near-optimal server utilization.

Figure 11. Average offloading time.

Figure 12. Average waiting time.

Sensitivity Analysis

We use the number of successful offloading for different threshold requirements as
a performance metric for the models. The number of successful offloading is the number
of offload decisions suggested by each model that satisfy a specific requirement. Suppose
we have three different MEC applications x, y, and z, all with specific requirements. For
example, application x requires a total CPU utilization ≤0.4, application y requires a total
CPU utilization ≤0.6, and application z requires a total CPU utilization ≤0.8.

Figure 13 shows the number of successful offloading for all models for different
requirements. For the first case requiring a total CPU utilization ≤0.4, the KBU model
achieves 89 successful offloads, and the K-Best model achieves 90 successful offloads; for
the second case where the required total CPU utilization ≤0.6, the KBU model achieves
250 successful offloads and the K-Best model achieves 230 successful offloads; for the third
case that the total CPU utilization should ≤0.4, the KBU model achieves 385 successful
offloads, and the K-Best model achieves 408 successful offloads. Overall, we can see that the
OST-based offloading models (KBU, K-Best and Optimal) are significantly more effective
than the other models.

Entropy 2022, 24, 814 19 of 21

Figure 13. The number of successful offloadings for each model based on different threshold values.

6. Conclusions

In this paper, we focus on a time-optimized multi-tasking offloading model based on
OST in an IoV environment. A time-optimized multi-task offloading model adapted to a
general X distribution and a time-optimized multi-task offloading model that performs
better for the case of uniform X distribution are proposed, and detailed evaluations are
provided. The experimental evaluations show that the OST-based models outperform other
offloading methods, achieve more desirable expected processing latencies, are efficient to
use in mobile nodes, and do not require significant resources. In addition, the OST-based
models are suitable for scenarios where mobile nodes need to make local and independent
decisions in the MEC environment. In realistic scenarios, mobile nodes can obtain the
required information with the help of MEC service providers and thus can make decisions
autonomously. As future work, it is considered to study the K-Best model when K keeps
increasing and may give a feasible closed-form solution. Since the observed recall of the
MEC server is allowed in different mobility models, the optimization of the mult-itasking
offloading model based on OST theory can be further investigated in the recallable server
as well as in the multi-node competition scenario.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis,
investigation, resources, data curation, writing—original draft preparation and visualization, L.M.;
writing—review and editing, B.G. and C.X.; supervision, C.W.; project administration and funding
acquisition, B.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (2020YFB1314103);
the National Natural Science Foundation of China (6210071479); and the Natural Science Foundation
of Anhui Province (2108085QF258).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liyanage, M.; Porambage, P.; Ding, A.Y.; Kalla, A. Driving forces for Multi-Access Edge Computing (MEC) IoT integration in 5G.

ICT Express 2021, 7, 127–137. [CrossRef]
2. Kekki, S.; Featherstone, W.; Fang, Y.; Kuure, P.; Li, A.; Ranjan, A.; Purkayastha, D.; Jiangping, F.; Frydman, D.; Verin, G.; et al.

MEC in 5G networks. ETSI White Pap. 2018, 28, 1–28.
3. Pham, Q.V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.J.; Ding, Z. A survey of multi-access edge computing in 5G

and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 2020, 8, 116974–117017. [CrossRef]

http://doi.org/10.1016/j.icte.2021.05.007
http://dx.doi.org/10.1109/ACCESS.2020.3001277

Entropy 2022, 24, 814 20 of 21

4. Zhang, K.; Mao, Y.; Leng, S.; He, Y.; Zhang, Y. Mobile-edge computing for vehicular networks: A promising network paradigm
with predictive off-loading. IEEE Veh. Technol. Mag. 2017, 12, 36–44. [CrossRef]

5. Sabella, D.; Moustafa, H.; Kuure, P.; Kekki, S.; Zhou, Z.; Li, A.; Thein, C.; Fischer, E.; Vukovic, I.; Cardillo, J.; et al. Toward Fully
Connected Vehicles: Edge Computing for Advanced Automotive Communications; 5GAA: Munich, Germany, 2017.

6. Dziyauddin, R.A.; Niyato, D.; Luong, N.C.; Izhar, M.A.M.; Hadhari, M.; Daud, S. Computation offloading and content caching
delivery in vehicular edge computing: A survey. arXiv 2019, arXiv:1912.07803.

7. Feng, J.; Liu, Z.; Wu, C.; Ji, Y. Mobile edge computing for the internet of vehicles: Offloading framework and job scheduling.
IEEE Veh. Technol. Mag. 2018, 14, 28–36. [CrossRef]

8. Gao, H.; Huang, W.; Yang, X. Applying probabilistic model checking to path planning in an intelligent transportation system
using mobility trajectories and their statistical data. Intell. Automat. Soft Comput. 2019, 25, 547–559. [CrossRef]

9. Deng, S.; Huang, L.; Taheri, J.; Zomaya, A.Y. Computation offloading for service workflow in mobile cloud computing. IEEE
Trans. Parallel Distrib. Syst. 2014, 26, 3317–3329. [CrossRef]

10. Tang, W.; Zhao, X.; Rafique, W.; Qi, L.; Dou, W.; Ni, Q. An offloading method using decentralized P2P-enabled mobile edge
servers in edge computing. J. Syst. Archit. 2019, 94, 1–13. [CrossRef]

11. Li, M.; Si, P.; Zhang, Y. Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart
city. IEEE Trans. Veh. Technol. 2018, 67, 9073–9086. [CrossRef]

12. Ferguson, T. Optimal Stopping and Applications; UCLA Department of Mathematics: Los Angeles, CA, USA, 2020.
13. Ko, H.; Lee, J.; Pack, S. Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous

networks. IEEE Access 2018, 6, 18920–18932. [CrossRef]
14. Li, Z.; Hu, H.; Hu, H.; Huang, B.; Ge, J.; Chang, V. Security and Energy-aware Collaborative Task Offloading in D2D

communication. Future Gener. Comput. Syst. 2021, 118, 358–373. [CrossRef]
15. Ouyang, T.; Chen, X.; Zeng, L.; Zhou, Z. Cost-aware edge resource probing for infrastructure-free edge computing: From optimal

stopping to layered learning. In Proceedings of the 2019 IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, 3–6
December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 380–391.

16. Alghamdi, I.; Anagnostopoulos, C.; Pezaros, D.P. Time-optimized task offloading decision making in mobile edge computing. In
Proceedings of the 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8.

17. Alghamdi, I.; Anagnostopoulos, C.; P Pezaros, D. Delay-tolerant sequential decision making for task offloading in mobile edge
computing environments. Information 2019, 10, 312. [CrossRef]

18. Alghamdi, I.; Anagnostopoulos, C.; Pezaros, D.P. On the optimality of task offloading in mobile edge computing environments.
In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

19. Alghamdi, I.; Anagnostopoulos, C.; Pezaros, D.P. Data quality-aware task offloading in mobile edge computing: An optimal
stopping theory approach. Future Gener. Comput. Syst. 2021, 117, 462–479. [CrossRef]

20. Kuang, L.; Gong, T.; OuYang, S.; Gao, H.; Deng, S. Offloading decision methods for multiple users with structured tasks in edge
computing for smart cities. Future Gener. Comput. Syst. 2020, 105, 717–729. [CrossRef]

21. Zhang, J.; Letaief, K.B. Mobile edge intelligence and computing for the internet of vehicles. Proc. IEEE 2019, 108, 246–261.
[CrossRef]

22. Le Tan, C.N.; Klein, C.; Elmroth, E. Location-aware load prediction in edge data centers. In Proceedings of the 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 25–31.

23. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials
2017, 19, 1628–1656. [CrossRef]

24. Plachy, J.; Becvar, Z.; Mach, P. Path selection enabling user mobility and efficient distribution of data for computation at the edge
of mobile network. Computer Net. 2016, 108, 357–370. [CrossRef]

25. Silva, B.; Junior, W.; Dias, K.L. Network and cloudlet selection for computation offloading on a software-defined edge architecture.
In Proceedings of the International Conference on Green, Pervasive, and Cloud Computing, Uberlândia, Brazil, 26–28 May 2019;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 147–161.

26. Ferguson, T.S. Who solved the secretary problem? Stat. Sci. 1989, 4, 282–289. [CrossRef]
27. Harth, N.; Anagnostopoulos, C.; Pezaros, D. Predictive intelligence to the edge: Impact on edge analytics. Evol. Syst. 2018,

9, 95–118. [CrossRef]
28. Harth, N.; Anagnostopoulos, C. Edge-centric efficient regression analytics. In Proceedings of the 2018 IEEE International

Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 93–100.
29. Anagnostopoulos, C.; Kolomvatsos, K. Predictive intelligence to the edge through approximate collaborative context reasoning.

Appl. Intell. 2018, 48, 966–991. [CrossRef]
30. Marjanović, M.; Antonić, A.; Žarko, I.P. Edge computing architecture for mobile crowdsensing. IEEE Access 2018, 6, 10662–10674.

[CrossRef]
31. Pu, L.; Chen, X.; Mao, G.; Xie, Q.; Xu, J. Chimera: An energy-efficient and deadline-aware hybrid edge computing framework for

vehicular crowdsensing applications. IEEE Internet Things J. 2018, 6, 84–99. [CrossRef]

http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/10.1109/MVT.2018.2879647
http://dx.doi.org/10.31209/2019.100000110
http://dx.doi.org/10.1109/TPDS.2014.2381640
http://dx.doi.org/10.1016/j.sysarc.2019.02.001
http://dx.doi.org/10.1109/TVT.2018.2865211
http://dx.doi.org/10.1109/ACCESS.2018.2818111
http://dx.doi.org/10.1016/j.future.2021.01.021
http://dx.doi.org/10.3390/info10100312
http://dx.doi.org/10.1016/j.future.2020.12.017
http://dx.doi.org/10.1016/j.future.2019.12.039
http://dx.doi.org/10.1109/JPROC.2019.2947490
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1016/j.comnet.2016.09.005
http://dx.doi.org/10.1214/ss/1177012493
http://dx.doi.org/10.1007/s12530-017-9190-z
http://dx.doi.org/10.1007/s10489-017-1032-y
http://dx.doi.org/10.1109/ACCESS.2018.2799707
http://dx.doi.org/10.1109/JIOT.2018.2872436

Entropy 2022, 24, 814 21 of 21

32. Anagnostopoulos, C. Time-optimized contextual information forwarding in mobile sensor networks. J. Parallel Distrib. Comput.
2014, 74, 2317–2332. [CrossRef]

33. Louchard, G.; Bruss, F.T. Finding the k Best Out of n Rankable Objects. A Consecutive Thresholds Algorithm. 2015. Available
online: https://www.researchgate.net/publication/282580746_Finding_the_k_best_out_of_n_rankable_objects_A_consecutive_
thresholds_Algorithm (accessed on 9 October 2021).

34. Bruss, T. On a Class of Optimal Stopping Problems with Mixed Constraints. Discret. Math. Theor. Comput. Sci. 2010, 12, 363–380.
[CrossRef]

35. SimPy, T. Simpy: Discrete event simulation for python, Python Package Version 3 (9). 2017. Available online: https://simpy.
readthedocs.io/en/latest/ (accessed on 1 August 2021).

36. Zhang, D.; Zhao, J.; Zhang, F.; He, T. UrbanCPS: A cyber-physical system based on multi-source big infrastructure data for
heterogeneous model integration. In Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems,
Seattle, WA, USA, 14–16 April 2015; pp. 238–247.

37. Alibaba Cluster Trace Program Cluster-Trace-v2018. 2018. Available online: https://github.com/alibaba/clusterdata/blob/
master/cluster-trace-v2018/trace_2018.md (accessed on 9 October 2021).

http://dx.doi.org/10.1016/j.jpdc.2014.01.008
https://www.researchgate.net/publication/282580746_Finding_the_k_best_out_of_n_rankable_objects_A_consecutive_thresholds_Algorithm
https://www.researchgate.net/publication/282580746_Finding_the_k_best_out_of_n_rankable_objects_A_consecutive_thresholds_Algorithm
http://dx.doi.org/10.46298/dmtcs.506
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/
https://github.com/alibaba/clusterdata/blob/master/cluster-trace - v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace - v2018/trace_2018.md

	Introduction
	Related Work and Contributions
	Related Work
	Contribution

	System Model and Problem Description
	Computational Model
	General Model
	Time-Optimized Multi-Task Offloading Model
	The K-Best Model
	The KBU Model

	Experimental Evaluation
	Evaluation Based on Simulated Data
	Evaluation Based on Real Data

	Conclusions
	References

