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Inputting molecules into chemistry software, such as quantum chemistry packages, currently requires
domain expertise, expensive software and/or cumbersome procedures. Leveraging recent breakthroughs
in machine learning, we develop ChemPix: an offline, hand-drawn hydrocarbon structure recognition
tool designed to remove these barriers. A neural image captioning approach consisting of
a convolutional neural network (CNN) encoder and a long short-term memory (LSTM) decoder learned
a mapping from photographs of hand-drawn hydrocarbon structures to machine-readable SMILES
representations. We generated a large auxiliary training dataset, based on RDKit molecular images, by
combining image augmentation, image degradation and background addition. Additionally, a small
dataset of ~600 hand-drawn hydrocarbon chemical structures was crowd-sourced using a phone web
application. These datasets were used to train the image-to-SMILES neural network with the goal of
maximizing the hand-drawn hydrocarbon recognition accuracy. By forming a committee of the trained

neural networks where each network casts one vote for the predicted molecule, we achieved a nearly 10
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Accepted 28th June 2021 percentage point improvement of the molecule recognition accuracy and were able to assign

a confidence value for the prediction based on the number of agreeing votes. The ensemble model
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Introduction

Artificial intelligence (AI) refers to the introduction of “human
intelligence” into artificial machines. Machine learning is
a subfield of Al that focuses specifically on the “learning” aspect
of the machine's intelligence, removing the need for manually
coding rules. Although Rosenblatt proposed the perceptron in
the 1950s," it wasn't until the 1990s that machine learning
shifted from a knowledge-based to a data-driven approach. A
decade later, “deep learning” emerged as subclass of machine
learning that employed multilayer neural networks (NNs). The
boom of big-data and increasingly powerful computational
hardware allowed deep learning algorithms to achieve unprec-
edented accuracy on a variety of problems. This resulted in
much of the AI software used today, such as music/movie
recommenders, speech recognition, language translation and
email spam filters.
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Deep learning algorithms have been adopted by almost every
academic field in the hope of solving both novel and age-old
problems.” The natural sciences have historically relied on the
development of theoretical models derived from physically-
grounded fundamental equations to explain and/or predict
experimental observations. This makes data-driven models an
interesting, and often novel, approach. In quantum chemistry,
for example, to calculate the energy of a molecule one would
traditionally solve an approximation to the electronic Schro-
dinger equation. A machine learning approach to this problem,
however, might involve inputting a dataset of molecules and
their respective energies into a NN, which would learn
a mapping between the two.*” The ability to generate accurate
models by extracting features directly from data without human
input makes machine learning techniques an exciting avenue to
explore in all areas of chemistry - from drug discovery and
material design to analytical tools and synthesis planning.

Easy-to-use machine learning based tools have the potential
to accelerate research and enrich education. Here, we develop
a hand-drawn molecule recognition tool to extract a digital
representation of the molecule from an image of a hand-drawn
hydrocarbon structure. Drawing skeletal chemical structures by
hand is a routine task for students and researchers in the
chemistry community. Therefore, photographing a hand-drawn
chemical structure offers a low-barrier method of entering
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molecules into software that would normally require time-
consuming workflows and domain expertise. Moreover, for
the vast majority of the chemistry community, drawing
a chemical structure by hand is far less cumbersome than
building it with a mouse. The recognition tool could be inte-
grated into a phone application that performs tasks such as
quantum chemistry calculations, database lookups and Al
synthesis planning directly from the hand-drawn molecule,
extending the ChemvVox voice-recognition system we recently
developed.®

In addition to its potential as a chemical research and
education widget, hand-drawn hydrocarbon recognition is an
interesting problem from a fundamental science perspective: it
serves as a prototypical example of how deep learning can be
applied to a well-suited chemical problem. Sourcing a large
training dataset for this task is time and resource intensive -
a common obstacle encountered in machine learning applica-
tions. To address this, we discuss strategies for synthetic data
generation and their generalizability to scenarios where there is
access to limited real-world data, but abundant similar data.

Hand-drawn chemical structure recognition is, in many
ways, similar to the task of handwriting recognition. Large
variation in writing styles, poor image quality, lack of labelled
data and cursive letters make hand-written text recognition
a challenging task.”'® Hand-writing recognition falls into two
camps: online recognition, in which a user writes text on
a tablet or phone and it is recognized in real-time, and offline
recognition, which refers to static images of hand-written text.
Offline recognition poses considerably more challenges than
online recognition due largely to the latter's ability to use time
dependent strokes in combination with the final image to
distinguish between characters." In this work, we focus on
offline hand-drawn hydrocarbon structure recognition, extend-
ing the potential use cases to digitization of lab notebooks.

Automatic extraction of a molecule from an image of its 2D
chemical structure to a machine-readable format, termed
optical chemical structure recognition, first emerged in the
1990s.”"” These systems were developed with the intent of
mining ChemDraw type diagrams in the chemical literature to
utilize the wealth of largely untapped chemical information that
lies within publications.”*® The majority of optical chemical
structure recognition packages, including Kekulé,” IBM's
OROCS,"” CLIiDE" and CLiDEPro,”® ChemOCR,** OSRA*
ChemReader,> MolRec,”® ChemEx,** MLOCSR,>” and Chem-
SchematicResolver®® rely on a rule-based workflow rather than
a data-driven approach. These systems achieve various degrees
of accuracy, with the recently developed Chem-
SchematicResolver reaching 83-100% precision on a range of
datasets.

Rule-based systems often involve complex, interdependent
workflows, which can make them brittle, and challenging to
revise and extend. Therefore, several optical chemical structure
recognition packages have been recently proposed based on
data-driven, deep learning techniques.”*' Notably, Staker
et al.”® employed end-to-end segmentation and image to mole-
cule neural networks, and ChemGrapher® used a series of deep
neural networks to extract molecules from the chemical
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literature. These data-driven systems offer a promising alter-
native to rule-based systems for this task, provided one can
obtain an appropriate training dataset.

The optical chemical structure recognition systems
mentioned thus far focus on recognition of computer gener-
ated, ChemDraw-type structures. A handful of promising online
hand-drawn chemical structure recognition programs have
recently been developed.*** Our goal of offline extraction of
molecules from photographs of hand-drawn chemical struc-
tures adds a further level of complexity, and is well-suited for
data-driven, machine learning models.

In this article, we begin by discussing our chosen deep
learning approach for hand-drawn chemical structure recogni-
tion and demonstrate proof-of-concept on ChemDraw type
images of molecules produced with the RDKit. Next, we
describe the generation of two datasets: a small set of real-world
photographs of hand-drawn hydrocarbon structures and a large
synthetic dataset. We perform a series of experiments with these
datasets, aiming to optimize the recognition accuracy on out-of-
sample real-world hand-drawn hydrocarbons. We end by
forming an ensemble model consisting of a committee of NNs,
which leads to a significant boost in recognition accuracy and
introduces a confidence value for the prediction. The work
serves as a prototypical case study for approaching a chemical
problem with machine learning methods, focusing on the
explanation of deep learning, synthetic data generation, and
ensemble learning techniques.

Methods

Neural network architecture

In this work, we represent molecules as simplified molecular-
input line-entry system (SMILES)* strings in order to leverage
recent advances in natural language processing (NLP).** We
employ neural image captioning, in which an image is input
into a NN and a caption for the image is produced.*”*® Here, an
image of a hydrocarbon molecule is input and the predicted
SMILES string is output, as shown in Fig. 1. The NN architecture
consists of a convolutional neural network (CNN)**** encoder
and a long short term memory (LSTM)* decoder with beam
search and attention. CNNs contain ‘convolutional layers’ that
apply a convolutional filter over the image and pass the result to
the next hidden layer; they are used primarily for encoding
images since they conserve the spatial relationship of the pixels.
LSTMs are a type of stable recurrent neural network (RNN)

C#CC1C=C(CC=
acceoaa

SMILES

Hand-drawn
hydrocarbon PNG

LSTM

Fig. 1 Image-to-SMILES neural network used for hand-drawn
hydrocarbon recognition based on neural image captioning. The
network consists of a convolutional neural network (CNN) encoder
and long short-term memory (LSTM) decoder network.
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popularly used in language models. This is a useful feature in
the case of decoding SMILES strings since there are often rela-
tions between characters at the start and end of the string, such
as closing of a parentheses pair to indicate the end of
a branching group. Our image-to-SMILES approach is inspired
by the work of Deng et al., who trained a NN to convert images of
mathematical formulas to LaTeX code.”” A similar image-to-
SMILES approach was also used by Staker et al., which ach-
ieved test set recognition accuracies ranging from 41 to 83% on
ChemDraw type structures extracted from the chemical litera-
ture.” Details of the NN architecture used in this work are
discussed in the ESL.}

We define the NN accuracy as the proportion of molecules
predicted exactly correctly, i.e., the predicted SMILES matches
the target SMILES character-by-character. Error bars were
calculated by bootstrapping the accuracy of 1000 sets of 200
data points sampled from the test set with replacement and
computing the range that contains the statistical mean with
95% likelihood based on the resampled sets.

Datasets

We extracted a dataset of 500 000 SMILES strings with a ring
size of less than eight carbon atoms from the GDB-13 and GDB-
11 databases.**™** The vocabulary was restricted to “Ce=#()1",
where = and # indicate double and triple bonds, parentheses
indicate the start and end of a branching group, lower case
letters represent aromaticity, and numbers are found at the
start and end of rings. To remove ambiguous skeletal structures
from our dataset that confuse the NN during training, we only
include the number ‘1’, meaning that molecules with multiple
conjoined rings are not considered. The SMILES labels were
canonicalized using RDKit to give a consistent target output.
After canonicalization, molecules outside of the vocabulary
were removed, resulting in a ~10% reduction in size for all
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Fig. 2 Out-of-sample accuracy of the image-to-SMILES network
trained with an increasing number of clean RDKit hydrocarbon
structures and their corresponding SMILES label. Representative
examples of labelled RDKit training images and SMILES are shown in
the inset.
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datasets used in the experiments presented. RDKit was used to
generate images of molecules from the SMILES dataset, by first
generating SVG files and then converting to PNG format. The
result is a labelled dataset of image and SMILES pairs; repre-
sentative examples are shown in the Fig. 2 inset. We used this
clean RDKit dataset to perform proof-of-concept for the image-
to-SMILES network. A synthetic dataset based on RDKit images
designed to mimic hand-drawn data was curated for the
purpose of this study. We discuss the auxiliary data generation
workflow, and experiments performed on this dataset in the
coming sections.

The computer-generated datasets were first split into a 90%
training/validation set, and a 10% test set. The test set serves as
out-of-sample data used to evaluate the accuracy of the network
after finishing the training process. The training/validation set,
used during training, was then split further into a training set
(90%) and a validation set (10%). The real-world photographs of
hand-drawn hydrocarbons consisted of a total of 613 images.
We set aside a 200-image test set, with the remaining 413
images being either used entirely as a validation set or split into
validation (200 images) and training (213 images) datasets,
depending on the experiment. All images were resized to 256 X
256 pixels and converted to PNG format using OpenCV.*®

Results and discussion
Synthetic data generation

To test the suitability of our image-to-SMILES network for hand-
drawn molecule recognition, we begin by training with clean
images of hydrocarbon skeletal structures generated with RDKit
and their respective SMILES labels (Fig. 2). In order to deter-
mine the dataset size required to achieve a given recognition
accuracy, the NN was trained with datasets of size 10?, 5 x 10%
10°, 2 x 10° and 5 x 10° images (split between training, vali-
dation and test sets as described in the methods section). The
results of the proof-of-concept training are shown in Fig. 2,
illustrating the increasing NN recognition accuracy with dataset
size. A dataset of 50 000 labelled RDKit images achieves an out-
of-sample (test set) accuracy of over 90%, and a maximum
accuracy of 98% is achieved with a dataset of 500 000 images.
This demonstrates that the chosen NN architecture is capable of
learning SMILES strings from machine-generated images of
hydrocarbons.

Although the results from training with synthetic RDKit
images suggest that a dataset of 50 000 images obtains 90% out-
of-sample accuracy, in reality a much greater number of hand-
drawn hydrocarbon molecules are likely needed to achieve
this same accuracy. As with handwritten text recognition, vari-
ation in drawing style, backgrounds and image quality provide
significant challenges. There is noise associated with (i) the
chemical structure, such as varying line widths, lengths, angles
and distortion, (ii) the background, such as different textures,
lighting, colors and surrounding text, and (iii) the photograph,
such as blurring, pixel count and image format (Fig. 3). A
further challenge of chemical structure recognition is the ability
for a molecule to be drawn in any orientation, in contrast to text
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Fig. 3 Comparison between a computer-generated (RDKit) image of
a hydrocarbon structure (left) and a photographed hand-drawn
hydrocarbon structure (right). The differences between the two
images are highlighted, demonstrating the increased complexity of
hand-drawn structure recognition.

recognition of languages written in one direction, e.g., left-to-
right.

Since end-to-end NNs learn a model solely from the data
presented during training, access to high-quality data is
imperative to achieve an accurate model. Unfortunately, a large
labelled dataset of real-world hand-drawn molecules does not
exist and cannot be easily generated. Therefore, unlike in the
case of RDKit images, it is not possible to achieve high recog-
nition accuracy by simply training with hundreds of thousands
of hand-drawn structures. Lack of training data is a common
hurdle when attempting to apply end-to-end deep learning
models to real-world problems, particularly in fields where data
generation is time and energy intensive such as the chemical
domain. In cases such as these, generating synthetic data can
prove more efficient than spending excessive time and
resources collecting large amounts of real-world data.

We developed a data collection web app to source a small
dataset of hand-drawn chemical structures. In order to capture
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the large noise in drawing style, photograph quality and back-
ground types that are prevalent in real-world data, we collected
data from many different drawers by promoting the app to
a range of groups in the Stanford University Chemistry
Department. Over 100 unique users of the app generated over
5800 photographs of hand-drawn chemical structures, 613 of
which were hydrocarbons. Details of the data collection app are
shown in Fig. S11 and the collected dataset is released with this
paper.”” Based on our earlier RDKit image results (Fig. 2), ~600
images is several orders of magnitude less data than necessary
to train to any reasonable recognition accuracy. As a result, in
addition to sourcing real-world data, we also developed
a workflow to generate a large synthetic dataset to be used in
conjunction with the limited real-world dataset for training. We
go on to show that our strategy is able to successfully train an
accurate NN with this limited amount of real-world data. This is
an encouraging result for machine learning approaches in the
chemical sciences, where the availability of accurate data is
often problematic.

An ideal synthetic dataset is exactly equivalent to the target
data but can be readily generated on large scales (unlike the
target data). The desired datatype (of which there is insufficient
data for training) could therefore be substituted with synthetic
data during training and the weights would be directly trans-
ferable to the target data. To discuss how to generate such an
auxiliary dataset, we consider a subspace that spans from the
desired datatype to a similar machine-scalable datatype. In our
case, this is the subspace between photographs of hand-drawn
molecules and RDKit images. The aim is to find a mapping that
moves both datatypes to the same point in the subspace such
that they are indistinguishable. Fig. 4 depicts such a subspace,
highlighting possible convergence routes. Perhaps the most
obvious pathway transforms raw RDKit data (bottom right) into
images that resemble raw hand-drawn data (top left) as closely
as possible (or visa versa). This might involve adding in back-
grounds, distorting the lines and blurring the image. However,
it is also possible to modify both datatypes such that they reach

background //

w Ji
,/Mn
SN e
\\} line
noise

Y\/\

RDKit

\ \/\/\ —

augment

Fig. 4 Data subspace that spans from target data (photographs of hand-drawn hydrocarbon chemical structures, top left) to readily available
machine-generated data (raw RDKit images, bottom right). Paths to reach similar points in the subspace for the target data and synthetic data are
demonstrated. Blue outline: hand-drawn images, red outline: computer-generated images.
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a common point in the subspace that lies away from both of the
original data points. As long as the two datatypes are uniquely
mapped to the same point, they are equivalent. For example,
applying edge detection (or background removal) to both the
hand-drawn and computer-generated data would result in
movement away from their respective raw datatypes, but closer
to one another. In this illustrative example, a model would be
trained with an edge-detected synthetic dataset, and later
applied to hand-drawn hydrocarbon molecule images that have
been pre-processed with edge detection.

Mapping two datatypes to a common point in a subspace is
commonly used in deep learning applications since there is
often a limited amount of the exact data needed, but a similar
readily accessible datatype that can form the basis of a synthetic
dataset.’®***° It is important to note that a one-to-one mapping
between the two datatypes and the output label must exist, i.e.,
one image should only correspond to exactly one molecule.

Although we did explore auxiliary datasets based on back-
ground removal and edge detection algorithms, we abandoned
these image processing techniques because they were found to

Edge Article

be brittle when applied to real-world hand-drawn data. For
example, dark shadows, lined paper and thin pencils made it
hard to clearly identify the molecule after applying such algo-
rithms (Fig. S271). To ensure the recognition software is robust to
awide range of potential images, for the remainder of this study
we focus on generating a synthetic dataset that resembles hand-
drawn molecules as closely as possible.

Fig. 5a outlines the synthetic data generation workflow
developed to transform RDKit images into synthetic photo-
graphs of hand-drawn hydrocarbon structures. First, we intro-
duce randomness to bond angles, lengths and widths via
modification of the RDKit source code (RDKit'). The image is
then passed through an augmentation pipeline which applies
a series of random image transformations (RDKit-aug). The
augmented molecule image is then combined with a randomly
augmented background image using OpenCV (RDKit-aug-bkg).
Next, the image is passed through a degradation pipeline to
form the final synthetic data (RDKit-aug-bkg-deg). The mole-
cule augmentation, background augmentation and image
degradation workflows are outlined in Fig. 5b (the

(a) [
/@\/ augment
molecule
RDKit RDKit-aug weighted .
addition
augment :
> RDKit'-aug-bkg RDKit'-aug-bkg-deg
background (synthetic data)
(b) augment molecule
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= G
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Hand-drawn ¥
N o augment background degrade A
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Fig. 5

(a) The synthetic data generation workflow with the datatype's assigned name for each stage of the pipeline. (b) The augment molecule,

augment background and degradation pipelines used for the synthetic data generation. Each box corresponds to a function that is applied with
probability p. A complete list of the image transforms associated with each function is given in the ESI.T (c) Schematic depiction of how the steps
in the synthetic data workflow move the synthetic data distribution towards the hand-drawn data distribution by representing the datasets as

two-dimensional Gaussians (not to scale).
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transformations applied in these pipelines are detailed in Table
S27). A comparison of examples from the synthetic dataset and
the real-world dataset can be found in Fig. S5.1

Generating a synthetic datapoint from a SMILES string takes
~1 s, hence, over 85 000 labelled images of hydrocarbons can be
produced in 24 hours of compute time. For comparison, it takes
~1 minute for a human to draw, photograph, and label
a hydrocarbon chemical structure, meaning that ~2 months of
continuous human effort would be needed to collect a dataset of
this size.

The molecule and background image augmentation pipe-
lines (Fig. 5b) introduce noise into the data through rotations,
translations, distortion and other image transformations. This
acts as a form of regularization during training to reduce
overfitting (where the NN reaches high accuracies during
training but much lower accuracies on out-of-sample data). The
importance of broadening the data distribution can be exem-
plified with background augmentation: without augmenting
backgrounds the NN may become overly familiar with the
structure of the background images used during training and
learn to remove them from the image. The result is bad
generalization when presented with images that have different
backgrounds to those seen during training. We also randomly
degrade the data to further increase the regularization. This
accounts for features like variation in image quality and type.
The degradation pipeline was adapted from work by Ingle
et al.,’* which leveraged a large dataset of online data for offline
hand-written text recognition by applying aggressive degrada-
tion. The augmentation and degradation are deliberately more
aggressive than what would be found in real-world images to
span the maximum dataset subspace, i.e., make the distribution
as wide as possible.

As described previously, the stages of the synthetic data
generation pipeline are designed to map the synthetic distri-
bution onto the distribution of real-world hand-drawn chemical
structures. A simplified schematic of how each step effects the
data distribution is shown in Fig. 5c. The datasets are repre-
sented as two-dimensional Gaussians, with their amplitude
proportional to the quantity of data and their width propor-
tional to the data variation within the distribution. As the data
proceeds through the augmentation, background addition and
degradation steps, the synthetic distribution approaches the
hand-drawn data distribution in the subspace.

Neural network experiments

In the following section we describe a series of experiments
designed to understand how our real-world and synthetic
datasets can be best utilized to achieve the highest out-of-
sample hand-drawn hydrocarbon recognition accuracy. We
form an ensemble model from the trained NNs, which allows us
to assign a confidence value to the prediction, as well as
improve the recognition accuracy. We finish by analysing the
success of the model on specific examples from the test set and
its performance on chemical subsets.

First, we investigate how the NN performs when exposed
only to synthetic data during training. To determine the effect of

© 2021 The Author(s). Published by the Royal Society of Chemistry
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moving through the synthetic data generation pipeline (Fig. 5),
we train the model on data from each stage of the workflow.
Fig. S71 shows that image augmentation and degradation result
in large increases in recognition of hydrocarbons in the hand-
drawn test set, and somewhat surprisingly, the addition of
backgrounds has an insignificant effect on the accuracy. By
training with 500 000 synthetic images (RDKit'-aug-bkg-deg), we
are able to correctly recognise an out-of-sample photograph of
a hand-drawn hydrocarbon structure with over 50% accuracy.
Although this accuracy is insufficient, at this stage the neural
network has never seen a real-life hand-drawn image. We
improve the accuracy by introducing our limited hand-drawn
dataset to the training process as discussed below.

In situations where there is limited access to data, a common
strategy, is to use a real-world data validation set so the NN
weights are saved according to the correct target distribution.
We examine the effect of replacing the synthetic validation set
with a 413-image hand-drawn validation set, varying the size of
the synthetic training set from 50 000 to 500 000 (Fig. S87).
Using a hand-drawn validation set has little impact on the hand-
drawn recognition accuracy in comparison to using a synthetic
validation set since the number of images available is so
limited.

We now incorporate hand-drawn data into the training set so
that it can directly impact the weight optimization during
training, allowing the NN to learn from the target data, rather
than only determine if the weights should be saved. The
number of remaining images of hand-drawn hydrocarbon
structures in our dataset after the removal of the test set is 413,
which must be distributed between the training set and vali-
dation set. We assign 213 images to the training set and 200
images to the validation set. A dataset of 500 000 images is
chosen since it reached the highest accuracies in our synthetic
data experiments.

We trained the image-to-SMILES network with varying ratios
of augmented and degraded real-world hand-drawn and
synthetic data, and tested the weights on the 200 image hand-
drawn test set. Due to the very limited hand-drawn hydro-
carbon data, we augmented and degraded the images to
produce the number needed in the training set to satisfy each
given ratio. For example, to generate a training set of 50% hand-
drawn and 50% synthetic images (250 000 images each), each
hand-drawn image was augmented ~1173 times using the
augment molecule pipeline (Fig. 5b, excluding the final trans-
lation step). Although this introduces a large number of
repeated SMILES and similar images, the small amount of
hand-drawn data makes this necessary to ensure that the
information is not overridden by the large amount of synthetic
data. Once the molecules have been augmented and degraded,
the synthetic and hand-drawn data are randomly shuffled
together for training.

We investigate ratios of 0 : 100, 10 : 90, 50 : 50, 90 : 10 and
100 : 0 synthetic : hand-drawn data. From Fig. 6a, it can be seen
that using entirely hand-drawn data results in an out-of-sample
accuracy of 0% due to the network overfitting to the very narrow
distribution of hand-drawn training data. Adding synthetic data
allows the NN to be exposed to many more molecules and image

Chem. Sci., 2021, 12, 10622-10633 | 10627
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Fig. 6 Recognition accuracy of the hand-drawn hydrocarbon test set
of trained neural network with different training/validation datasets. (a)
Results of training with varying ratios of augmented and degraded
hand-drawn hydrocarbon to synthetic data training sets (500 000
image total) and hand-drawn hydrocarbons validation set. (b) The
effect of fine tuning is investigated by restarting the weights from
training with a 500 000-image synthetic dataset used for both training
and validation, and a 500 000-image synthetic dataset used for
training with a hand-drawn validation set. The weights are restarted
with a training set consisting of 90% synthetic data and 10%
augmented and degraded hand-drawn data, and a validation set of
hand-drawn hydrocarbons.

types, and hence leads to a rapid increase in test set accuracy up
to 90 : 10 synthetic : hand-drawn data. Removing the final 10%
of hand-drawn hydrocarbon molecules from the training set
(equivalent to the 500 000 image training run presented in
Fig. S8t), however, leads to a decrease in the hydrocarbon
recognition accuracy from 62% to 56%. Therefore, the results
suggest that two opposing effects are at play: (i) including target
data in the training set allows the weights to be optimized for
the target application and (ii) including only a narrow or sparse
distribution of target data leads to overfitting. As a result,
including a small portion of target data, specifically 10% hand-
drawn molecules, yields the highest recognition accuracy.

In all the experiments discussed so far, the image-to-SMILES
network has been trained from scratch, i.e., the weights are
randomly initialized. When applying deep learning to tasks
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with limited available data, training the network with a large
dataset before restarting the weights with a similar dataset has
been shown to increase NN accuracy.* This approach is termed
fine-tuning due to the NN weights being tuned from a related
task to better suit the desired datatype. We apply fine-tuning to
our problem by first training with synthetic data and then
restarting the NN weights with training data that includes real-
life images of hand-drawn hydrocarbon structures. We fine-
tune two trained NNs, both of which use 500 000 image
synthetic training datasets but that differ in their validation
data: the first uses a synthetic validation set (pre-training results
shown in Fig. S7bt) and the second uses a hand-drawn valida-
tion set (pre-training results shown in Fig. S87). The two trained
NNs are restarted with a training set made up of 90% synthetic
data and 10% hand-drawn data - the optimal ratio according to
Fig. 6a. The results from the two fine-tuning runs (Fig. 6b) show
that pre-training with synthetic data before incorporating hand-
drawn data into the training set improves the molecule recog-
nition accuracy. The network reaches 67.5% accuracy after pre-
training with a hand-drawn validation set, in comparison to the
best NN trained from scratch which was 61.5% accurate.
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Fig. 7 (a) The out-of-sample hand-drawn hydrocarbon recognition

accuracy of the highest N ranked predictions of an ensemble model
made up of trained NNs with over 50% recognition accuracy on out-
of-sample images of hand-drawn hydrocarbon molecules. (b) The
out-of-sample hand-drawn hydrocarbon recognition accuracy of the
ensemble model when the top prediction has a given number of
agreeing votes, V (blue) and the percentage occurrence of a given
number of agreeing votes for the top prediction (red). The accuracy is
attributed to the confidence of the model when there are V votes for
the top SMILES prediction.
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Ensemble learning

Instead of relying on a single model to predict a desired output,
combining several models can result in improved performance,
a process called ensemble learning.” There are several ways in
which ensemble models can operate, such as boosting, bagging
and random forests.”> Here, we form an ensemble model
comprised of a committee of trained NNs, where each NN casts
a single vote according to their prediction. The predictions can
then be ordered from most to least votes and the prediction that
has the most votes is output. The number of agreeing votes for
a prediction can give insight into the confidence of the
ensemble model. If all of the NNs predict the same output, there
is a high probability the prediction is accurate. However, if the
NNs disagree, there is higher uncertainty in the prediction.
We build an ensemble model comprised of trained NNs from
previous experiments that achieve at least 50% accuracy on the
hand-drawn test set (5 out of the 17 trained NNs). The out-of-
sample hand-drawn hydrocarbon recognition accuracy for the
ensemble model is shown in Fig. 7a, comparing the three
predictions that have the most votes with the reference SMILES
label. The ensemble model achieves an accuracy of 76% on the

Chemical Science

hand-drawn test set for the top prediction and 85.5% if the top
three predictions are considered. By forming a committee of
NNs, we see a significant improvement in accuracy in compar-
ison to the constituent NNs (the highest of which obtained
67.5% on out-of-sample hand-drawn data).

The agreement between the models that make up the
committee offers insight into the certainty of the prediction.
Fig. 7b shows the increase of recognition accuracy as the
number of votes for the top-ranked prediction, V, rises. Here, we
assign the accuracy of the ensemble model when there are V
agreeing votes to its confidence value. When all the models
disagree (V = 1) the model has low out-of-sample accuracy,
equating to a low confidence value of the model. When more
models agree, the prediction tends to have a higher accuracy. All
of the models agreeing (V = 5) translates to a confidence value
of 98% in the predicted hydrocarbon.

In addition to knowing the confidence of the model's
prediction, it is useful to know how often it achieves this
confidence: if the model was 100% confident when all the votes
agreed but this only occurred 1% of the time its use would be
limited. We therefore investigate the portion of times that

(v=1)

v v
\‘/\/\/ PN
(V=5) (V=5)
X X v
(V=3) (vV=1) (vV=1)
\ X
=

Fig. 8 Representative examples of cyclic (top) and acyclic (bottom) molecules from the hand-drawn hydrocarbon test set and their corre-
sponding predictions from the ensemble. The input image is presented next to the predictions; the number of votes for each predicted molecule,
V, is shown, along with if the molecule was recognised correctly. Predictions of invalid SMILES strings are shown as N/A. Hydrocarbons that are
recognised correctly by one of the models predictions are outlined in green, and those that fail to be predicted correctly are outlined in red.
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a confidence value occurs in the ensemble model's test set
predictions (Fig. 7b). It can be seen that the percentage of times
that V votes occurs increases with the number of votes - there
are few instances where all the NNs disagree (V = 1), and by far
the most common occurrence is all NNs agreeing (V = 5).

The importance of knowing the uncertainty of a model's
prediction should not be underestimated. In many cases, it is
more important to achieve a lower accuracy but be able to
predict when the model will fail, than to achieve a higher
accuracy without insight into when it will fail. For example, in
the case of autonomous vehicles, a model that is able to
determine when it will fail and prompt a human to take over
controls would be far safer than a model that failed less but was
unable to forecast failure. In the case of hand-drawn molecule
recognition, the software could, for example, prompt the user to
take a second photograph if the uncertainty of the model was
high. It may also offer insight into if an erroneous molecule was
input by the user, as this would likely cause confusion and
result in disagreement between committee members. A poten-
tial feature for the ChemPix app is to show the top three
predictions if the uncertainty of the first prediction is high; the
user could then select the correct molecule from the three if it
appears. This data could be continuously collected and fed back
into the NN to iteratively re-train and improve its performance
as more data is collected.

Of course, both the accuracy and confidence of the NN
output should be optimized. Here, our ensemble model recog-
nizes the correct molecule with 89% confidence in over 70% of
cases and with near 100% confidence in over 50% of cases. This
is a promising result for deploying this technology to real-world
applications.

A selection of examples from the hand-drawn test set and
their respective predictions from the ensemble are highlighted
in Fig. 8. The model is able to recognise a wide variety of
hydrocarbons with different sized rings and chain lengths. The
network confidently recognizes hydrocarbons drawn on
a variety of textured materials, including a napkin, whiteboard
and paper. The network is able to determine the molecular
structure despite dark shadows and bright spots in the photo-
graph, as well as molecules drawn with a range of pen and
pencil types. Wavy lines and “unnatural” bond angles are
generally handled well.

As far as we can determine, there is not a clear pattern
between molecules that are predicted correctly and incorrectly,
however we notice some features that make the recognition
more challenging. Molecules drawn on lined and squared paper
can increase the difficulty in comparison to those drawn on
plain paper. The networks also struggle more when benzene
rings are drawn in the resonance hybrid style (with a circle) in
comparison to the Kekulé structure. This is likely due to the
RDKit generated training imaged being exclusively Kekulé. As
discussed previously, incorrectly predicted structures generally
have disagreeing committee members. A rare case in which all
the committee members agree on an incorrect prediction is
shown in Fig. 8: a-Methyl-cis-stilbene is wrongly identified since
two bonds are mistaken for one, resulting in a structure that is
very close to correct. It is common for wrong predictions to
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contain only a minor mistake such as this. We also note that
a large portion of the images in the hand-drawn dataset consists
of molecules that are drawn on paper with chemical structures
drawn on the opposite side of the page. In many cases, these
structures bleed through the page, confusing the network.
Lastly, we note that the model currently does not handle
conjoined rings due to limitations of RDKit's image generation,
which depicts bridges differently from the standard chemistry
drawing style. This could be addressed by applying a different
chemical structure renderer and/or collecting more hand-drawn
structure data. The full test set with the corresponding reference
and predicted SMILES can be found in the ESI.}

Fig. 9a highlights the SMILES error for predictions of invalid
molecules. The largest portion of errors corresponds to
unclosed or unopened parenthesis, with the next most prom-
inent error being rings left unclosed or the closure duplicated.
This gives insight into the somewhat lower accuracy of
branched molecules and rings. Lastly, a small portion of errors
correspond to carbons with a valence greater than four,
syntactical errors (e.g. a SMILES string ending in “="), and
aromatic carbons outside of a ring. Invalid SMILES predictions
are quite rare (6.5% of the total predictions), and tend to be
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branched
Fig. 9 (a) Proportion of errors associated with invalid SMILES predic-

tions. (b) Recognition accuracy of highest ranked ensemble prediction
for subsets of the hand-drawn hydrocarbon test set. From left-to-
right: all hydrocarbons (vocab: "Cc=#()1"), acyclic hydrocarbons only
(vocab: "C=#()"), cyclic hydrocarbons only (vocab: “Cc=#()1", must
contain “1), unbranched hydrocarbons only (vocab:"Cc=#1"), invalid
predicted SMILES removed from predictions.
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correlated with challenging images where the model has low
confidence of the prediction.

To gain insight into if the model more or less accurately
recognizes certain types of molecules, we compute the accuracy
of the ensemble’s first prediction for subsets of the test set,
including acyclic, cyclic and unbranched hydrocarbons
(Fig. 9b). The recognition accuracy is seen to be relatively
consistent between the different groups of molecules, however,
molecules without rings are correctly recognised slightly more
often than those with rings, and un-branched molecules (those
without “()” in their SMILES string) are more accurate still. We
also investigate the effect of removing all invalid SMILES from
the predictions, which leads to an insignificant change in
accuracy.

Conclusions

In this work, we demonstrate how deep learning can be used to
develop an offline hand-drawn hydrocarbon structure recogni-
tion tool. We curated a large synthetic dataset and a small hand-
drawn dataset and explored how to best leverage the two to
maximize molecule recognition accuracy. The datasets were
used to train an image-to-SMILES neural network to extract the
molecule from a photographed hand-drawn hydrocarbon
structure. Training with synthetic data only leads to only 50%
recognition accuracy on real-life hand-drawn hydrocarbons.
Replacing a small fraction of the training set with augmented
hand-drawn images and applying fine-tuning leads to an
improvement of hand-drawn hydrocarbon recognition accuracy
to nearly 70%. The trained data-driven models were combined
with ensemble learning to achieve superior accuracy to the
constituent models and gain information on when the model
would fail. The final model achieved an accuracy of 76%, and
the top three predictions included the exactly correct molecule
over 85% of the time.

Extending the hydrocarbon recognition results presented in
this paper to the recognition of all molecules offers an obvious
extension, however, variation in hand-drawn font style and
letter location provides a significant challenge. A hybrid rule-
based and data-driven workflow offers one strategy to over-
come these barriers. For example, a functional group detector
network and hydrocarbon backbone recognition network, such
as that presented in this study, could be combined with a rule-
based model to produce the complete molecular structure. We
also plan to explore neural style transfer to enhance the quality
of the synthetic data.>

The chemical structure recognition software developed in
this work has many interesting use cases, such as connecting it
to a user interface to be used as a phone or tablet application. A
wide range of chemistry software could then be connected to the
backend such as theoretical chemistry packages, lab notebooks
and analytical tools. It would be particularly useful for software
that currently requires knowledge of coding, command line
scripting, and specialized input file format and so is inacces-
sible to large sections of the chemistry community. Connection
to ChemVox® voice control and TeraChem Cloud* electronic
structure service offers one example of a potentially powerful

© 2021 The Author(s). Published by the Royal Society of Chemistry

Chemical Science

integrated tool. Since drawing a chemical structure by hand is
a familiar task for all chemists, this app would lower the barrier
of accessing such software. As a result, these currently unat-
tainable tools could be readily incorporated into laboratories
and classrooms to catalyse advances in both chemical research
and education.

Data availability

Data and source code can be found at https://github.com/
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