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Abstract: Fourier-transform mid-infrared spectrometry is an attractive technology for screening
adulterated liquid milk products. So far, studies on how infrared spectroscopy can be used to
screen spectra for atypical milk composition have either used targeted methods to test for specific
adulterants, or have used untargeted screening methods that do not reveal in what way the spectra
are atypical. In this study, we evaluate the potential of combining untargeted screening methods with
cluster algorithms to indicate in what way a spectrum is atypical and, if possible, why. We found
that a combination of untargeted screening methods and cluster algorithms can reveal meaningful
and generalizable categories of atypical milk spectra. We demonstrate that spectral information (e.g.,
the compositional milk profile) and meta-data associated with their acquisition (e.g., at what date
and which instrument) can be used to understand in what way the milk is atypical and how it can
be used to form hypotheses about the underlying causes. Thereby, it was indicated that atypical
milk screening can serve as a valuable complementary quality assurance tool in routine FTIR milk
analysis.

Keywords: Fourier-transform infrared; spectroscopy; milk; adulteration; spectra; untargeted; cluster;
chemometrics; machine learning

1. Introduction

Fourier-transform mid-infrared spectrometry (FT-IR) is a recognized and widely used
method to rapidly determine the compositional quality of raw milk and other liquid milk
products. With the use of sophisticated multivariate statistical models, it is possible to
calculate from the FT-IR spectrum the concentration of fat, protein, lactose, urea, fatty
acid groups, individual fatty acids [1–3], and other milk characteristics such as pH and
freezing point. FT-IR spectrometry is also an attractive technology to screen for possible
adulteration of liquid milk products [4–6]. In fact, various papers have been published on
how infrared spectroscopy can be used to screen spectra for atypical milk composition.

Approaches for screening atypical FT-IR milk spectra can be classified into targeted
and untargeted methods [4]. Targeted methods rely on mathematical models trained to
detect the presence—or estimate the quantity—of specific adulterants in the milk. Develop-
ment of these models requires the adulteration of a sufficiently large and representative
collection of milk samples with an adulterant, possibly at different concentrations. Due
to the characteristic effect of the adulterant on the milk’s FT-IR spectrum, mathematical
models can be trained to distinguish spectra belonging to adulterated milk from those
belonging to normal milk. This way, mathematical models have been developed to identify
milk adulterated with melamine [7], urea [3], water, starch, sodium citrate, formaldehyde,
sucrose, and other adulterants [8,9]. The advantage of targeted methods is that they can
indicate the presence of specific adulterants in the milk. Moreover, mathematical models
tuned to specific adulterants typically exhibit lower detection limits (i.e., are more sensitive)
compared to untargeted methods. The main disadvantage of targeted methods is that they
are only capable of detecting known adulterants. In reality, however, it is often not known
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which adulterants are currently used or will be used in the future. Adulteration with
substances (or complex blends thereof) that the mathematical models were not explicitly
trained to detect can therefore go undetected.

This is where untargeted screening methods excel. These methods do not rely on
mathematical models trained to detect a specific deviation in the FT-IR spectrum. Instead,
they are sensitive to any deviation present in the spectrum by creating a mathematical
model based on FT-IR spectra from authentic milk samples that still contain all normal
variation (e.g., seasonal variation, different cow breeds and farm management practices).
This mathematical model acts as a normal FT-IR milk fingerprint that can be compared
with spectra from milk samples that are to be examined. If a spectrum deviates above a
stated threshold from the normal milk fingerprint, it is denoted atypical. Since untargeted
methods only rely on regular milk spectra, their development often is less expensive, and
only requires a little statistical fine-tuning while offering a broad protection for possible
adulteration of milk samples. This has made untargeted screening methods a popular
subject of scientific research [6,10] and commercial applications [11]. Although untargeted
screening methods are capable of revealing any type of adulteration with a strong effect on
the spectrum, their disadvantage is that they do not comprehensibly characterize in what
way a spectrum is atypical and what the root cause is.

However, information about how and why a milk sample is atypical is crucial for
effective and appropriate follow-up action (e.g., contacting the farm or manufacturer,
identifying the root cause, and evaluating the possible risks for safety and quality of dairy
products). In this paper, we therefore evaluate the potential of combining untargeted
methods for atypical spectra screening with cluster algorithms to reveal in what way an
individual milk spectrum is atypical and what the underlying cause might be. To do
so, untargeted spectra screening was applied to a large dataset of bovine herd bulk milk
spectra. This way, a dataset of atypical milk spectra was created. Cluster algorithms
were then used to identify possible categories of atypical milk spectra. We show how
information in the spectra (e.g., the compositional milk profile) and meta-data associated
with their acquisition (e.g., time of measurement) can be used to understand in what way
the spectrum is atypical and how it can be used to form hypotheses about the underlying
causes.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

We consider a main dataset of 5,847,603 spectra that correspond to bovine herd bulk
milk samples of 16,898 farms across the Netherlands. All milk samples were collected
between January 2018 and November 2020 and routinely analyzed for milk payment
purposes. We made sure that farmers delivering Jersey milk, having elevated fat and
protein content as compared to milk from other common breeds in the Netherlands, were
not present in our database. For acquisition of the spectra, milk samples were randomly
assigned to one of four FT-IR instruments (Milkoscan FT +, FOSS Analytical A/S, Hillerød,
Denmark) where they all underwent the same pre-treatment before the scan took place.
FT-IR spectra were obtained in the mid infrared region with wavelengths between 1.995
(5012 cm−1) and 10.8 µm (926 cm−1). All spectra contained 1060 data points and were
converted from transmission to absorbance. FT-IR instruments were standardized monthly
using the FOSS equalizer application in accordance with the manufacturer’s instructions.
Details about the standardization procedure can be found in a white paper provided by
the manufacturer [12].

For each milk sample, FT-IR-based predictions of fat, protein, lactose, urea, freezing
point, and milk fat acidity were available. Calculations of fat, protein, and lactose were
also validated. This was done by having per batch of 47 milk samples an additional pilot
milk sample with known values of fat, protein, and lactose. In addition to the spectra and
the compositional milk profile, the dataset also contained meta-data concerning the time
at which the FT-IR measurement took place, an identifier corresponding to the particular
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infrared instrument from which the spectrum was obtained, and an indicator that allowed
us to determine which spectra belonged to the same farm. Basic preprocessing of the spectra
consisted of the selection of relevant wavenumbers (between 925 and 1600 cm−1, 1690
and 1900 cm−1, and 2700 and 2971 cm−1) and a calculation of the spectra’s first derivative.
Data preprocessing, analysis, and visualizations were performed using Python (version
3.7) [13] with the packages SciPy (version 1.6.0) [14], scikit-learn (version 0.23.2) [15],
NumPy (version 1.20.1) [16], and Matplotlib (version 3.3.4) [17].

2.2. Mathematical Models
2.2.1. Untargeted Spectra Screening

For the development of an untargeted mathematical model to identify atypical milk
spectra, we followed a conceptually similar approach as described in [6] employed by
commercial manufacturers of FT-IR instruments [11]. For the current dataset, we randomly
sampled from the main dataset up to 15,000 milk spectra per month in the period between
January 2018 and December 2019. This resulted in a dataset of 354,537 spectra containing
twice the seasonal variation in milk. Before working with the spectral data, we first
removed all spectra where the freezing point of the corresponding milk samples was above
or below the highest and lowest 99 th percentile, respectively. This was done in an attempt
to make the screening model more sensitive to spectral deviations indirectly associated
with variations in freezing point.

The remaining spectra were, per wavelength, centered to have zero mean and scaled to
unit variance. We then performed a principal component analysis (PCA) on the spectra and
extracted the first 16 components that together explained around 95% of the variation in the
spectra. Importantly, due to the scaling transformation, the absorption at each wavelength
contributed equally to the construction of the eigenvectors. At this time, we also ensured
that the four different IR instruments did not emerge as distinct clusters in the latent space.
This is important because the mathematical model should not be more sensitive to one
instrument than another. Compared to earlier studies, we decided to extract a few more
components from the PCA in order to slightly over-fit the data. This was done with the
intention to increase the relative contribution of spectral patterns that normally explain
only small fractions of the expected variation encountered in milk. Upon encountering
atypical spectra, however, variations described by such components could be important.
After transforming the spectra to the latent space, we computed the covariance matrix
and calculated per spectrum the Mahalanobis distance. The Mahalanobis distance reflects
the distance of an individual spectrum to the distribution of all other spectra in the latent
space. In the next step, we used PCA to perform an inverse transformation on the spectra
in the latent space in order to obtain the reconstructed spectra in the original space. By
calculating, across all wavelengths, the root-mean-squared error between the original and
reconstructed spectra, we obtained the spectral residuals. In the last step, the Mahalanobis
distances and the spectral residuals were each standardized to have zero mean with unit
variance before they were summed to a single score per spectrum: the spectrum anomaly
score. The higher the spectrum anomaly score, the more a spectrum deviates from all other
spectra. In order to reduce the impact of spectral outliers, we performed two iterations
using the procedure described above. After each iteration, spectra with the highest 0.1%
anomaly scores were removed. The final mathematic model used to identify atypical
spectra was based on 344,781 spectra. Figure 1 shows the distribution of anomaly scores of
those spectra that were used to construct the mathematical model.
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Figure 1. Histogram and kernel density estimate of the anomaly scores. Considered are the milk
spectra used to develop the untargeted spectra screening model. Anomaly scores around zero
reflect the average deviation from the normal FT-IR milk fingerprint; scores above zero indicate
progressively larger deviations from the normal FT-IR fingerprint.

2.2.2. Classifying Atypical Spectra

Using the final model for untargeted spectra screening, spectrum anomaly scores were
computed for the entire main dataset of 5,847,603 spectra. In order to classify spectra as
atypical, the anomaly scores have to be thresholded. Because the true prevalence of atypical
milk that can be detected with FT-IR is usually unknown, a somewhat arbitrary threshold
has to be defined. Given the strict regulations and tight on-farm inspection regimes in
the Dutch dairy sector, we assumed one in every thousand (0.1%) milk samples to be
atypical—on a monthly basis. In earlier research, a prevalence of up to 1% was sometimes
used [6]. Defining the threshold on a monthly basis ensured that we had an equal number
of atypical spectra per month over a period of almost three years. This way, a dataset
with 5671 atypical spectra was constructed. This dataset was further randomly split into a
training (n = 4253 spectra) and test dataset (n = 1418 spectra).

The 4253 atypical spectra in the training set were centered and scaled using robust
statistics (i.e., the median and interquartile range). Data transformations with robust
statistics were performed to reduce the impact of spectral outliers. We then used a PCA
and extracted the first 24 components that together explained 99.5% of the variance in
the spectra. We found the clustering to result in more stable and interpretable results
after the spectra had been transformed to the latent space. This is most likely because the
PCA reduces the amount of redundancy in the spectra and thereby, relatively speaking,
increases the signal-to-noise ratio. We then fitted various Gaussian Mixture Models to
the spectral data in the latent space. Gaussian Mixture Models (GMM) are probabilistic
generative models and a generalization of the K-means cluster algorithm. In a GMM,
multiple multivariate Gaussian distributions are fitted and mixed in such a way that they
can generate synthetic data that resemble the actual data as much as possible. The most
important hyperparameter of a GMM is the number of components that one has to select a
priori. In other words, how many different categories of atypical milk spectra the dataset
contains.

The true number of distinct categories cannot be known and depends on many factors.
Therefore, many possible cluster solutions exist across different datasets and even within
a single dataset. The selection of the optimal solution should be guided by the data (i.e.,
which solution generalizes to new data) and domain-specific knowledge (which clusters
are expected and what do they reflect). This leads to a trade-off between generalizability
and interpretability similar to the over- and underfitting trade-off encountered in machine
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learning problems. Solutions with few clusters may generalize well but may suffer from
being too general to be useful (i.e., they underfit the data). Solutions with many clusters,
on the other hand, can lead to highly segmented and specific clusters that often fail to
generalize to new data (i.e., they overfit the data). We evaluated multiple cluster solutions,
each time with a different number of clusters. We considered GMMs with four to twenty
components. GMMs were fitted such that each Gaussian component had its own fully-
parameterized covariance matrix. This made it possible to fit clusters with different
spheroidal shapes. The location parameter of the individual components was initialized
using the K-means algorithm. Moreover, each GMM was fitted to the data 50 times and the
model that best fitted the data (in terms of the log likelihood) was kept as the final model
to be evaluated.

The quality of the results was evaluated by investigating (i) the similarity of spectra
within each cluster in relation to the difference between the clusters, (ii) the size of the
clusters (i.e., too many small clusters could indicate overfitting, too few large clusters
underfitting), (iii) the degree to which clusters mainly contain atypical spectra from only
a very small number of farms, (iv) the temporal profile, (v) whether a cluster contains
spectra from only one or two FT-IR instruments, and (vi) the compositional milk profile
in terms of fat, protein, lactose, urea, freezing point, and milk fat acidity. On the basis
of this information, we found that a GMM with 11 components yielded a meaningful
cluster solution. However, two clusters were still too similar in terms of the spectra and the
compositional milk profile. Moreover, one cluster only contained spectra from two of the
four different FT-IR instruments, while the other cluster exclusively contained spectra from
the other two FT-IR instruments. In other words, the difference between the two clusters
could be mainly attributed to differences between the FT-IR instruments. We therefore
decided to group these two clusters together. This resulted in 10 final clusters.

Although some cluster algorithms can also be used to categorize new data, they are
inflexible when it comes to combining multiple clusters into one, such as we did. We
therefore followed a more general route and used a dedicated classifier to assign new
atypical spectra into one of the identified clusters. We fitted a support vector classifier on
the spectra in the latent space using the 10 clusters as class labels. Optimal parameters
of the classifier were determined by combining a grid search with 5-fold stratified cross-
validation. The cross-validated weighted F1-score of 0.95 indicated excellent classification
performance. To obtain an indication about the generalizability of the identified cluster
solution, we used the 1418 atypical spectra from the test set. Before predicting their cluster
membership, we centered and scaled the spectra and transformed them to the latent space.
All data transformations were performed with the parameters calculated from the training
set (i.e., median, interquartile range, and eigenvectors). Afterwards, the classifier was used
to assign the spectra to their most likely cluster. Generalizability was qualitatively assessed
by comparing the distribution of the compositional milk profile between the training and
the test dataset.

3. Results and Discussion

The goal of the study was an evaluation of the potential of combining untargeted
methods for atypical milk spectra screening with cluster algorithms to reveal in what
way a milk sample is atypical and what the underlying causes could be. How useful a
combined approach is depends on whether atypical milk spectra can be clustered into
robust and meaningful categories that can, in turn, be linked to possible root causes.
However, identifying meaningful and generalizable clusters in complex data is inherently
difficult. Because the true number of distinct clusters and their actual meaning cannot be
known a priori, the challenge lies in selecting one out of many possible cluster solutions.
In the current study, we tried to balance generalizability and interpretability and found
that categorizing atypical milk spectra into ten distinct clusters provided a robust and
meaningful description of our dataset.
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As can be seen in Figure 2, the size of the clusters varied from 11 milk spectra (0.26%
of all spectra) in cluster 9 to 1554 milk spectra (36.54%) in cluster 4. Because some factors
that cause milk spectra to be atypical are more likely than others, variability in the size
of the clusters is expected. Interestingly, out of 4253 spectra, only 11 milk samples with
similar spectral characteristics were necessary to form a distinct cluster. This indicates how
sensitive cluster algorithms can be in detecting very small groups of atypical spectra—even
within large datasets.

Foods 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

As can be seen in Figure 2, the size of the clusters varied from 11 milk spectra (0.26% 
of all spectra) in cluster 9 to 1554 milk spectra (36.54%) in cluster 4. Because some factors 
that cause milk spectra to be atypical are more likely than others, variability in the size of 
the clusters is expected. Interestingly, out of 4253 spectra, only 11 milk samples with sim-
ilar spectral characteristics were necessary to form a distinct cluster. This indicates how 
sensitive cluster algorithms can be in detecting very small groups of atypical spectra—
even within large datasets. 

 
Figure 2. Distribution of the 4253 atypical milk spectra in the 10 clusters. 

Figure 3 shows for both the training dataset and the test dataset the compositional 
milk profile on a cluster-by-cluster basis. Notice the similarity of the distributions when 
comparing the training and test dataset. This shows that our cluster solution generalizes 
to new data and does not merely describe peculiarities in our specific training set. The 
compositional milk profile also allows for an initial characterization of the clusters so that 
hypotheses can be made about the underlying root cause. For example, cluster 3 is char-
acterized by an increased fat content of up to 22%. This can be the consequence of insuffi-
cient mixing of milk before sampling. Therefore, if untargeted screening methods identify 
an atypical milk spectrum which is subsequently classified as belonging to cluster 3, it is 
most likely because the milk has a drastically increased fat content as it was not homoge-
neously sampled. Cluster 6, on the other hand, is marked by a decreased protein and lac-
tose concentration but an increased freezing point. This is typical for extraneous water in 
the milk [18]. This can be the result of an influx of water due to improper functioning of 
valves or an insufficient draining of water residues after cleansing the milking system or 
the tank. Cluster 7 is marked by a drastic increase in free fatty acids in the milk. This can 
be the consequence of the lipase activity [19] in sensitive milk (e.g., due to an increased 
somatic cell count in late lactation cows [20]) or milk that is subject to mechanical strain 
(e.g., air inclusion in milking systems) [21]. Because increased free fatty acid concentration 
in the milk can result in rancid flavors of milk products [21,22] and loss of fat in whey 
during cheese production [23], identifying such atypical milk samples therefore is of direct 
economic relevance. Finally, cluster 9 is characterized by an increased protein and lactose 
concentration combined with a decreased freezing point. This could be indicative of adul-
teration with protein-rich (e.g., milk powder, whey protein isolate) and carbohydrate-
based adulterants (e.g., glucose, starch) to increase the apparent concentration of protein 
and lactose [24]. Individual milk spectra categorized as belonging to cluster 9 could there-
fore indicate economically motivated adulteration. The ability to identify such cases 
makes it possible to initiate further target-oriented chemical analyses and contact with the 
farm for clarification. Although informative, milk spectra can also be atypical for reasons 

Figure 2. Distribution of the 4253 atypical milk spectra in the 10 clusters.

Figure 3 shows for both the training dataset and the test dataset the compositional
milk profile on a cluster-by-cluster basis. Notice the similarity of the distributions when
comparing the training and test dataset. This shows that our cluster solution generalizes
to new data and does not merely describe peculiarities in our specific training set. The
compositional milk profile also allows for an initial characterization of the clusters so
that hypotheses can be made about the underlying root cause. For example, cluster 3 is
characterized by an increased fat content of up to 22%. This can be the consequence of
insufficient mixing of milk before sampling. Therefore, if untargeted screening methods
identify an atypical milk spectrum which is subsequently classified as belonging to cluster
3, it is most likely because the milk has a drastically increased fat content as it was not
homogeneously sampled. Cluster 6, on the other hand, is marked by a decreased protein
and lactose concentration but an increased freezing point. This is typical for extraneous
water in the milk [18]. This can be the result of an influx of water due to improper
functioning of valves or an insufficient draining of water residues after cleansing the
milking system or the tank. Cluster 7 is marked by a drastic increase in free fatty acids
in the milk. This can be the consequence of the lipase activity [19] in sensitive milk (e.g.,
due to an increased somatic cell count in late lactation cows [20]) or milk that is subject
to mechanical strain (e.g., air inclusion in milking systems) [21]. Because increased free
fatty acid concentration in the milk can result in rancid flavors of milk products [21,22]
and loss of fat in whey during cheese production [23], identifying such atypical milk
samples therefore is of direct economic relevance. Finally, cluster 9 is characterized by
an increased protein and lactose concentration combined with a decreased freezing point.
This could be indicative of adulteration with protein-rich (e.g., milk powder, whey protein
isolate) and carbohydrate-based adulterants (e.g., glucose, starch) to increase the apparent
concentration of protein and lactose [24]. Individual milk spectra categorized as belonging
to cluster 9 could therefore indicate economically motivated adulteration. The ability to
identify such cases makes it possible to initiate further target-oriented chemical analyses
and contact with the farm for clarification. Although informative, milk spectra can also be
atypical for reasons other than those found in the compositional milk profile. For clusters
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5 and 10, for instance, the compositional milk profile does not seem to provide relevant
diagnostic information. It is therefore also important to focus on the characteristic spectra
of the clusters.

Foods 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

other than those found in the compositional milk profile. For clusters 5 and 10, for in-
stance, the compositional milk profile does not seem to provide relevant diagnostic infor-
mation. It is therefore also important to focus on the characteristic spectra of the clusters. 

 
Figure 3. Compositional milk profile per cluster in the training and test datasets. The violin plots 
show the kernel density estimates for fat, protein, lactose, urea, freezing point, and milk fat acidity 
for each cluster in the training set (green) and test set (orange). The boxplot contained in each vio-
lin describes the minimum, 25, 50, 75%, and maximum value of the training dataset. The horizon-
tal dashed lines and the shaded region correspond to reference values (mean ± 95% confidence 
interval) calculated from the milk spectra used to develop the untargeted spectra screening model. 

Figure 4 gives an illustration of how the average milk spectrum per cluster deviates 
from a typical milk spectrum. Inspecting the average spectra reveals that the change in 
absorbance of some clusters mainly occurs in spectral regions that are directly related to 
the concentration of fat (around 1750 and 2860 cm−1), protein (around 1540 cm−1), and lac-
tose (around 1040 cm−1). Cluster 3, for example, is marked by increased absorption in the 
regions around 1750 and 2860 cm−1 which corresponds to the C = O bonds (carboxyl group) 
and C-H bonds (ethylene group) characteristic for fat. For cluster 6, on the other hand, 
decreased absorption around 1540 (H-N-C = O amides) and 1040 cm−1 (C-O carbohydrates) 
correspond to a decreased protein and lactose concentration, respectively. However, some 
clusters also show a structurally abnormal absorbance profile. A closer look at the spectral 
region between 2740 and 2970 cm−1 reveals an interesting pattern for cluster 9. The spectral 
absorbance pattern in this region differs from the remaining clusters and the natural var-
iation encountered in typical FT-IR spectra. Similarly, for cluster 2 in the region between 
926 and 1100 cm−1. Such structural abnormalities can go unnoticed when only the compo-
sitional milk profile is analyzed but may provide important information about the nature 
of the atypical appearance. This information can then be used to generate hypotheses 
about a possible explanation that can be tested by target-oriented chemical analyses or 
further exploration on the spot. 

Figure 3. Compositional milk profile per cluster in the training and test datasets. The violin plots
show the kernel density estimates for fat, protein, lactose, urea, freezing point, and milk fat acidity
for each cluster in the training set (green) and test set (orange). The boxplot contained in each violin
describes the minimum, 25, 50, 75%, and maximum value of the training dataset. The horizontal
dashed lines and the shaded region correspond to reference values (mean ± 95% confidence interval)
calculated from the milk spectra used to develop the untargeted spectra screening model.

Figure 4 gives an illustration of how the average milk spectrum per cluster deviates
from a typical milk spectrum. Inspecting the average spectra reveals that the change in
absorbance of some clusters mainly occurs in spectral regions that are directly related to
the concentration of fat (around 1750 and 2860 cm−1), protein (around 1540 cm−1), and
lactose (around 1040 cm−1). Cluster 3, for example, is marked by increased absorption in the
regions around 1750 and 2860 cm−1 which corresponds to the C = O bonds (carboxyl group)
and C-H bonds (ethylene group) characteristic for fat. For cluster 6, on the other hand,
decreased absorption around 1540 (H-N-C = O amides) and 1040 cm−1 (C-O carbohydrates)
correspond to a decreased protein and lactose concentration, respectively. However, some
clusters also show a structurally abnormal absorbance profile. A closer look at the spectral
region between 2740 and 2970 cm−1 reveals an interesting pattern for cluster 9. The
spectral absorbance pattern in this region differs from the remaining clusters and the
natural variation encountered in typical FT-IR spectra. Similarly, for cluster 2 in the region
between 926 and 1100 cm−1. Such structural abnormalities can go unnoticed when only
the compositional milk profile is analyzed but may provide important information about
the nature of the atypical appearance. This information can then be used to generate
hypotheses about a possible explanation that can be tested by target-oriented chemical
analyses or further exploration on the spot.
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Describing clusters on the basis of their compositional milk profile and the underlying
milk spectra provides important information and allows for an assessment of whether
classifying atypical milk spectra is feasible in the first place. However, we believe that
an evaluation of the applicability of a cluster solution also depends on important meta-
information regarding the atypical spectra. One such source of information relates to the
proportion of unique farms in relation to the size of each cluster. This gives an indication of
the extent to which the root cause underlying atypical milk spectra within a cluster can be
found at many different farms, or only a few farms. As can be seen in Figure 5, most of the
distinct clusters have a proportion of unique farms in between 40 and 80%. For example,
43% of all the spectra in cluster 7 belong to different farms. Considering the actual size
of the cluster, it can be calculated that the 529 spectra in cluster 7 belong to 227 different
farms. This also means that, considering a period of almost 3 years, a farm in cluster 7
will have on average 2.3 atypical spectra in this cluster. This could be indicative of certain
factors more prominent at these farms. Knowledge about these factors (e.g., factors leading
to increased mechanical strain of milk) could then be used to take preventive measures.
We also found two clusters, cluster 1 and cluster 4, where the proportion of unique farms
was particularly low (9.33 and 16.34%, respectively). This indicates that the majority of
atypical spectra correspond to milk supplies from relatively few farms. In cluster 5 and
cluster 9, on the contrary, all spectra belong to different farms. This could either mean that
the underlying cause affects farms only incidentally or that the reason is not located at the
farms but instead at the laboratory where the FT-IR measurements take place.
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Figure 5. Proportion of unique farms per cluster. The percentages reflect the ratio between how many spectra a cluster
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farms, the more it indicates that the spectra belong to milk from only few farms.

We also analyzed the temporal profile of the clusters. In Figure 6, we visualized per
cluster the distribution of milk samples over time. This makes it possible to identify the
extent to which a cluster primarily describes milk that is atypical because the underlying
root cause has a seasonal profile (such as feeding and variation in temperature). Moreover,
it can be useful to know whether the underlying root cause is confined to a temporally
isolated event or whether it is more permanent. In our dataset, most of the clusters do
not appear to have a seasonal profile but are evenly distributed across the three-year
period. This suggests that the clusters are stable in the sense that the underlying root causes
exist throughout the year and are likely to be permanent. For example, the few spectra
belonging to cluster 9 were discovered evenly throughout a period of three years and each
spectrum corresponds to milk from a different farm. This is not indicative of a systematic
intentional adulteration, where multiple milk samples from the same farms are expected
to be affected over a certain period of time. Nevertheless, evidence suggests that atypical
spectra belonging to cluster 9 will also be found in the future, and this may justify further
target-oriented analyses concerning these milk samples or the farms they are coming from.
We also identified clusters with a seasonal profile. As can be seen in Figure 6, clusters 1, 4,
and 10 have a yearly seasonal profile. In cluster 10 the majority of spectra originate from
milk samples collected between April and May. This period of the year typically marks the
start of the grazing season, which goes along with a transition from silage-based feeding to
autonomous grazing. It is well known that this leads to characteristic changes in the milk’s
fatty acid profile [25,26]. Because over 80% of the farms in the Netherlands have their cows
out in the meadow during the grazing season, natural variation due to grazing is already
incorporated in our mathematical model. Cluster 10 could therefore contain milk from
farms where the transition to the grazing season leads to particularly drastic changes in
the fatty acid profile of the milk—perhaps due to abrupt changes in the food intake. Note
that a change in the fatty acid profile does not have to be reflected in the milk’s overall fat
percentage. Another two clusters that follow a yearly seasonal profile are cluster 1 and,
albeit being less pronounced, cluster 4. Both clusters mainly contain milk samples collected
around November and December. This period is likely associated with the transition from
autonomous grazing to silage-based feeding at the end of the grazing season.
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Another discovery that can be made from the temporal profiles relates to cluster 5.
More than 99% of the spectra in cluster 5 were measured on two consecutive days. We
found that all but two spectra were measured on a single FT-IR instrument. This highly
suggests that the spectra in cluster 5 are atypical due to temporary instabilities related to
the particular FT-IR instrument. For example, multiple reflections inside the layers within
the measurement cell of the infrared instrument can produce characteristic artifacts in the
spectrum known as fringes [27]. This is an interesting and important discovery. On the
one hand, it indicates that such instrument instabilities produce characteristic spectral
patterns that can be detected by a cluster algorithm. On the other hand, it shows that such
instabilities can lead to drastic changes in the spectrum that go unnoticed when only the
milk’s compositional profile or even the raw spectra are analyzed. Moreover, mathematical
models used for the calculation of chemical compounds that are present only in small
concentrations (e.g., individual fatty acids) can produce invalid results if the instabilities
affect spectral features used by these models. In addition, such instabilities can, and in our
case did, lead to anomaly scores higher than 99.9% for all other scores in this period. In
other words, these spectra were considered as atypical for reasons that are unrelated to the
chemical composition of the milk. By analyzing the time-course of anomaly scores on an
instrument-by-instrument basis, it is possible to identify periods of instrument instabilities
that are reflected as increased anomaly scores. This way, atypical milk spectrum screening
can also be used to simultaneously screen FT-IR instruments for instabilities that can lead
to systematic changes in milk spectra. Moreover, such instrument instabilities can indicate
that the instrument requires maintenance.

Implications, Limitations, and Future Outlook

Despite the promising results obtained from our cluster-level analyses, we also ac-
knowledge some limitations. First, it may not always be obvious or even possible to
describe what it means for the actual milk if it has a specific atypical absorbance pattern.
This is particularly the case for categories characterized by non-trivial absorbance patterns
rather than isolated peaks. In our case, we found that clusters 5 and 10 were interesting in
this regard. Both clusters could hardly be characterized by inspection of the spectra or their
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compositional milk profile. Nevertheless, information about why they were atypical could
be inferred from the corresponding meta-data. It is therefore possible to identify categories
for which an explanation can be given as to why milk spectra are atypical without being
able to explain in what way they are atypical.

Another limitation concerns the classification of new atypical milk spectra. We demon-
strated that is possible to identify meaningful categories of atypical milk spectra that also
generalize to new datasets. Although generalizability of a cluster solution is crucial, it
should be clear that a spectrum is always more similar to one cluster than to another. This
means that a milk spectrum will always be assigned to a category, no matter how well
it actually fits the category. This can lead to erroneous conclusions about how and why
the milk is atypical. Ideally, only those milk spectra that are sufficiently similar to the
spectra that were used by the cluster algorithm to identify the categories in the first place
should be assigned to a category. Probabilistic generative models such as Gaussian Mixture
Models can, theoretically, do exactly that. Since they can be used to generate synthetic
data, they can also be used to calculate the probability that a particular milk spectrum
can be randomly generated from this model. When the probability for a milk spectrum is
particularly low, the model may not be appropriate for categorizing the spectrum. This
way, it is also important to keep in mind that a cluster solution will necessarily become
outdated over time. This is because the chemical composition of normal milk changes over
the years and the reasons that cause milk spectra to be atypical do so too. This requires that
the cluster algorithm also be updated. Monitoring, over time, the proportion of atypical
spectra that cannot be categorized by the model can give important information about the
up-to-datedness of the models. However, more research needs to be done in this area.

A final limitation concerns untargeted milk spectra screening methods in general.
Untargeted spectra screening relies on a comparison of an individual milk spectrum with
a reference FT-IR milk fingerprint. The reference milk fingerprint represents the gold
standard of what is assumed to reflect normal milk. However, milk with a spectrum that
deviates from this fingerprint does not automatically reflect poor quality. In fact, even the
opposite can be the case. With the use of cluster algorithms and a thorough analysis of the
resulting categories, it may be possible to distinguish milk that is atypical for undesired
reasons (e.g., adulteration with water) from milk that is atypical for desirable reasons (e.g.,
particularly good farm management practices or feeding regimes). On the basis of our
findings, we believe that a combined approach for atypical spectra screening can serve
as a valuable complementary quality assurance tool in routine FT-IR milk analysis. After
meaningful and generalizable categories of atypical milk spectra have been identified, new
atypical milk spectra can be classified into these categories. Knowledge about the different
categories, in terms of what they reflect and what the possible root causes are, can then
be used to describe why and in what way a new milk spectrum is atypical. Moreover,
our approach is computationally efficient, scalable, and can be implemented in large-scale
routine screening for atypical milk. Being able to give an indication about how and why
a milk spectrum is atypical is necessary for taking appropriate actions (e.g., rejecting
the milk) and is an indispensable prerequisite when contacting the farm for clarification.
Our discovery that instrument instabilities can also be responsible for atypical spectra
is of particular relevance here. It is important to differentiate between spectra that are
atypical because the milk is chemically abnormal or because the FT-IR instrument produces
measurement artifacts in the spectrum. This way, atypical spectra screening can be used as
a tool for monitoring the quality and authenticity of milk, and for monitoring the FT-IR
instruments from which the spectra are obtained and the compositional milk profile is
computed.

4. Conclusions

When applied to the FT-IR spectra of liquid milk samples, we have shown that a
combination of untargeted screening methods and cluster algorithms reveals meaningful
and generalizable categories of atypical milk spectra. We demonstrated that information
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in the spectra (e.g., the compositional milk profile) and meta-data associated with their
acquisition (e.g., when and at which instrument) can be used to understand in what way
the milk is atypical and how it can be used to form hypotheses about the underlying
causes, whether on-farm or in the laboratory. Our combined approach resulted in the
identification of ten categories of atypical milk spectra. Some of them could be to linked to
increased mechanical strain of the milk, adulteration with extraneous water, or insufficient
homogenization during sampling at the farm. Another category could reflect economically
motivated adulteration of milk with protein-rich and carbohydrate-based adulterants.
We also identified a category that contains spectra that are atypical due to measurement
artifacts associated with the infrared instrument. However, more research is needed
to confirm these hypotheses. Future studies could also investigate the potential of the
described methodology to identify and categorize such measurement artifacts to assess the
maintenance status of infrared instruments.

A combined approach in which atypical spectra are detected by untargeted methods
and then assigned to categories revealed by cluster algorithms provides important infor-
mation about how and why a milk spectrum is atypical. This is important for selecting
effective and appropriate follow-up actions and greatly extends the practical utility and
scope of FT-IR milk screening when used as a complementary tool for quality assurance in
the dairy.
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