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Huntington3s disease (HD) is a progressive neurodegenerative disorder characterized by a complex neuropsychi-
atric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in
premanifest HD in the striatum and middle occipital gyrus (MOG). For early manifest HD convergent evidence
of atrophy was most prominent in the striatum, motor cortex (M1) and inferior frontal junction (IFJ). The aim
of the present study was to functionally characterize this topography of brain atrophy and to investigate differ-
ential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal
and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based
meta-analytic connectivity modeling (MACM). MACM utilizes the large data source of the BrainMap database
and identifies significant areas of above-chance co-activation with the seed-region via the activation-
likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal
atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds
in the premanifest andmanifest stages of HD, respectively. Functional characterization of the seeds was obtained
using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD
showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral
prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation
pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ
seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sen-
sorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that
experiments activating theMOGor IFJ in conjunctionwith the striatumwere associatedwith cognitive functions,
while the network formed by M1 and the striatum was driven by motor-related tasks. Thus, based on morpho-
logical changes in HD, we identified functionally distinct cortico-striatal networks resembling a cognitive and
motor loop, which may be prone to early disruptions in different stages of the disease and underlie HD-related
cognitive and motor symptom profiles. Our findings provide an important link between morphometrically de-
fined seed-regions and corresponding functional circuits highlighting the functional and ensuing clinical rele-
vance of structural damage in HD.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Huntington3s disease (HD) is an autosomal-dominantly inherited
neurodegenerative disorder caused by an expansion of CAG repeats on
chromosome 4p and clinically characterized by a complex phenotype
encompassing a triad of motor, psychiatric and cognitive dysfunctions.
The neuropathological hallmark of HD is progressive degeneration of
the striatum detectable up to two decades prior to the onset of the
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first motor symptoms and leading to widespread brain atrophy with
disease progression (Aylward et al., 2004; Paulsen et al., 2010; Tabrizi
et al., 2011, 2012, 2013).

Structural brain imaging measures, particularly the assessment of
caudate atrophy, have been shown to be predictive of symptom onset
and in tracking disease progression (Aylward et al., 2011; Tabrizi et al.,
2009, 2011, 2012, 2013). However, the search for reliable and clinically
meaningful biomarkers in HD is accompanied by a better understanding
of the relationship between (regional) brain volume loss and its contri-
bution to the emergence of clinical symptoms. Importantly, disease-
related behavioral manifestations are less likely to be sufficiently ex-
plained by distinct regional tissue degeneration, but rather depend on
the complex interactions within multiple brain circuits or disruptions
of the same— emanating fromor even beginning before overt structural
atrophy. Hence, themultimodal analysis of dynamic networks and con-
nectivity dysfunctions alongwith neural cell lossmay offer amore com-
prehensive understanding of the complex neuropathology underlying
the heterogeneous nature of HD (Georgiou-Karistianis, 2009; Paulsen,
2009). Particularly in the premanifest stage of HD, where cognitive
and psychiatric disturbances seem to precede the motor diagnosis
(Paulsen et al., 2006; Paulsen, 2011), characterization of aberrant func-
tional networks has been shown to be more sensitive to detect the ear-
liest changes in HD than those in structural imaging alone (Wolf et al.,
2007; Wolf et al., 2008b). Moreover, in manifest HD, when striatal vol-
ume loss has already progressed and the degenerative process afflicts
widespread brain regions, and thus cortico-striatal projections, the clin-
ical picture becomes more heterogeneous. This raises the need for an
appropriate functional differentiation betweenmultiple behavioral out-
comes on the neural level and for a better characterization of alterations
within these networks in different stages of the disease.

In recent years a number of task-based and resting-state imaging
studies have investigated functional connectivity changes in HD, if at
all mostly after controlling for or partialling out gray matter atrophy
(e.g., Dumas et al., 2013;Werner et al., 2014), and only a few addressing
the impact of regional volume loss on functional connectivity
(Quarantelli et al., 2013; Wolf et al., 2014). However, as functional net-
work connectivity inherently depends on tissue integrity, network anal-
ysis based on local volume destruction may predict deviation from
normal brain performance due to structural degeneration and enable
insights into the underlying neuronal dysfunctions. Modeling of net-
works co-activating with (or functionally connected to) HD-specific
consistently atrophied areas may therefore contribute to a more com-
prehensive understanding of structural alterations and the complex
clinical picture presented inHD. In addition, functional network analysis
related to structural damage in HDmay increase the predictive value of
structural imaging methods by enhancing our knowledge on the ensu-
ing clinical relevance of HD-related tissue destruction. This would ulti-
mately offer a framework to monitor disease progression within these
networks and associated clinical manifestations.

In order to synthesize structural magnetic resonance imaging (MRI)
findings across the whole brain, we recently performed a coordinate-
based meta-analysis of voxel-based morphometry (VBM) studies in
HD and delineated a consistent pattern of brain atrophy across studies
in premanifest and early manifest patients (Dogan et al., 2013). While
marked striatal atrophy was shown to be evident in premanifest
HD, we also observed involvement of cortical degeneration in the
premanifest stage, particularly in the occipital cortex. After symptom
manifestation, which is conventionally defined by the onset of motor
symptoms, cerebral atrophy was more pronounced and cortically
more widespread. While higher numbers of CAG repeats were associat-
ed with striatal degeneration, parameters of disease progression and
motor impairment additionally correlated with cortical atrophy, espe-
cially in sensorimotor areas (Dogan et al., 2013). We argued that this
pattern of structural degeneration may underlie the heterogeneous
phenotype in HD and emphasized the need to extend the focus of re-
search from the key region of neuropathology (i.e., degeneration of
the striatum) to a more differentiated picture of cortical–subcortical
changes and potential disturbances in the networks formed by these
regions.

Therefore, our aim in the current study was to functionally charac-
terize the consistent pattern of brain atrophy as observed in our meta-
analysis and to probe the ensuing clinical relevance of structural dam-
age in HD. For this, we considered atrophied areas as nodes within dy-
namic networks and performed functional connectivity analyses to
detect which brain areas co-activate with these regions. Connectivity
analyses included both a task-based approach via the new neuroimag-
ing tool “meta-analytic connectivity modeling” (MACM) as well as a
task-free resting-state functional MRI (fMRI). By combining both task-
driven and task-independent connectivity modeling tools we aimed to
investigate convergent functional networks in different states of brain
functioning as well as at rest. In order to integrate connectivity findings
and ensuing behavioral correlates, we additionally assessed behavioral
domains and paradigm classes associated with regions of consistent at-
rophy. Connectivity modeling and behavioral decoding of atrophied
areas were applied in the following way: As a hallmark of the disease,
wewere first interested in i) co-activation profiles related to striatal vol-
ume loss known to be affected early on in HD. Convergent clusters of
striatal atrophy were retrieved from our meta-analysis and used as
seeds for functional connectivity modeling. Since the striatum is a key
structure in the brain involved in a broad variety of functions, we ex-
pected to find a widespread functional network co-activating with
HD-related striatal atrophy areas. In a further step we wanted to delin-
eate functional networks formed by both striatal aswell as cortical atro-
phy regions in different stages of the disease, as these networks would
be in particular prone to early disease-related disruptions. That is, we
considered those brain regions showing common co-activation with
both the striatal and cortical atrophy areas. Given that these regions
would be connected to atrophy nodes cortically as well as subcortically
and therefore highly vulnerable to network disturbances, we aimed to
achieve a more reliable inference on the functional role of HD-specific
brain structure changes (instead of assessing co-activation profiles sep-
arately for each atrophy seed). Thus, we performed functional connec-
tivity modeling of cortical in conjunction with striatal atrophy seeds
retrieved from themeta-analysis at the ii) premanifest and iii) manifest
HD stages. We hypothesized that connectivity analysis of the cortico-
striatal seeds in the premanifest HD stage would reveal a network
which mirrors the cognitive disturbances presented at this disease
stage, while the seeds of the manifest stage would show more wide-
spread network involvement reflecting cognitive and motor dysfunc-
tions in clinical HD.

2. Methods

2.1. Seed regions: meta-analysis of consistent neurodegeneration in HD

In a recent coordinate-based meta-analysis of VBM studies in HD
(Dogan et al., 2013) we identified the core regions of consistent neuro-
degeneration in premanifest and manifest HDmutation carriers. Draw-
ing on these results, our aim in the current study was to functionally
characterize this pattern of brain atrophy and to identify functional net-
works co-activating with these atrophic regions (seeds) andmost likely
being disrupted early in HD. Since degeneration of the striatum is the
early pathognomonic key marker of the neurodegenerative process in
HD, first we performed functional connectivity analysis of convergent
striatal atrophy as observed in our meta-analysis encompassing
685 HDmutation carriers and 507 healthy controls. That is, we comput-
ed the conjunction between co-activation profiles of the left and
right striatal atrophy seeds (cluster volumes: right 5872 mm3; left
6880 mm3; Fig. 1A).

Second, we were interested in modeling networks co-activating
with both striatal and cortical atrophy regions in different HD stages,
hence being in particular vulnerable to disease-related disruptions.



Fig. 1. Functional connectivity modeling of consistent striatal atrophy in HD. A) Location of the left (cluster maxima [x/y/z in MNI]:−12/12/6) and right (24/8/8) striatal seeds showing
convergent evidence of atrophy as revealed by coordinate-based meta-analysis across voxel-based morphometry studies in HD (Dogan et al., 2013). B) Brain-wide co-activation maps of
the seed regions as revealed byMACM: 1st panel: Brain-wide foci reported in BrainMap that featured the activation peaks closest to the respective seed voxels; these foci aremodeled by
3DGaussian reflecting uncertainty of their location using ALEmeta-analysis. 2nd panel: above-chance convergence indicates significant co-activationswith the respective seed region. 3rd
panel: conjunction analysis showing commonbrain-wide co-activations between the left and right striatal seeds. C) 1st panel: resting-state connectivity for the left and right striatal seeds,
respectively. 2nd panel: conjunction analysis showing common resting-state connectivity between the left and right striatal seeds.
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Meta-analysis of VBM studies in premanifest HD yielded convergent vol-
ume reductions in the striatum (right 13,208 mm3; left 11,768 mm3;
Fig. 2A.1), as well as in the right middle occipital gyrus (MOG;
2048 mm3; Fig. 2A.1). These atrophy seeds in the premanifest stage
of HD (left or right striatum in conjunction with MOG) were com-
bined and used for functional connectivity modeling as described
below.

Finally, in the early manifest stage of HD, cerebral atrophywasmore
pronounced and spread to cortical regions, bilaterally in the striatum
(right 6344 mm3; left 5144 mm3; Fig. 2A.2), motor cortex (M1; right
1496 mm3; left 3128 mm3; Fig. 2A.2) and inferior frontal junction (IFJ;
right 1904 mm3; left 1848 mm3; Fig. 2A.2). Both striatal and cortical
seeds, separately for IFJ andM1, were again combined and the common
functional connectivity profiles related to these seeds were computed
via conjunction analyses (please see Supplementary Fig. S1 for a de-
tailed overview of our workflow).

2.2. Meta-analytic connectivity modeling (MACM)

Task-based functional connectivity of convergent atrophy seeds
(Fig. 1A, Fig. 2A) was assessed using meta-analytic connectivity model-
ing (MACM) based on the BrainMap database (http://www.brainmap.

http://www.brainmap.org


Fig. 2. Functional connectivity modeling of consistent cortico-striatal atrophy in premanifest and manifest HD. A) Location of the seed regions showing convergent evidence of atrophy as revealed by coordinate-based meta-analysis across voxel-
basedmorphometry studies in HD (Dogan et al., 2013): A.1 in premanifest HD located in the striatum (cluster maxima [x/y/z in MNI]: right 26/8/8; left−32/−12/−8 and−14/6/14) and right middle occipital gyrus (MOG; 30/−72/28); A.2 in man-
ifest HD located in the striatum (right 24/6/10; left−10/12/8), inferior frontal junction (IFJ; right 40/2/38; left−42/8/28) andmotor cortex (M1; right 34/−24/52; left−34/−28/52). B) Brain-wide co-activationmaps of the respective cortical seeds in
conjunction with striatal seeds as revealed by MACM (blue: MOG-striatal map; green: IFJ-striatal map; red: M1-striatal map): 1st panel: Brain-wide foci reported in BrainMap that featured the activation peaks closest to the respective seed voxels;
these foci are modeled by 3D Gaussian reflecting uncertainty of their location using ALE meta-analysis. 2nd/3rd panel: above-chance convergence indicates significant co-activations with the respective seed region. 4th panel: contrast analysis be-
tween MACMmaps showing differences in brain-wide co-activations patterns (blue: MOG-striatal map N IFJ-striatal map; green— left side: IFJ-striatal map N MOG-striatal map; green— right side: IFJ-striatal map N M1-striatal map; red: M1-striatal
map N IFJ-striatal map). C) 1st panel: resting-state connectivity of the respective cortical seeds in conjunction with striatal seeds. 2nd panel: contrast analysis between resting-state connectivity (see above for color coding).
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org; Laird et al., 2009a, 2011). MACM assesses the brain-wide co-
activation pattern of an anatomical region across a large number of
functional neuroimaging results and identifies significant areas showing
above-chance co-activation with this seed region. This convergence is
obtained by applying the ‘activation likelihood estimation’ approach
(ALE) over the co-activation foci derived from BrainMap (Eickhoff
et al., 2012; Fox et al., 2014). The rationale behindMACMto assess inter-
regional connectivity is conceptually similar to functional non-meta-
analytic approaches (e.g., resting state fMRI) by using temporal co-
variations in regional activation to detect connectivity. Whereas in a
typical fMRI study the unit of time is the second, in the meta-analytic
approach the unit of time is the study or experiment. Regions in
which activations co-occur consistently across studies (i.e., regions
that are mutually predictive) indicate functionally connected areas
with higher probability of co-occurrence reflecting greater strength of
functional connectivity. Hence, MACM bases on the probability of co-
occurrence of neuronal activation between regions over a broad range
of tasks and mental operations, revealing those networks that are con-
jointly and consistently recruited across studies. These co-activations
can be regarded as the meta-analytic correlate of functional connectiv-
ity (Wager et al., 2009).

The first step in MACM is to identify all experiments in BrainMap
reporting at least one focus of activation in healthy subjects in the
seed region (Fig. 1B). Currently, coordinate-based results (in Talairach
or MNI space) of over 11,000 functional neuroimaging experiments
are stored in the BrainMap database. To avoid a pre-selection bias and
enable a completely data-driven approach, all eligible BrainMap exper-
iments independent of behavioral categories were considered. The
subsequent quantitative ALEmeta-analysis tests for convergence across
the foci derived from BrainMap indicating consistent co-activation
(i.e., task-based functional connectivity) with the respective seed
(Eickhoff et al., 2009, 2010, 2012; Laird et al., 2009a; 2009b; Turkeltaub
et al., 2002, 2012).

The ALE algorithm aims at identifying areas showing a convergence
of reported coordinates across experiments, which is higher than ex-
pected under a random spatial association. The key idea is to treat the
reported foci not as single points, but rather as centers of three-
dimensional Gaussian probability distributions capturing the spatial un-
certainty associated with each focus based on an empirical model of
between-subject and between-template variance (Eickhoff et al.,
2009). The probabilities of all foci reported in the given experiments
were then combined for each voxel, resulting in a modeled activation
(MA) map (Turkeltaub et al., 2012). Taking the union across these MA
maps yielded voxel-wise ALE scores describing the convergence of re-
sults at each particular location of the brain. To distinguish ‘true’ conver-
gence between studies from random convergence (i.e., noise), ALE
scores were compared to an empirical null-distribution (Eickhoff et al.,
2012) reflecting a random spatial association between experiments.
Hereby, a random-effects inference is invoked, focusing on inference
on the above-chance convergence between experiments, not clustering
of foci within a particular study. The p-value of a “true” ALE was then
given by the proportion of equal or higher values obtained under the
null-distribution (Eickhoff et al., 2012). The resulting non-parametric
p-values for each meta-analysis were then thresholded at p b 0.05,
with any significant convergence outside the seed region reflecting con-
sistent convergence of co-activations, i.e., task-based functional connec-
tivity, since experiments featuring at least one focus of activation in the
respective seed were entered in the analysis.

In order to assess significant functional connectivity with areas of
convergent HD-related striatal atrophy (Fig. 1A), we first performed
MACM analysis with the left and right striatal seeds derived from the
meta-analysis across all HD studies. For this, we computed the conjunc-
tion between the left and right striatal connectivitymaps using themin-
imum statistics (Nichols et al., 2005) thresholded at a cluster-level
family-wise error (FWE) corrected p b 0.05 (cluster-forming threshold
at voxel-level p b 0.001). To detect disease-related brain networks
showing common connectivity with altered striatal and cortical struc-
tures in HD, we first identified all eligible experiments in the BrainMap
database that reported at least one focus of activation in the striatal in
conjunction with the cortical atrophy seed (Fig. 2A). That is, for atrophy
seeds derived from the meta-analysis across premanifest HD studies
(see above), we performed MACM analysis across experiments activat-
ing both (left or right) striatal and the right MOG seeds and used ALE
meta-analysis to identify consistent co-activations as reported in the
retrieved experiments. Thus, the resulting functional connectivity map
(i.e., MOG-striatalmap)would not only be formed byHD-related striatal
but also cortical atrophy consistently observed in the premanifest stage
of HD. In order to delineate cortico-striatal network alterations in early
manifest HD, task-based co-activation was assessed across experiments
activating striatal and IFJ seeds and, in a separate analysis, striatal and
M1 seeds (i.e., [(left or right) striatal seed AND (left or right) cortical
seed]). All analyses were thresholded at a cluster-level FWE corrected
p b 0.05 (p b 0.001 at the voxel-level). Hereby, we aimed at identifying
functionally distinct networks that might be associated with early de-
generation of the striatum as well as of either prefrontal or motor func-
tioning in HD (IFJ-striatal, M1-striatal maps; see also Supplementary
Fig. S1).

Finally, to contrast the functional connectivity networks derived
from the cortico-striatal seed areas (i.e., co-activation maps of both
striatal and cortical atrophy in HD), we first calculated the voxel-wise
differences of the Z-scores obtained from the respective MACM-maps
(i.e., MOG-striatal, IFJ-striatal, M1-striatal maps). The experiments con-
tributing to either analysis were then pooled and randomly divided into
two groups of the same size as the sets of contrasted experiments
(Eickhoff et al., 2011). Voxel-wise ALE scores for these two randomly
assembled groups were subtracted from each other and recorded.
Repeating this process 10,000 times yielded an empirical null distribu-
tion of ALE-score differences between the two conditions. Based on
this permutation-procedure, the map of true differences was then
thresholded at a posterior probability of p N .95 for a true difference be-
tween the two samples (cluster extend threshold kE ≥ 100 voxels; cf.
Rottschy et al., 2013).

2.3. Task-independent “resting-state” connectivity

Resting-state fMRI images of 132 healthy volunteers (mean age
42.3 ± 18.1 SD years; 78 male) without records of neurological or psy-
chiatric disorders were obtained from the NKI/Rockland sample
(Nooner et al., 2012). During the resting-state scans the subjects were
instructed to keep their eyes closed and to think about nothing in partic-
ular but not to fall asleep (which was confirmed by post-scan
debriefing). For each subject 260 resting-state EPI imageswere acquired
on a Siemens Tim Trio 3 T scanner using blood-oxygen-level-dependent
(BOLD) contrast [gradient-echo EPI pulse sequence, TR = 2.5 s, TE =
30 ms, flip angle = 80°, in plane resolution = 3.0 × 3.0 mm2, 38 axial
slices (3.0 mm thickness) covering the entire brain]. The first four
scans were excluded from further processing analysis using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/). The EPI images were first corrected
formovement artifacts by affine registration using a two pass procedure
in which the images were first aligned to the initial volumes and subse-
quently to the mean after the first pass. The obtained mean EPI of each
subject was then spatially normalized to the MNI single subject
template using the ‘unified segmentation’ approach (Ashburner and
Friston, 2005). The ensuing deformation was applied to the individual
EPI volumes. To improve signal-to-noise ratio and compensate for resid-
ual anatomical variations, images were smoothed by a 5-mm FWHM
Gaussian.

The time-series data of each voxel were processed as follows
(Eickhoff et al., 2011; Zu Eulenburg et al., 2012): In order to reduce spu-
rious correlations, variance that could be explained by the following
nuisance variables was removed: i) the six motion parameters derived
from the image realignment, ii) the first derivative of the realignment

http://www.brainmap.org
http://www.fil.ion.ucl.ac.uk/spm/
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parameters, and iii) mean gray matter, white matter and CSF signal per
time-point as obtained by averaging across voxels attributed to the re-
spective tissue class in the SPM8 segmentation. All nuisance variables
entered the model as first and second order. Data were then band
pass filtered preserving frequencies between 0.01 and 0.08 Hz, since
meaningful resting-state correlations will predominantly be found in
these frequencies given that the bold-response acts as a low-pass filter
(Biswal et al., 1995; Fox and Raichle, 2007).

We used the same seed regions as for the MACM analysis, i.e., the
clusters of convergent atrophy obtained from the meta-analysis, and
performed conjunction analyses of resting-state co-activations between
striatal and cortical seeds (MOG-striatal, IFJ-striatal, M1-striatal maps).
Linear (Pearson) correlation coefficients between the time series of
the seed regions and all other graymatter voxels in the brainwere com-
puted to quantify resting-state functional connectivity (Reetz et al.,
2012). These voxel-wise correlation coefficients were then transformed
into Fisher3s Z-scores and tested for consistency across subjects in a
random-effects analysis after accounting for subjects3 age as a nuisance
regressor. In correspondence with the MACM co-activation analysis
described above, we first assessed resting-state connectivity using HD-
related (left and right) striatal atrophy as seeds (Fig. 1A). In order to
delineate task-free functional connectivity shared by both striatal
and cortical atrophy seeds (i.e., MOG-striatal, IFJ-striatal, M1-striatal
maps), we then performed conjunction analyses (Nichols et al., 2005)
between resting-state connectivity of striatal and cortical clusters,
using premanifest and manifest atrophy regions respectively (Fig. 2A).
Analogous to MACM, the results were thresholded at a cluster-level
FWE corrected p b 0.05 (cluster-forming threshold at voxel-level
p b 0.001). Finally, resting-state co-activation maps of the different
cortico-striatal seeds were contrasted using exclusive masking (uncor-
rected mask at p b 0.05) and thresholded at a cluster-level FWE
corrected p b 0.05 (p b 0.001 at the voxel-level).
2.4. Cross-validation of task-based and task-free functional connectivity

In order to identify consistent functional connectivity maps
showing both task-based and task-independent co-activation with
the seed regions, we performed conjunction analyses between
MACM and resting-state analysis using the minimum statistics
(Nichols et al., 2005). That is we computed the intersection between
the connectivity maps of both analyses identifying those areas that
showed significant functional connectivity with the cortico-striatal
seed regions in task-dependent as well as task-independent states
(Reetz et al., 2012; Rottschy et al., 2013). The results of these consen-
sus maps between MACM and resting-state connectivity were
thresholded at a cluster-level FWE corrected p b 0.05 (p b 0.001 at
the voxel-level).
2.5. Anatomical allocation

Results were anatomically labeled by reference to probabilistic
cytoarchitectonic maps of the human brain using the SPM Anatomy
Toolbox (Eickhoff et al., 2005; Eickhoff et al., 2007). Using a Maximum
Probability Map (MPM), activations were assigned to the most prob-
able histological area at their respective locations. Details on these
cytoarchitectonic regions can be found in the following publications
reporting on the cerebellum (Diedrichsen et al., 2009), thalamic con-
nectivity zones (Behrens et al., 2003), amygdala (Amunts et al., 2005),
Broca3s area (Brodmann areas [BA] 44, 45; Amunts et al., 1999),
premotor cortex (PMC, BA 6; Geyer, 2004), primary motor cortex
(M1, BA 4a, 4p; Geyer et al., 1996), primary somatosensory cortex (SI,
BA 3, 1, 2; Geyer et al., 1999; Geyer et al., 2000), secondary somatosen-
sory cortex (SII: OP1, OP4; Eickhoff et al., 2006), inferior and superior
parietal cortices (IPC, SPL; Caspers et al., 2008; Scheperjans et al.,
2008), intraparietal sulcus (IPS; Choi et al., 2006; Scheperjans et al.,
2008), and posterior insula (Kurth et al., 2010a).

2.6. Behavioral characterization
In order to functionally characterize our morphometrically defined

seed regions and to potentially differentiate corresponding brain net-
works on a behavioral level, we used themetadata of BrainMap describ-
ing each neuroimaging experiment included in the database. Behavioral
domains code the specific mental process isolated by the statistical con-
trast of each archived neuroimaging experiment (Laird et al., 2011) and
include the main categories of cognition, action, perception, emotion,
interoception, as well as their related subcategories. The respective par-
adigm classes classify the specific task employed (a complete list of
BrainMap3s taxonomy comprising behavioral domains and paradigm
classes can be found at http://brainmap.org/scribe/). We analyzed the
behavioral domain and paradigm class metadata associated with each
of our premanifest and manifest atrophy seed regions by computing
conditional probabilities of observing activation in a region given a par-
ticular behavioral domain or paradigm class, and vice versa (forward
and reverse inference). As individual regions participate in multiple
cognitive operations and a single elementary process involves multiple
regions, we used both functional decoding approaches aiming to relate
defined psychological processes to the examined brain areas instead of
ascribing a unique role of a brain region in a certainmental process. For-
ward inference is the probability of observing activity in a brain region
given knowledge of the psychological process [P(Activation | domain or
paradigm)], whereas reverse inference is the probability of a psycholog-
ical process being present given knowledge of activation in a particular
brain region [P(domain or paradigm | Activation)] (cf. Clos et al., 2013;
Rottschy et al., 2013). The functional roles of the seeds were identified
by significant over-representation of behavioral domains and paradigm
classes in the experiments activating the respective seed region relative
to the overall chance of finding activation in that particular seed across
the BrainMap database using a binomial test at p b 0.05, Bonferroni
corrected for multiple comparisons (Eickhoff et al., 2011; Laird et al.,
2009a). For the reverse inference, a seed3s functional profile was deter-
mined by identifying the most likely behavioral domains and paradigm
classes given activation in a particular cluster. This likelihood P(domain
or paradigm | Activation) can be derived from P(Activation | domain or
paradigm) as well as P(domain or paradigm) and P(Activation) using
Bayes rule. Significance was then assessed by means of a chi-squared
test (p b 0.05, Bonferroni corrected for multiple comparisons).

In order to characterize the functional profile of our selective cortico-
striatal networks using premanifest and manifest atrophy seeds, we fil-
tered BrainMap data for those experiments activating both the (left or
right) striatal in conjunction with the respective (left or right) cortical
seeds, thresholded at p b 0.01 (uncorrected).

3. Results

3.1. Functional connectivity modeling of consistent striatal atrophy in HD

MACM of both left and right striatal seeds (Fig. 1A) showed signifi-
cant task-based connectivity mainly within the basal ganglia (caudate
nucleus, putamen, globus pallidum), the thalamus, amygdala, insula, in-
ferior frontal gyrus (including Broca3s area), premotor cortex (PMC),
supplementary motor area (SMA) and primary motor cortex (M1),
mid-cingulate cortex (MCC), inferior parietal cortex (IPC), intraparietal
sulcus (IPS) and posterior cerebellum (Fig. 1B; please see Supplementa-
ry Table S1 for a detailed description of significant clusters and anatom-
ical areas).

A similar co-activation pattern was observed in the resting-state
connectivity analysis, showing additional connectivitywith the anterior
cingulate cortex and to a lesser extent parietal connectivity (Fig. 1C;
Table S1). Conjunction analysis between MACM and resting-state con-
nectivity showed a common map comprising bilaterally the basal

http://brainmap.org/scribe/
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ganglia, thalamus, amygdala, insula, inferior frontal gyrus, M1, PMC,
SMA and MCC (Table S1).

3.2. Functional connectivity and behavioral characterization of consistent
cortico-striatal atrophy in premanifest HD

MACM analysis of consistent neurodegeneration in premanifest HD
was performed with striatal seed regions in conjunction with the right
MOG (Fig. 2A.1), which revealed significant co-activations with a net-
work comprising bilaterally the caudate nucleus, ventral putamen,
globus pallidum, anterior insula, inferior frontal gyrus (overlapping
with BA 44), right middle and superior frontal gyri, bilateral SMA, IPS,
superior parietal lobule (SPL) and MOG (Fig. 2B; Table S2).

Resting-state connectivity analysis of consistent MOG-striatal atro-
phy in premanifest HD resulted in a map consisting of Broca3s area
(BA 44, 45), superior frontal gyrus, PMC, IPC and right posterior cerebel-
lum (Fig. 2C; Table S2). Conjunction of both MACM and resting-state
connectivity revealed the dorsolateral prefrontal cortex (DLPFC) as a
common area of co-activation (Fig. 3A; Table S2).

Behavioral characterization of premanifest atrophy seeds based on
the BrainMap database showed that the striatal regionswere associated
with a broad range of behavioral domains, including cognition, emotion,
action–execution and pain perception, and paradigm classes such as re-
ward tasks, movement-related task, pain monitoring and discrimina-
tion (Supplementary Fig. S2A). The right MOG seed was rather related
to the cognitive and visual perception domains and involved inworking
memory, and executive andmental rotation paradigms (Fig. S2A). Since
ourmain interest in the current analysiswas focused on functional asso-
ciations related to both striatal and cortical atrophy, we filtered the
BrainMap data for those experiments activating both the (left and
right) striatal in conjunction with the right MOG seeds. Here, we
found significant associationswith cognitive domains (reasoning,work-
ing memory) as well as reward paradigm classes, while the reverse
Fig. 3. Conjunction analysis between MACM and resting-state connectivity maps of consistent c
resting-state connectivity maps of consistent MOG-striatal atrophy in premanifest HD (blue). B
(green) and M1-striatal (red) atrophy in manifest HD.
inference for the probability of certain paradigm classes given activation
in these seeds was not significant (Fig. 4A).

3.3. Functional connectivity and behavioral characterization of consistent
cortico-striatal atrophy in early manifest HD

3.3.1. MACM of manifest atrophy seeds
MACMof the IFJ in conjunction with the striatal seeds (Fig. 2A.2) re-

vealed a map including bilaterally the basal ganglia, thalamus (mainly
the prefrontal and temporal connectivity zones; Behrens et al., 2003),
anterior insula, inferior frontal gyrus (including Broca3s area), SMA,
MCC, superior medial gyrus, IPS, SPL, posterior cerebellum and fusiform
gyrus, left IPC and middle temporal gyrus. MACM of M1-striatal seeds
showed significant co-activation bilaterally with the basal ganglia, thal-
amus, insula, inferior frontal gyrus (BA 44), MCC, SMA, PMC,M1, prima-
ry somatosensory cortex (SI), parietal cortex (IPS, IPC, SPL) as well as
parietal operculum (Fig. 2B; Table S3). Contrasting both MACM maps
the IFJ-striatal map, compared to the M1-striatal map, showed more co-
activation with the dorsal caudate nucleus, thalamic nuclei connecting
to the temporal and prefrontal cortices, anterior insula, Broca3s area,
middle frontal gyrus, superior medial frontal gyrus, MCC, SMA, SPL, IPS,
left middle temporal gyrus and posterior cerebellum. In contrast, the
M1-striatal seeds co-activated the putamen, pallidum, left thalamus
connecting mainly to the (pre-)motor and parietal regions, left posterior
insula, bilateral inferior frontal gyrus (BA 44), SMA, PMC, M1, SI, IPC, pa-
rietal operculum (SII) and left IPS (Fig. 2B; Table S3).

3.3.2. Resting-state connectivity of manifest atrophy seeds
Similarly to MACM, resting-state connectivity analysis of the IFJ-

striatal seeds showed co-activation with the dorsal caudate nucleus,
left putamen and thalamus connecting to the prefrontal cortex, bilateral
anterior insula, inferior frontal gyrus including Broca3s area, superior
medial gyrus, SMA and PMC. These regions (except for the PMC) also
ortico-striatal atrophy in premanifest and manifest HD. A) Conjunction across MACM and
) Conjunction across MACM and resting-state connectivity maps of consistent IFJ-striatal



Fig. 4. Functional characterization by behavioral domains and paradigm classes. A) Functional characterization by behavioral domains and paradigm classes of MOG-striatal atrophy seeds in premanifest HD (blue). B) Functional characterization by
behavioral domains and paradigm classes of IFJ-striatal (green) and M1-striatal (red) atrophy seeds in manifest HD. Bar plots show significant associations (at p b 0.01, uncorrected) of behavioral domains and paradigm classes from the BrainMap
meta-data given observed brain activity (and vice versa); the x-axis indicates relative probability values.
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showed stronger connectivity with the IFJ-striatal map compared to the
M1-striatal map. For the latter we observed co-activation across the
brain with the bilateral putamen, mainly motor, premotor and somato-
sensory thalamic nuclei, posterior insula, inferior frontal gyrus (BA 44),
MCC, SMA, PMC, M1, parietal operculum (SII), Heschl3s gyrus, superior
temporal gyrus, left IPC, middle frontal gyrus and right SI. Except for
the connectivitywith Broca3s area, this co-activation patternwas largely
confirmed in the contrast analysis with the IFJ-striatal map (Fig. 2C;
Table S4).

3.3.3. Conjunction between MACM and resting-state connectivity of mani-
fest atrophy seeds

For the IFJ-striatal seeds, conjunction analysis between MACM and
resting-state connectivity revealed a co-activation map comprising the bi-
lateral caudate nucleus dorsally, left ventral putamen, bilateral anterior
insula, Broca3s area (BA 44), SMA extending to MCC, left PMC and middle
frontal gyrus. For theM1-striatal seeds bothMACM and resting-state anal-
yses showed common connectivity with the bilateral thalamus, SMA, BA
44, left PMC, M1, putamen and insula (Fig. 3B; Table S5).

3.3.4. Behavioral characterization of manifest atrophy seeds
Behavioral characterization of manifest atrophy seeds showed that

striatal seeds (similar to the results reported for premanifest atrophy
seeds)were related to thebehavioral domains of cognition, emotion, ac-
tion–execution and pain perception (Fig. S2B). While the profile of the
left IFJ seed indicated a primary role in language-related processes
such as phonology, semantics and speech, the right IFJ seed was rather
related to attention and visual perception, and both left and right IFJ
were involved in working-memory functions (Fig. S2B). The functional
profile of both striatal in combination with IFJ atrophy seeds indicated
significant associations with attention and language-related cognitive
domains, and higher probabilities of activation elicited by paradigm
classes such as Sternberg task, Go/No-Go and also saccades (Fig. 4B).

M1 atrophy seeds were mainly associated with action–execution
and movement-related behavioral domains and paradigm classes
(e.g., finger tapping), though the left M1 seed was also involved in tac-
tile and sequence learning paradigm classes (Fig. S1B). M1 in conjunc-
tion with striatal seeds was driven by motor functions (execution and
imagination of action) and experiments using finger tapping or imag-
ined movements (Fig. 4B).

3.4. Comparison between premanifest and manifest maps

Due to similarities between theMOG-striatal and IFJ-striatal connec-
tivity maps we additionally performed contrast analysis between these
two maps (Fig. 2C; Table S6). Compared to manifest IFJ-striatal seeds,
the MOG-striatal map showed task-based connectivity (MACM) only
within theMOG, and resting-state connectivity in the IPC and rightmid-
dle frontal gyrus. However, in the reversed contrast (MOG-striatal b IFJ-
striatal) we foundmore extensive connectivity in the IFJ-striatal MACM
map including the bilateral putamen, anterior insula, Broca3s area, supe-
rior medial gyrus, SMA, MCC, right thalamus (prefrontal and temporal
connectivity zones), caudate nucleus, left parietal regions (IPC, IPS,
SPL), andmiddle and superior temporal gyri. Resting-state connectivity
of IFJ-striatal seeds was similarly more widespread except for the pari-
etal and temporal regions but additionally including the bilateral cau-
date nucleus, pallidum, PMC and left middle frontal gyrus (Fig. 2C;
Table S6). We additionally compared the premanifest MOG-striatal
with the manifest M1-striatal map (Table S7). Similarly, compared to
the manifest M1-striatal seeds, the MOG-striatal map showed task-
based connectivity within the MOG and SPL, and resting-state connec-
tivity in the IPC and right middle frontal gyrus. The reversed contrast
(MOG-striatal bM1-striatal), for bothMACMand resting-state analyses,
basically depicted the M1-striatal motor network as described above,
including the putamen, posterior insula, premotor, sensorimotor and
parietal regions (Table S7).
4. Discussion

Based on convergent morphological changes in HD, task-based
MACMand task-free resting-state connectivity analyses identified func-
tionally distinct, disease-stage dependent cortico-striatal networks,
which may underlie the heterogeneous clinical picture in HD. Connec-
tivity modeling of striatal seeds first revealed a widespread network in-
cluding the basal ganglia, thalamus, amygdala, insula, prefrontal, and
premotor andmotor cortices emphasizing the involvement of the stria-
tum in a broad variety of functions. In contrast, task-based and resting-
state connectivity modeling of both striatal and cortical atrophy regions
in premanifest HD was related to a rather circumscribed fronto-insular
and parietal network associated with cognition that was also observed
but more widespread in the manifest stage. Whereas the cognitive
loop connects the caudatewith frontal and parietal cortices, the connec-
tivity pattern of the M1 seeds in conjunction with the striatum, as re-
vealed for manifest HD exhibiting motor signs, resembles mainly the
motor loop connecting the putamen with motor cortices and was also
driven by motor tasks. These functionally segregated cognitive and
motor networks based on convergent cortico-striatal atrophy in HD,
and therefore prone to early disease-related disruptions, may account
for the cognitive and motor symptom profiles at different stages of HD.

4.1. Functional connectivity of atrophy seeds in the premanifest HD stage

Functional connectivity modeling of early observed striatal in con-
junction with occipital atrophy in premanifest HD mutation carriers,
exhibiting no overtmotor signs, was associatedwith cognitive functions
such as working memory, reasoning and reward tasks, and revealed a
networkmainly consisting of the caudate nucleus, ventral putamen, an-
terior insula, lateral PFC, PMC, SMA and parietal regions.Workingmem-
ory dysfunctions are one of the earliest cognitive domains known to be
impaired in the premanifest stage of HD (Papp et al., 2011; Stout et al.,
2011), and fronto-striatal circuits are particularly vulnerable in
premanifest HD,which are closely related to the cognitive and psychiat-
ric symptoms often preceding the onset of motor disorder in HD (Wolf
and Kloppel, 2013). Interestingly, similar aberrant connectivity during a
working-memory task was reported in premanifest HD mutation car-
riers including the left lateral PFC, parietal regions and bilateral striatum
(Wolf et al., 2008b), as well as altered frontostriatal coupling with in-
creasing cognitive demand (Wolf et al., 2008a). The DLPFC in particular
seems to be a key region with respect to cognitive functioning in HD
(Wolf et al., 2008a; Wolf et al., 2009), which could also be confirmed
in our conjunction analysis between both MACM and resting-state
maps showing the DLPFC as a common region functionally connected
to cortico-striatal atrophy in the premanifest stage of HD. Moreover,
the significance of altered DLPFC coupling duringworkingmemory per-
formance in HD is also supported by the Australian IMAGE-HD study, a
longitudinal neuroimaging study in both pre- and manifest HD,
reporting increases in brain activity in premanifest mutation carriers,
but reductions in functional connectivity between the DLPFC, caudate
and parietal cortex over a period of 18 and 30 months (Georgiou-
Karistianis et al., 2013; Poudel et al., 2015). These areas were also
formed within the connectivity analysis of premanifest cortico-striatal
atrophy functionally driven by working-memory tasks.

Cortico-striatal atrophy in premanifest HD was also functionally re-
lated to reward tasks suggesting an impact on mood symptomatology
in HD. However, there is only sparse data on the functional correlates
of psychiatric disturbances in HD. fMRI studies havemostly investigated
the processing of emotional faces in both premanifest (Hennenlotter
et al., 2004; Novak et al., 2012) and manifest HD (Dogan et al., 2014)
showing widespread dysfunctions in neural, such as striatal, insular,
prefrontal and parietal activity, consistent with the cortico-striatal
premanifest map derived in our analysis. In particular, anterior insular
and striatal alterations, both structurally and functionally, have been linked
to impaired processing of negative emotions in HD (Henley et al., 2008;
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Hennenlotter et al., 2004), which are one the earliest neuropsychologically
detectable deficits in the premanifest stage (Paulsen, 2011).

Finally, only few studies have investigated task-free resting-state
fMRI connectivity in premanifest HD basically being in accord with
our resting-state connectivity map derived from early cortico-striatal
atrophy. Dumas et al. (2013) reported reduced connectivity of left
precentral, middle frontal, right parietal and cingulate gyri with a medi-
al visual network in premanifest HD compared to controls, while in
manifest HD connectivity of widespread brain regions with the default
mode network (DMN) and executive control network was reduced
(Dumas et al., 2013). In another analysis of the IMAGE-HD study using
independent component analysis (ICA) of resting-state fMRI data,
Poudel et al. (2014) found decreased synchrony within a sensorimotor
network and in the lateral visual area of a dorsal attention network.
Though the sensorimotor cortexwas spared in our connectivity analysis
in premanifest HD, involvement of the PMC (and SMA within MACM
analysis) also indicated premature disruptions inmotor circuits becom-
ing more apparent in the manifest stage of HD. In accordance with this,
Unschuld et al. (2012) assessed seed-based resting-state connectivity in
premanifest-HD between the caudate and cortical seeds and found re-
duced cortico-striatal synchrony between the caudate and PMC related
to striatal atrophy. Additionally, our data also showed significant
resting-state connectivity of atrophy seeds in premanifest HD with the
posterior cerebellum (lobule VIIb) known to be involved in cognitive
functioning (Schmahmann, 1991). This suggests that early structural
alterations in premanifest HD might also affect associative cortico-
pontine inputs, which are conveyed in the posterior cerebellar lobe.

Overall, our task-based and resting-state connectivity map based on
cortico-striatal atrophy in premanifest HD,whichwas functionally driv-
en by cognitive tasks, widely depicts early alterations in functional con-
nectivity in premanifest HD. It is important to note that our connectivity
mapping approach was solely based on consistent brain structure
changes in HD treating these areas as nodes within functional circuits
that are particularly vulnerable to disease-related disruptions. Whereas
striatal atrophy seeds showed relations to widespread brain areas
(which is reasonable considering the striatum3s role in cortico-striatal
circuits), the circumscribed coactivation profile related to both striatal
and occipital atrophy seeds revealed a comprehensive network for the
premanifest stage of HD, in which cognitive and psychiatric impair-
ments are prominent. Interestingly early occipital involvement in addi-
tion to striatal atrophy has also been reported for premanifest HD in the
large-scale and longitudinal TRACK-HD study (Tabrizi et al., 2012). An
important observation of TRACK-HD is that despite significant declines
in brain volumes, only few functional measures showed longitudinal
deterioration in premanifest HD (Tabrizi et al., 2012). This demon-
strates that clinical manifestation does not simply depend on the extent
of cell degeneration but rather represent a complex interaction within
neuronal circuits, in which network reorganization or compensatory
mechanisms may account for neuronal dysfunction to maintain func-
tions. Our data clearly emphasizes that the assessment of any relation-
ship between brain structure and behavior needs to consider the
functional circuits formed by these anatomical regions. In other
words, the predictive value of early structural alterations in HD for po-
tential cognitive disturbances may be increased when functional net-
works formed by these alterations are taken into account. The here
delineated cortico-striatal map associated with cognitive functioning
may serve as a framework for future studies assessing potential net-
work alterations in the context of behavior changes andmonitoring dis-
ease progression in premanifest HD.
4.2. Functional connectivity of atrophy seeds in the manifest HD stage

Functional connectivity modeling of early manifest cortico-striatal
seeds revealed two partly overlapping but functionally segregated net-
works that were driven by distinct behavioral tasks. According to the
proposed basal ganglia-thalamo-cortical circuits (Alexander et al.,
1986; Draganski et al., 2008), the dorsolateral prefrontal cognitive
loop connects the caudate with the frontal and parietal cortices, while
themotor loop connects the putamenwith themotor and sensorimotor
areas (i.e., PMC, SMA, M1, SI).

In accordance with this, in our connectivity modeling approach
based on morphometric changes in manifest HD, M1-striatal seeds
showed common functional connectivity with the putamen, pallidum,
thalamus, posterior insula, Broca3s area, premotor and sensorimotor
cortices and inferior parietal regions. These seedswere also functionally
associated with movement or action related tasks. Remarkably, HD
manifests with a wide range of motor impairment extending beyond
chorea (e.g., bradykinesia, rigidity, dystonia, dysphagia, dysarthria)
and changing over time. This motor-related phenotypic heterogeneity
is explained via dysfunctions of neurons within different (direct and in-
direct)motor control pathways linking the cortexwith the basal ganglia
(Albin et al., 1989). Importantly, additional cortical damage (either pri-
mary or secondary to striatal loss), such as atrophy in M1 as shown in
our analysis, may further account for the complexity of HD3s motor pro-
file viawidespreaddisruptions amongmotor areas and other cortices. In
particular, the posterior insula, part of both ourMACM and resting-state
M1-striatal maps, is connected to the primary and secondary somato-
sensory and motor areas, and activated by sensorimotor tasks (Kurth
et al., 2010b). The IPC is associated with multisensory integration and
sensorimotor adaptation, and plays an important role within the
motor system (Mattingley et al., 1998; Rozzi et al., 2008). Although
HD-specific impairments of voluntary movement control are often as-
cribed to striatal degeneration,motor pathways and sensorimotor corti-
ces are known to be selectively vulnerable in HD (Bohanna et al., 2011a;
Rosas et al., 2008), and there is evidence of cortical contribution to HD3s
phenotype beyond striatal connectivity (Rosas et al., 2008). Also, within
our ALE meta-data (Dogan et al., 2013) correlation analysis of conver-
gent atrophywith UHDRSmotor scores primarily yielded significant as-
sociations with cortical sensorimotor and premotor areas underlying
motor functioning rather thanwith the striatum. Therefore and particu-
larly when striatal loss has already progressed to differentiate within
clinical profiles, the here delineated motor network derived from the
connectivity modeling of striatal as well as cortical atrophy comple-
ments an ample understanding of striato–thalamo-cortical circuits
early affected by HD3s neuropathology.

Functional connectivity modeling of IFJ-striatal seeds revealed a
rather cognitive network similar to the one observed using premanifest
seeds, though more extensive both subcortically and cortically, and ad-
ditionally including the thalamic nuclei connecting to the prefrontal and
temporal cortices, as well as the medial prefrontal and cingulate areas.
Behavioral characterization showed attention, working memory and
language related cognitive domains, which are known to be more se-
verely impaired in the manifest stage of HD (Paulsen, 2011). Hence,
the delineated cognitive co-activation profile can be regarded as a pos-
sible neural network underlying such impairments in affected HD pa-
tients, although we cannot infer the specific pattern of activation
within networks. In the IMAGE-HD study, Georgiou-Karistianis et al.
(2013) reported increased task-based connectivity in manifest HD
over 18 months in the left DLPFC and anterior cingulate connection,
and decreased connectivity over time between the anterior cingulate
and right caudate, which the authors interpreted as a change of neural
response pattern possibly due to the extent of neuronal damage.
While reduced interregional connectivity accordswith DTI-based struc-
tural connectivity studies in HD (e.g., Bohanna et al., 2011b; Rosas et al.,
2010), enhanced neural activation is often interpreted as compensatory
recruitment representing primary dysfunctions with respect to cortical
degeneration or secondary compensatory processes due to striatal def-
icits in HD (Georgiou-Karistianis, 2009; Paulsen, 2009). Once the neuro-
nal loss progresses over time, these compensatorymechanismsmay not
be sustained to increase cognitive functioning (Georgiou-Karistianis
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et al., 2013). This might explain the heterogeneous picture of decreased
and increased functional connectivity in HD also reported in resting-
state fMRI studies (Dumas et al., 2013; Poudel et al., 2014), where net-
work alterations aremore difficult to relate to specific behavior. Howev-
er, in a recent resting-state study controlled for structural atrophy, we
could demonstrate that increased intrinsic functional connectivity
mainly in motor and parietal cortices was associated with motor im-
pairment in HD patients (Werner et al., 2014).

Only few studies have addressed the impact of regional volume loss
on functional connectivity in HD. Wolf et al. (2014) found increased in-
trinsic connectivity within striatal, motor and prefrontal resting-state
networks, but also decreased connectivity within anterior and lateral
prefrontal networks. After controlling for structural atrophy, observed
alterations remained stable in the motor network, while some differ-
ences were not evident and others emerged after accounting for struc-
tural degeneration (Wolf et al., 2014). This indicates that functional
connectivity changesmay be explained or occur because of regional vol-
ume loss, or even can only be unveiled when brain volume is taken into
account. Quarantelli et al. (2013) assessed DMN integrity and also dem-
onstrated that connectivity changes in the caudate, SMA, insula and oc-
cipital cortex could be explained by regional atrophy, while other
observed alterations in DMN nodes seemed to be unrelated to regional
atrophy. Importantly, by partialling out differences in gray matter in
functional imaging data (Oakes et al., 2007), the resulting connectivity
patterns may not be directly attributed to or explained merely by the
presence of overt volume loss. However, structural degeneration and
in particular cortico-striatal atrophy massively impact cortico–striato–
thalamo-cortical circuits which in turn may lead to disturbed function-
ality and mediate network connectivity. As argued above, an appropri-
ate understanding of clinical manifestations in HD needs to consider
both structural damage aswell as the complex interactions between re-
gions, since neural functionality is not conceivable without structural
integrity or at least requires some sort of neural reorganization tomain-
tain function. This implies that for the search of reliable biomarkers and
in clinical trials designated tomonitor disease progression and potential
treatment effects, structural imaging methods should be accompanied
by functional network analyses. However, in contrast to resting-state
fMRI, task-based functional imaging may be problematic in advanced
stages of HD due to patients3 inability to comply with task performance.
Therefore, the here proposed methods using MACM to assess task-
dependent functional connectivity, behavioral decoding to characterize
the associated functional role of networks, complemented by endoge-
nously driven resting-state connectivity analyses offer a framework
into brain-structure function investigations in HD. Combining these ap-
proacheswill provide amore differentiated picture of cortical–subcorti-
cal disturbances emanating from HD-related structural degeneration
and increase the predictive value of such alterations as reliable and clin-
ically meaningful biomarkers in HD.
5. Limitations

Based on convergent structural alterations in HD, we were able to
delineate functional networks co-activating with these regions, hence
forming circuits that are potentially disrupted early in thedisease. Albeit
a pivotal role can be ascribed to these circuits in the pathophysiology of
HD, the sequence of dysfunctions in these networks or the cumulative
effect of gradual disease severity (e.g., genetic burden) on functional
connectivity cannot be assessed from our data. Further, it is important
to note that co-activation patterns derived from MACM or resting-
state fMRI data include both direct and indirect connectivity between
brain regions and do not imply any causality. Functional connectivity
identifies brain regions that are synchronously co-activated and there-
fore reveals inter-regional relationships based on temporal fluctuations
in fMRI BOLD response. This indirect method is highly complemented
by structural analyses (e.g., DTI, fiber tracking) and the assessment of
de facto (direct or indirect) structural connections within functionally
defined networks. Nonetheless, our multi-modal approach combines
both (endogenously driven) task-free and (externally driven) task-
based states of brain function allowing a complementary and robust
delineation of functional connectivity (Eickhoff and Grefkes, 2011;
Rottschy et al., 2013). While coactivation patterns revealed by MACM
represent networks that are conjointly and consistently recruited across
a broad range of experimental conditions, correlations of signal fluctua-
tions in resting-state fMRI data provide insights into internally driven
connectivity patterns. As stated above, we cannot make assumptions
on the specific pattern of alterations within the proposed networks,
whether there is increased or decreased coupling to be expected in
HD patients. The outlined literature on functional connectivity in HD
clearly shows divergent findings on this issue dependent on certain dis-
ease stages, which mirrors the heterogeneity of HD. Another drawback
that is particularly relevant for our connectivity analysis of atrophy in
the striatum is that we cannot determine the differential aspects of
striatal connectivity since convergent clusters of striatal atrophy were
large yielding a widespread network of task-based and resting-state
connectivity. Our aim was to functionally characterize the functional
networks formed by both striatal as well as cortical atrophic areas
prominent in HD in order to unveil networks highly exposed to
disease-related disruptions. Other meta-analytic techniques, such as
connectivity-based parcellation (Bzdok et al., 2013; Eickhoff et al.,
2011; Fox et al., 2014), are more suited to detect distinct patterns of
functional connectivity within HD-related striatal atrophy, adding to a
more differentiated picture of early cortico-striatal alterations in HD.

6. Summary and conclusions

We utilized both task-based MACM and resting-state connectivity
data as powerful methods to investigate the functional and ensuing
clinical relevance of structural damage in HD, providing an important
link between morphometrically defined seed-regions and correspond-
ing functional circuits. Our multi-modal approach delineated a segrega-
tion of a cognitive and amotor cortico-striatal loop in different stages of
the disease. In premanifest HD, cortico-striatal atrophy seeds showed
common co-activation with a rather cognitive network including the
dorsal caudate nucleus, anterior insula, and lateral prefrontal, premotor
and parietal regions, that was also driven by cognitive tasks such as
working memory, reasoning and reward tasks. Combining both task-
based and resting-state network analysis, our findings suggest that the
DLPFC seems to be a core region prone to network alterations in the
premanifest stage of HD. Functional connectivity modeling of early
manifest cortico-striatal seeds revealed two partly overlapping but
functionally segregated networks thatwere driven by distinct behavior-
al tasks. The co-activation pattern of IFJ-striatal seeds revealed a similar
rather cognitive network, but more extensive both in task-driven and
resting-state connectivity, including the dorsal caudate nucleus, ventral
putamen, anterior insula, prefrontal cortex and premotor and supple-
mentary motor areas. Functional attribution indicated involvement of
this network in attention,workingmemory and language related cogni-
tive domains known to be impaired in early manifest HD. In contrast
M1-striatal atrophy seeds were driven by motor related tasks and
forming a motor loopmainly consisting of the putamen, thalamus, pos-
terior insula, and premotor and sensorimotor cortices. Overall, these
outlined functional connectivity maps demonstrate a neurobiological
basis for cognition-related disturbances in the premanifest stage of
HD, as well as for cognitive behavioral features and the motor disorder
after clinical conversion. These functional circuits may provide hypoth-
eses for future studies and targeted experiments and potentially offer a
framework in monitoring network alterations in HD.
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