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Abstract

Background: Human T-cell leukemia virus type | (HTLV-1) is a pathogenic complex
deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-
|-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic
viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral
accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes
important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling
protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and
incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-l Rex (Rex-1) is a
phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore,
it has been proposed that Rex-| function may be regulated through site-specific phosphorylation.

Results: We conducted a phosphoryl mapping of Rex-| over-expressed in transfected 293 T cells
using a combination of affinity purification and liquid chromatography tandem mass spectrometry.
We achieved 100% physical coverage of the Rex-l polypeptide and identified five novel
phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence
of two previously identified residues, Ser-70 and Thr-174, but found no evidence of
phosphorylation at Ser-177. The functional significance of these phosphorylation events was
evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that
phosphorylation at Ser-97 and Thr-174 is critical for Rex-| function.

Conclusion: We have mapped completely the site-specific phosphorylation of Rex-| identifying a
total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this
work is the first to completely map the phosphorylation sites in Rex-1 and provides important
insight into the regulation of Rex-1| function.
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Background

Human T-cell leukemia virus types 1-4 are related com-
plex retroviruses that are members of the genus Deltaretro-
virus [1]. HTLV-1 and HTLV-2 are the most prevalent
worldwide, whereas HTLV-3 and HTLV-4 were discovered
recently in a limited number of individuals in Africa [2-4].
Of the HTLV isolates, only HTLV-1 infection has been
clearly linked to the development of adult T-cell leuke-
mia/lymphoma (ATL), an aggressive CD4+ T-lymphocyte
malignancy, and various lymphocyte-mediated inflam-
matory diseases such as HTLV-1-associated myelopathy/
tropical spastic paraparesis (HAM/TSP) [5-7]. However, a
few cases of atypical hairy cell leukemia or neurologic dis-
eases have been associated with HTLV-2 infection [8-12].
Although the difference in pathology between HTLV-1
and HTLV-2 has yet to be elucidated, it likely results from
differential activities of the regulatory and accessory pro-
teins.

In addition to the typical structural and enzymatic retrovi-
ral genes gag, pol, and env, HTLV encodes two trans-regu-
latory genes, tax and rex, which are essential for efficient
viral replication/transformation, as well as several acces-
sory genes important for viral infection and persistence in
vivo [1]. The viral oncoprotein Tax increases the rate of
transcription from the viral promoter located in the 5'
long terminal repeat (LTR) [13-15] and modulates the
transcription and activity of numerous cellular genes
involved in cell growth, cell cycle control, DNA repair,
and cell differentiation [16-20]. The pleiotropic effects of
Tax make it essential for efficient viral replication as well
as cellular transformation and oncogenesis [21-23].

HTLV-1 Rex (Rex-1) is a nuclear-localizing and shuttling
phosphoprotein that acts post-transcriptionally by prefer-
entially binding, stabilizing, and selectively exporting the
unspliced and incompletely spliced viral mRNAs from the
nucleus to the cytoplasm, thus controlling expression of
the structural and enzymatic proteins that are essential for
production of viral progeny [24-26]. Therefore, it has
been proposed that Rex-1 regulates the switch from the
early latent phase to the late productive phase of HTLV
infection. Rex-1 binds viral RNAs via a cis-acting RNA
sequence termed the Rex-response element (RxRE), which
is located in the R region of the viral LTR [27]. Mutational
analysis of Rex-1 has identified several critical domains
including an arginine-rich N-terminal sequence that func-
tions as an RNA binding domain (RBD) that overlaps with
a nuclear localization signal (NLS), a leucine-rich central
core activation domain that contains a nuclear export sig-
nal (NES), two flanking Rex-Rex multimerization
domains, and a C-terminal stability domain [28-37].

Phosphorylation is a well known reversible regulatory
event that controls the activity/function of proteins in
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eukaryotic cells [38]. It has been demonstrated that both
Rex-1 and Rex-2 are phosphoproteins, and that this mod-
ification is critical for their function [26,39-42]. One study
investigating the possible relationship of Rex-1 function
and phosphorylation showed that treatment of HTLV-1
infected cells with the protein kinase C inhibitor H-7 [1-
(5-isoquinolinyl-sulfonyl)-2-methylpiperazine] specifi-
cally blocked cytoplasmic accumulation of Rex-depend-
ent gag-pol mRNA [40]. The same group reported that Rex-
1 is phosphorylated on Ser-70, Ser-177, and Thr-174, with
Ser-70 phosphorylation being 12-O-tetradecanoyl-phor-
bol-13-acetate (TPA)-dependent [39]. However, a com-
plete phosphorylation map and the identification of the
key residues required for function have yet to be eluci-
dated.

In this study, we combined liquid chromatography tan-
dem mass spectrometry (LC-MS/MS) analysis [43] of
affinity-purified Rex-1 protein in combination with sub-
stitution mutational analysis to identify and functionally
characterize key phosphorylation sites. The LC-MS/MS
analysis achieved 100% coverage of the Rex-1 sequence
and revealed five novel phosphorylation sites. We also
identified two specific amino acid phosphorylation events
found to be critical for Rex-1 function (Ser-97 and Thr-
174). Overall, this work highlights the importance of
phosphorylation and how it regulates the biological prop-
erties of Rex-1, ultimately controlling the distribution of
viral gene expression and productive viral replication.

Results

Functional Domains of HTLV-1 Rex

Mutational analyses permitted the assignment of func-
tional properties to distinct domains of the Rex-1 protein
(Fig. 1A). In addition to the characterized nuclear locali-
zation signal/RNA binding domain, central core activa-
tion domain, two multimerization domains, and the
newly identified C-terminal stability domain, three phos-
phorylation sites have been identified at Ser-70, Ser-177,
and Thr-174 by the use of reverse-phase HPLC and
sequential Edman degradation [39]. However, this
approach only provided limited mapping coverage of Rex-
1 and the functional relevance of the identified sites were
not addressed. To date, no further studies have examined
the possibility of other phosphorylation events or the
effect of these post-translational modifications on Rex-1
function.

Expression and Detection of Biological Active Affinity S-
tagged Rex-1

To identify the phosphorylated amino acid residues of
Rex-1, we employed a tandem affinity purification
approach of Rex-1 that was over expressed in mammalian
cells. The S-tagged Rex-1 vector (S-Rex-1) expressed full-
length Rex-1 protein fused to amino-terminal His, and S-
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Functional domains of HTLV-I Rex and efficient
expression and detection of affinity-tagged Rex-1. (A)
The functional domains of the 189 aa Rex-1 are depicted in
shaded boxes. The nuclear localization signal (NLS) and the
RNA binding domain (RBD) are positioned within the first |9
amino acids of the protein. The activation domain and the
nuclear export signal (NES) are located between residues 79-
99. This region is flanked by the two multimerization
domains; the first lies between amino acids 57-66, whereas
the second spans amino acids 106-124. Recently, a C-termi-
nal stability domain was identified spanning amino acids 170-
189 [28]. Three previously identified phosphorylation sites
are indicated: Ser-70, Thr-174, and Ser-177 [39]. (B) lllustra-
tion of the S-tagged Rex-| (S-Rex-1) expression vector con-
struct (not drawn to scale). (C) To determine the subcellular
localization of the S-tagged Rex-1, Hela-Tat cells were trans-
fected with | pg of S-Rex-1 or wtRex-| expression plasmids.
At 24 h post-transfection, cells were stained with rabbit a-
Rex-| specific antisera (Green). Nuclei were stained with
DAPI (Blue). (D) Western blot of Rex-1 proteins expressed
in 293T cells transiently transfected with S-Rex-1 and wtRex-
| cDNA plasmids. Proteins as indicated were detected using
rabbit a-Rex-| specific antisera.
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tags (Fig. 1B). Since the HTLV-1 regulatory proteins Tax
and Rex are expressed from the same mRNA in partially
overlapping reading frames, a point mutation was made
in the nucleotide sequence that added a stop codon in the
tax-1 reading frame that left the Rex-1 amino acid
sequence unchanged [44]. This mutation completely
abrogated Tax-1 protein expression and function (data
not shown). The S-Rex-1 expression construct was tran-
siently transfected into 293T cells, and the appropriate
nuclear subcellular localization of Rex-1 was confirmed
by indirect immunofluorescence microscopy (Fig. 1C).
Wild type Rex-1 was shown as a single 27 kDa band by
Western blot analysis using rabbit polyclonal o-Rex-1
antisera (Fig. 1D). Next we determined if the S-tagged Rex-
1 retained its ability to function in our quantitative
reporter bioassay in which HIV-1 p24 Gag production is
measured and used as a read-out of Rex-1 functional activ-
ity in cultured cells. It is important to note that this assay
has been a proven and accepted assay for Rex function and
has been shown to directly correlate to Rex activity in the
context of a molecular clone [25,28,45]. As shown in Fig-
ure 2A, S-Rex-1 displayed significant functional activity,
although slightly lower than wtRex-1. We hypothesize
that this reduced activity likely is due to the proximity of
the amino terminal tag to the RNA binding domain.
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Figure 2

Functional activity and expression of S-tagged Rex-1.
(A) The functional activity of S-tagged Rex-| was determined
using an HIV p24 Gag reporter assay. 293T cells were trans-
fected with 0.25 pg pcTat, 0.5 pg pcGagRxRE-I, 0.05 pg
CMV-luc, and 0.1 pg of wtRex-| or S-Rex-| expression plas-
mids. Twenty-four hours post-transfection, cells were har-
vested and assayed for p24 Gag. The values represent actual
p24 Gag production from a representative experiment per-
formed in triplicate. Error bars indicate standard deviations.
(B) Affinity purification of S-tagged Rex-| from mammalian
cells. 293T cells were transfected with S-Rex-1 and S-tagged
Rex-| was purified by S-protein-agarose beads, eluted and
resolved by SDS-PAGE analysis, and detected by Coomassie
blue staining.
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Taken together, these data demonstrate the proper nuclear
subcellular localization and efficient expression of a func-
tionally active S-tagged Rex-1 from mammalian cells.

Affinity Purification of Rex-1 from Mammalian Cells

We successfully purified S-tagged Rex-1 protein from
transfected 293T cells using S-protein-agarose beads as
described in the "Methods". This purification procedure is
based on the strong affinity between the 15-amino acid S-
tag and the S-protein that is immobilized on the agarose
beads, both of which are derived from RNase S [46]. The
affinity purified S-tagged Rex-1 protein was resolved by
SDS-PAGE and detected by staining with Coomassie blue
(Fig. 2B). This purification process produced adequate
quantities of highly purified S-tagged Rex-1 from mam-
malian cells and allowed the subsequent post-transla-
tional modification analysis by LC-MS/MS.

Phosphopeptide Mapping of Rex-1 Using LC-MSIMS
Multiple strategies were employed to identify the phos-
phorylation sites within Rex-1. The affinity purified S-
tagged Rex-1 band was excised and treated as follows.
First, the protein was subjected to trypsin enzymatic diges-
tion. The tryptic peptides that were too large to detect were
either digested further with elastase or independently
digested with elastase. This combined analytical approach
allowed us to obtain a detailed physical map covering
100% of the Rex-1 sequence (Fig. 3A). Our analysis iden-
tified four serine phosphorylation sites at Ser-36, Ser-70,
Ser-97, and Ser-106. We also identified three phosphor-
ylated threonine residues at Thr-22, Thr-37, and Thr-174.
Figure 3B shows a representative MS/MS spectrum of the
tryptic phosphopeptide, which identified phosphoryla-
tion at Thr-174. We did not identify tyrosine site-specific
phosphorylation, which is consistent with an earlier
report [39].

Substitutional Mutational Analysis of the Identified Rex-1

Phosphorylation Sites

To determine possible regulatory roles of the seven iden-
tified phosphorylation sites, we generated single alanine
amino acid substitutions and tested these Rex-1 mutants
to see if they retain their ability to function in our quanti-
tative reporter bioassay. The Rex-1 mutants were tran-
siently co-transfected into 293T cells with pcTat and
pCgagRxRE-1, along with CMV-luciferase to account for
transfection efficiency. We indentified two mutants S97A
and T174A that displayed significantly reduced function
(Fig. 4A). Further mutational analysis of these two resi-
dues by converting them to phosphomimetic aspartic acid
(S97D and T174D) restored functional activity to wtRex-
1 levels, which indicated that phosphorylation plays a
positive functional role (Fig. 4A). Although we did not
detect phosphorylation of Ser-177 in our analysis, we sub-
jected this residue to a similar mutational and functional
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analysis. Our results indicated that mutant S177A or
S$177D maintained wild type Rex functional activity (Fig.
4A). Moreover, aspartic acid substitution of Thr-22, Ser-
36, Thr-37, Ser-70, or Ser-106 had no effect on protein
function, which is consistent with the conclusion that
phosphorylation of any of these five residues does not
negatively regulate function, but is silent (data not
shown). The steady state expression levels of the wild-type
and mutant Rex-1 proteins were determined for each
mutant by Western blot analysis and detected using rabbit
polyclonal a-Rex-1 antisera (Fig. 4B). All of the Rex-1
mutants were stably expressed. We previously showed
that phosphorylation of a specific residue of Rex-2 at the
carboxy terminus (Ser-151) is important for proper pro-
tein nuclear localization [28,33]. However, evaluation of
the functionally disrupted substitution mutants S97A and
T174A for subcellular localization revealed no difference
when compared to wild-type Rex-1 (Fig. 4C). Together, we
concluded that although phosphorylation of Ser-97 and
Thr-174 are pivotal for Rex-1 function, the substitution for
alanine did not result in a significant change in subcellu-
lar localization to the cytoplasm.

Since the individual mutations (S97A and T174A) still
maintain partial function, it remained a possibility that
phosphorylation of both residues are required for optimal
biologic activity. To test this hypothesis and determine if
there is a functional relationship between Ser-97 and Thr-
174, we generated and characterized the double mutant
for function and protein expression. As shown in Figure
5A, the double mutant S97A, T174A displayed signifi-
cantly reduced functional activity as compared to wtRex-
1, but a similar activity as the single mutants. Lastly, the
nonfunctional Rex-1 mutants were next tested for their
capacity to block the biological action of wtRex-1 using
the pCgagRxRE-I reporter assay described above. The sin-
gle mutants (S97A and T174A) or the double mutant
(S97A, T174A) displayed a recessive negative phenotype,
as the action of wtRex-1 was not significantly altered in
their presence (Figure 5B and data not shown).

Discussion

Phosphorylation plays a key role in regulating the func-
tion of cellular and viral proteins [28,38,39,47,48]. Previ-
ously, it was demonstrated that Rex-1 is a phosphoprotein
and that phosphorylation may play a role in Rex-1 func-
tion [39,40]. It also has been shown that Rex-1 is essential
for efficient viral replication and survival in vivo [45].
Given the importance of this protein in HTLV biology, we
sought to understand how Rex-1 function is regulated.
Multiple studies have been directed at understanding the
importance of phosphorylation in HTLV Rex-2 function
[26,33,41,42,49]. These studies reported that phosphor-
ylation at the carboxy terminus of Rex-2 is critical for pro-
tein stability, shuttling, and cellular localization, all of
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Figure 3

Mapping Rex-1 phosphorylation sites by mass spectrometry. (A) A compilation of the results obtained with LC-MS/MS
analysis of S-tagged Rex-1. The 189 aa Rex-| protein is depicted with phosphorylation sites identified (*¥). The table (inset)
shows % total amino acid coverage from LC-MS/MS analysis. (B) A representative MS/MS spectrum of the tryptic phosphopep-
tide, which identified phosphorylation at Thr-174 is shown. CID Mass spectrum of m/z 1020.42 (3+) revealed a 29 aa peptide of
M, 3058.23. B and Y ion designations marked with (0) indicate a loss of H,O are doubly charged. The presence of the b10, bl |
and b2 ions maps the phosphorylation to Thr-174. The MASCOT peptide score was 82 with an expected score of 0.0028.
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Mutational analysis of Rex-1 phospho-specific mutants. (A) The functional activity of either wtRex-| or Rex-| mutants,
as indicated, was determined using the modified HIV p24 Gag reporter assay. The specific amino acid substitution for each
Rex-| mutant is shown. 293T cells were transfected with 0.25 ug pcTat, 0.5 pg pCgagRxRE-I, 0.05 pug CMV-luc, and 0.1 pg of
wtRex-1 or Rex-1 mutant plasmids. At 24 h post-transfection, cells were harvested and assayed for p24 Gag. The values repre-
sent actual p24 Gag production from a representative experiment performed in triplicate. Error bars indicate standard devia-
tions. T, threonine; S, serine; A, alanine; D, aspartic acid. (B) Western blot analysis of wild-type and Rex-| mutants. Whole cell
lysates normalized for transfection efficiency were subjected to Western blot using rabbit Rex- | -specific antisera. Rex-1 is indi-
cated. (C) To determine the subcellular localization of the Rex-| mutants, Hela-Tat cells were transfected with | ug of a con-
trol plasmid, wtRex- 1, or various Rex-| mutants. At 24 hours post-transfection, cells were stained with rabbit Rex- | -specific
antisera (Green). Nuclei were stained with DAPI (Blue).
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The functional activity of S97A and T174A single and
double mutants. (A) The activity of either wtRex-1 or
Rex-| mutants, as indicated, was determined using the modi-
fied HIV p24 Gag reporter assay. The specific amino acid sub-
stitution for each Rex-l mutant is shown. Cells were
transfected and Rex activity was determined as described in
the legend to Figure 4. The values represent actual p24 Gag
production from a representative experiment performed in
triplicate. Error bars indicate standard deviations. T, threo-
nine; S, serine; A, alanine; D, aspartic acid. Whole cell lysates
normalized for transfection efficiency were subjected to
Western blot (shown below) using rabbit Rex- I -specific
antisera. (B) 293T cells were transfected with 0.25 nug pcTat,
0.5 pg pCgagRxRE-I, 0.05 pg CMV-luc, and 0.1 pg of wtRex-|
or 0.1 ug of wtRex-1 + 0.2 pg of S97A, T174A Rex-| mutant
plasmid. Cell lysates were prepared 24 hours post-transfec-
tion and p24 Gag levels were determined by HIV-1 p24 Gag
ELISA. Rex-1 functional assay reveals that the double mutant
(S97A, T174A) does not inhibit the function of wtRex-I and
thus is not a trans dominant protein.
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which are positively regulated through phosphorylation
[28,33,49]. There have been some efforts aimed at deter-
mining the role of phosphorylation in the regulation of
HTLV Rex-1 [39,40]. The first studies used thin layer chro-
matography and tryptic peptide analysis. The studies
reported that the native protein was phosphorylated
mainly on serine and threonine. Subsequently, it was
reported that Rex-1 was phosphorylated on three residues;
Ser-70, Ser-177, and Thr-174. This group also speculated
that protein kinase C may play a role in Rex-1 phosphor-
ylation, which was supported by drug studies using the
more global kinase inhibitor H-7 [40]. Neither study
could conclusively identify all phosphorylation sites
within Rex-1, nor were any of the sites further tested for
their biological relevance.

In the current study, we were able to not only identify
phosphorylated Rex-1, but also assign phosphorylation to
site-specific residues by peptide sequencing using tandem
mass spectrometry. Consistent with previous reports, we
confirmed that Rex-1 is phosphorylated predominantly
on serine and threonine residues. We report the identifi-
cation of five novel phosphorylation sites, Thr-22, Ser-36,
Thr-37, Ser-97, and Ser-106 and also confirmed the phos-
phorylation on Ser-70 and Thr-174. Furthermore, we
identified specific phosphorylation sites that are critical
for Rex-1 function in vivo. These phosphorylation sites
specifically include Ser-97 and Thr-174. We previously
showed that phosphorylation of a specific residue of Rex-
2 at the carboxy terminus (Ser-151) is important for
proper protein nuclear localization [28,33]. Evaluation of
the functionally disrupted substitution mutants S97A and
T174A for subcellular localization revealed no difference
when compared to wild-type. It is important to note that
Ser-97 falls within the previously characterized central
core activation domain/nuclear export signal [50], and
that phosphorylation of this residue may be pivotal for
proper Rex-1 function. Previous studies of both HIV-1 Rev
and HTLV-1 Rex showed that mutations within the NES
interfere with the ability of these proteins to associate with
CRM1, a cellular protein that belongs to the importin 3
family and functions as a nuclear export receptor for NES-
containing proteins and the Rev- and Rex-dependent viral
mRNAs encoded by these complex retroviruses [29,50-
54]. An important direction for future studies is to evalu-
ate whether the non-functional mutants are defective for
CRM1 binding or the efficient interaction with the Rex-
response element RNA target.

Thr-174, which is located in the carboxy terminus of Rex-
1, was identified as a critical phosphorylation site. It was
shown previously that Ser-151, located in the carboxy ter-
minus of Rex-2, is a key phosphorylation site important
for Rex-2 function in vivo [26,33]. We also demonstrated
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that Rex-1 and Rex-2 share a similar stability domain
located within their carboxy terminus [28]. We hypothe-
sized that phosphorylation of Thr-174 of Rex-1 (Fig. 4B)
could play a similar role in regulating Rex-1 function sim-
ilar to Rex-2 Ser-151. Further C-terminal comparison
analysis is on-going to elucidate further homology
between these two related proteins.

One previous study identified phosphorylation on Ser-
177 of Rex-1 [39]. Throughout our studies, we were una-
ble to confirm this finding, but we did identify multiple
new sites. One explanation for why these new phosphor-
ylation sites were not identified in the earlier studies could
be that the high performance liquid chromatography frac-
tion procedure used may have resulted in a loss of other
phosphopeptides within the protein. The selective loss of
phosphopeptides can result from the addition of a phos-
phate group, thus reducing hydrophobicity, which may
cause failure of the protein to be retained on the reverse-
phase material used in purification [55]. An additional
consideration is that the previous study analyzed Rex-1
protein derived from a different cell type (COS-7 or HTLV-
1 transformed T-cell lines), which may produce alterna-
tive post-translational modification patterns when com-
pared to 293 T cells. Although it is not without its own
caveat and limitations, LC-MS/MS provides a more robust
method for the comprehensive mapping of phosphoryla-
tion sites [55-58].

Conclusion

In summary, our data indicate that phosphorylation of
specific residues regulates Rex-1 function. Utilizing a com-
bination of affinity purification, liquid chromatography
tandem mass spectrometry, and site-directed mutational
analysis we identified two phosphorylated residues, Ser-
97 and Thr-174 that are critical for Rex-1 function. Ongo-
ing research in our lab is focused on comparative studies
to better characterize the homology of the carboxy termi-
nus of Rex-1 and Rex-2. These studies are focused on
uncovering Rex cellular binding partners and kinase(s)
and their functional relationship in order to better under-
stand how phosphorylation regulates Rex-1 function.
These studies will enable us to determine the differences
between the two related proteins and perhaps gain insight
into the distinct pathology following HTLV-1 and HTLV-2
infection.

Methods

Cells

293T and HeLa-Tat cells were maintained at 37°C in a
humidified atmosphere of 5% CO, in air in Dulbecco's
modified Eagle medium. The medium was supplemented
with 10% fetal bovine serum (FBS), 2 mM glutamine,
penicillin (100 U/ml), and streptomycin (100 pg/ml).

http://www.retrovirology.com/content/6/1/105

Mammalian Expression Plasmid

The Rex-1 expression vector SE356, which contains the
HTLV-1 tax/rex cDNA expressed from the cytomegalovirus
(CMV) immediate-early gene promoter, was described
previously [14,59]. The S-tagged Rex-1 expression vector
S-Rex-1 was constructed by inserting the HTLV-1 tax/rex
open reading frame from SE356 into pTriEx4-Neo (Nova-
gen, Madison, WI) in-frame with the amino-terminal His-
tag and S-tag via Smal and BamHI. All generated rex
expression vectors contained a previously described muta-
tion in the overlapping tax reading frame (F4Term),
which had no effect on the Rex-1 amino acid sequence,
but severely truncated Tax-1, completely knocking out
expression and function [60]. The various rex-1 targeted
mutations were generated using the QuikChange™ site-
directed mutagenesis kit (Stratagene, La Jolla, CA) to
introduce targeted amino acid changes. All mutations
were confirmed by DNA sequence analysis and vector
expression was verified by transfection and Western blot
analysis. The human immunodeficiency virus type 1
(HIV-1) Tat expression vector, pcTat, Rex-1 reporter plas-
mid (pCgagRxRE-1) and the CMV-luciferase (firefly) trans-
fection efficiency control were described previously [59].

Rex-1 Functional Reporter Assay

The Rex-1 functional assay was performed as described
previously with slight modification [26]. Briefly, 0.1 pg
Rex-1 cDNA expression plasmid was co-transfected into
293T cells with 0.05 pg of CMV-luc, 0.25 pg of pcTat, and
0.5 pg of Rex-1 reporter plasmid pCgag-RxRE-I using Lipo-
fectamine Reagent (Invitrogen, Carlsbad, CA). Cell lysates
were prepared at 24 h post-transfection in Passive Lysis
Buffer (Promega, Madison, WI) with a protease inhibitor
mixture (Roche Applied Science Indianapolis, IN) on ice
for 30 min. Luciferase activity was determined to control
for transfection efficiency. HIV-1 p24 Gag levels in the cel-
lular lysates were determined by ELISA (ZeptoMetrix, Buf-
falo, NY). All transfection experiments were performed in
triplicate in three independent experiments and presented
as an average with standard deviation.

Immunoblot and Immunofluorescence Analysis

Cell lysates were prepared 24 h post-transfection in Pas-
sive Lysis Buffer (Promega, Madison, WI) with a protease
inhibitor mixture (Roche Applied Science, Indianapolis,
IN) on ice for 30 min. After centrifugation, total protein
concentrations were determined by Bradford protein
assay (Bio-Rad, Hercules, CA). To detect Rex-1, 50 ug of
total cell lysates from transfected cells was separated by
SDS-PAGE (12%) and transferred to a nitrocellulose
membrane (Schleicher & Schuell Biosciences, Keene,
NH). Proteins were visualized using polyclonal rabbit a-
Rex-1 specific antisera and the enhanced chemilumines-
cence (ECL) Western blot analysis system (Santa Cruz Bio-
technology, Santa Cruz, CA). Subcellular localization of
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Rex-1 was performed as previously described [61] with
slight modification. HeLa-Tat cells were transfected with 1
pg of control plasmid or S-Rex-1. At 24 h post-transfec-
tion, cells were washed and fixed in PBS containing 2%
paraformaldehyde and permeabilized in PBS containing
0.2% Triton X-100 and 0.5% FBS for 15 min at 4°C. Cells
were incubated in blocking buffer (0.5% FBS and 2 mg/ml
human IgG) for 30 min at room temperature. Staining
was conducted in blocking buffer with rabbit a-Rex-1 spe-
cific antisera followed by secondary antibody conjugated
to FITC Alexa 488 (Molecular Probes, Eugene, OR).
Nuclear staining was performed using 4'6-diamidino-2-
phenylindole (DAPI) Slow Fade Gold (Invitrogen,
Carlsbad, CA). Fluorescence was visualized on an epifluo-
rescence microscope (Olympus, Melville, NY) and digital
images were taken using the Optronics Imaging System
(Goleta, CA).

Purification of Rex-1 Protein

Protein purification was performed as described previ-
ously with a slight modification [43]. Briefly, cell lysate
(1.5 ml) was incubated with a 75 pl bed volume of S-pro-
tein agarose (Novagen) overnight at 4°C, washed twice
with a high salt modified RIPA buffer (0.05 M Tris-HCl,
pH 8.0, 0.1% SDS, 1% Triton X-100, 1.0 M NaCl, 0.01 M
EDTA) and twice with a low salt modified RIPA buffer
(0.05 M Tris-HCI, pH 8.0, 0.1% SDS, 1% Triton X-100,
150 mM NaCl). One hundred pl SDS loading dye with B-
mercaptoethanol was added to the washed beads fol-
lowed by boiling for 2 min. Samples were electrophoresed
on a 12% SDS one-dimensional polyacrylamide gel and
visualized by Coomassie blue staining. The S-tagged Rex-
1 band was excised from the gel for further proteomic
analysis.

Mass Spectrometry Analysis

LC-MS/MS analysis was performed as described previ-
ously with slight modification [43]. Briefly, the S-tagged
Rex-1 protein band was excised from a 1-D polyacryla-
mide gel, cut into 1-2 mm cubes, washed three times with
500 pl ultra-pure water and incubated in 100% ace-
tonitrile for 45 min. Samples were reduced with 50 mM
DTT at 56°C for 45 min and then alkylated with 55 mM
iodoacetamide for 1 h at room temperature. The material
was dried in a speed-vac, rehydrated in a 12.5 ng/ul mod-
ified sequencing grade trypsin solution (Promega, Madi-
son, WI) and incubated in an ice bath for 40-45 min. The
excess trypsin solution was removed and replaced with
40-50 pl of 50 mM ammonium bicarbonate, 10% ace-
tonitrile (pH 8.0), and the mixture was incubated over-
night at 37°C. Elastase digests were performed as
described for trypsin at an enzyme concentration of 15
ng/ul, but were performed without acetonitrile in the reac-
tion buffer. Peptides were extracted twice with 25 pl 50%
acetonitrile, 5% formic acid and dried in a speed-vac.

http://www.retrovirology.com/content/6/1/105

Digests were resuspended in 20 pl Buffer A (5% ace-
tonitrile, 0.1% formic Acid, 0.005% heptafluorobutyric
acid) and 3-6 pul were loaded onto a 12 cm x 0.075 mm
fused silica capillary column packed with 5 uM diameter
C-18 beads (The Nest Group, Southboro, MA) using an
N2 pressure vessel at 1100 psi. Peptides were eluted over
55 min by applying a 0-80% linear gradient of Buffer B
(95% acetonitrile, 0.1% formic acid, 0.005% HFBA) at a
flow rate of 150 pl/min with a pre-column flow splitter
resulting in a final flow rate of ~200 nl/min directly into
the source. In some cases, the gradient was extended to
150 min to acquire more MS/MS spectra. An LTQ™ Linear
Ion Trap (ThermoFinnigan, San Jose, CA) was run in an
automated collection mode with an instrument method
composed of a single segment and five data-dependent
scan events with a full MS scan followed by four MS/MS
scans of the highest intensity ions. Normalized collision
energy was set at 35, activation Q was 0.250 with mini-
mum full scan signal intensity at 1 x 105 with no mini-
mum MS? intensity specified. Dynamic exclusion was
turned on and utilized a three minute repeat count of 2
with the mass width set at 1.0 m/z. Sequence analysis was
performed with TurboSEQUEST™ (ThermoFinnigan, San
Jose, CA) or MASCOT (Matrix Sciences, London GB)
using an indexed Human subset database of the non-
redundant protein database from National Center for Bio-
technology Information (NCBI) web site http://

www.ncbi.nlm.nih.gov/.
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