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Abstract: β-Lactams are pharmacologically important compounds because of their various biological
uses, including antibiotic and so on. β-Lactams were synthesized from benzylidene-inden derivatives
and acetoxyacetyl chloride. The inhibitory effect of these compounds was examined for human
carbonic anhydrase I and II (hCA I, and II) and acetylcholinesterase (AChE). The results reveal that
β-lactams are inhibitors of hCA I, II and AChE. The Ki values of β-lactams (2a–k) were 0.44–6.29 nM
against hCA I, 0.93–8.34 nM against hCA II, and 0.25–1.13 nM against AChE. Our findings
indicate that β-lactams (2a–k) inhibit both carbonic anhydrases (CA) isoenzymes and AChE at
low nanomolar concentrations.
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1. Introduction

The β-lactams can be classified into several groups according to their structural characteristics,
but their unique structural feature is the presence of the four-membered β-lactam (2-azetidinone)
ring [1]. 2-Azetidinone containing antibiotics are known as β-lactam antibiotics and they are the most
widely employed family of antibacterial agents [2]. Moreover, they have been reported as having
antibacterial, anticancer, and antiviral activity, and an enzyme inhibition effect [3–5]. The investigation
of the chemistry and biology of β-lactam continue to appeal to synthetic and medicinal organic
chemists [6]. They have also been used for the preparation of different heterocyclic compounds of
biological significance [7].

Carbonic anhydrases (CAs, E.C. 4.2.1.1) catalyse a very simple but physiologically essential
reaction in all life kingdoms: the hydration of carbon dioxide (CO2) and water (H2O) to bicarbonate
(HCO3

−) and protons (H+) with a high efficiency [8–11]. CAs are metalloenzymes that participate in
the control of pH in the body, are encoded by six different independent gene families (α-, β-, γ-, δ -, ζ-,
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and η-CA) and are found in eukaryotic and prokaryotic cells [12–15]. They catalyse reversible CO2

hydration, which are essential important physiologic processes in all life kingdoms [16–18].

CO2 + H2O CA⇔ H2CO3 ⇔ HCO−3 + H+

Living organisms possess sixteen CA isoenzymes, which differ in their subcellular localization
and catalytic activity [19–22]. They were found in various organs and tissues with different kinetic and
molecular properties, expression levels, and oligomeric rearrangements as well as various abilities to
respond to different inhibitory classes [23–25]. These enzymes play a very important role in different
tissues [26,27]. CA I, II, III, VII, and XIII isoenzymes are cytosolic, CA IV, IX, XII, and CA XIV are
bound to membranes, CA VA-VB are mitochondrial, and CA VI are in the milk and saliva [28,29].
The erythrocytes contain CA I, and II at high concentrations. The CA inhibitors (CAIs) are used as a
class of pharmaceuticals, which used as diuretics, anti-glaucoma agents. Also, they used for treatment
of gastric and duodenal ulcers, neurological disorders, and osteoporosis [30–32]. Up until now,
the inhibitory effects against different CAs types have been investigated for different sulphonamides
derivatives, heavy metal ions, phenols, antibiotics, and various drugs [33–35]. β-Lactams are widely
used in the treatment of many diseases. However, there is no detailed study on erythrocytes hCA I,
and II isoenzymes of β-lactams (2a–k).

Acetylcholinesterase (AChE) is a crucial enzyme used for transmission control between
neurons [36] when the process is either mediated or modulated by the neurotransmitter acetylcholine
(ACh). ACh is released by the axon terminal or varicosities of the transmitter neuron into the
extracellular space to interact with the receptors of the other neuron. AChE hydrolyses ACh to
choline and acetate [37,38]. If AChE is inhibited in the central nervous system, then the concentration
of ACh increases in the synaptic cleft, leading to cholinergic crisis, which affords several dangerous
effects, such as convulsions and respiratory problems, which could lead to death. AChE inhibitors
(AChEIs) have medical applications and are particularly important for the symptomatic treatment
of Alzheimer’s disease (AD) to enhance central cholinergic transmission [39]. AD is a fatal and
chronic neurodegenerative disease that usually starts slowly and gets worse over time [19]. From this
perspective, there is a great need for improved AChEIs that show low toxicity, good brain penetration,
and high bioavailability. The use of AChEIs to block the cholinergic degradation of acetylcholine (Ach)
is therefore considered to be a promising approach for the treatment of AD [40,41].

In the present study, we investigated the inhibition profile of a series of β-lactam derivatives
(2a–k) against CA I, and II isoforms from human erythrocytes and AChE enzyme.

2. Results and Discussion

β-Lactam derivatives are drugs that protect against many different gram positive-negative and
anaerobic organisms. They are perhaps among the best-studied and most widely used antibiotics
in the world [42]. The general synthesis route of the novel β-lactam derivatives (2a–k) is shown in
Figure 1.

Herein, β-lactam derivatives (2a–k) were prepared from benzylidene-inden derivatives and
ketene and characterized by NMR and MS. We assumed that the synthesized compounds were in cis
form based on the literature [43–45]. The chemical structures of 2a–k are given in Figure 2. The in vitro
inhibitory effects of compounds 2a–k were also examined for purified hCA I, and II isoenzymes
activities using the esterase activity method. β-Lactam derivatives inhibit growth of sensitive bacteria
by inactivating enzymes in the cell membrane. β-Lactam derivatives were synthesized and evaluated
as inhibitors of protease, elastase, and the cysteine protease papain. Some drug molecules are enzyme
inhibitors, so their discovery is important in biochemistry research [46]. Inhibitors of CA have several
medical applications, such as in treating glaucoma disease, high blood pressure, and the neurological
disorders epilepsy and Alzheimer’s disease. Some research groups are currently working on the
synthesis of new inhibitors of the carbonic anhydrase family for the treatment of some diseases [47–49].
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Some chemicals at low dosages are effective by altering normal enzyme activity and by 
inhibiting a specific enzyme [50,51]. It is well known that β-lactams had inhibition properties on hCA 
I, and II isoenzymes and are used in therapies [52,53]. The inhibition effects of newly synthesized 
compounds 2a–k were determined for the first time against hCA I, and II. For this purpose, as shown 
in Table 1, hCA I and II were separately purified from erythrocytes with affinity chromatography. 
The hCA I was purified 127.9-fold with a specific activity of 1151.4 EU/mg and overall yield of 63.9%, 
and the hCA II enzyme was purified 788.9-fold with a specific activity of 7100.0 EU/mg and overall 
yield of 56.4% (Table 1). The purification was monitored by SDS-PAGE. After this process, a single 
band was observed for each isoenzyme (Figure 3). For the compounds, the inhibitor concentrations 
causing up to 50% inhibition (IC50 values) were determined from the regression analysis graphs. From 
in vitro studies, it is understood that hCA I, hCA II, and AChE were inhibited by these β-lactam 
compounds 2a–k (Table 2). The inhibition data of β-lactam derivatives 2a–k reported here are shown 
in Table 2, and the following comments can be drawn from these data: 
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Figure 2. The chemical structures of the investigated β-lactam derivatives (2a–k).

Some chemicals at low dosages are effective by altering normal enzyme activity and by inhibiting
a specific enzyme [50,51]. It is well known that β-lactams had inhibition properties on hCA I,
and II isoenzymes and are used in therapies [52,53]. The inhibition effects of newly synthesized
compounds 2a–k were determined for the first time against hCA I, and II. For this purpose, as shown
in Table 1, hCA I and II were separately purified from erythrocytes with affinity chromatography. The
hCA I was purified 127.9-fold with a specific activity of 1151.4 EU/mg and overall yield of 63.9%, and
the hCA II enzyme was purified 788.9-fold with a specific activity of 7100.0 EU/mg and overall yield
of 56.4% (Table 1). The purification was monitored by SDS-PAGE. After this process, a single band was
observed for each isoenzyme (Figure 3). For the compounds, the inhibitor concentrations causing up
to 50% inhibition (IC50 values) were determined from the regression analysis graphs. From in vitro
studies, it is understood that hCA I, hCA II, and AChE were inhibited by these β-lactam compounds
2a–k (Table 2). The inhibition data of β-lactam derivatives 2a–k reported here are shown in Table 2,
and the following comments can be drawn from these data:
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Table 1. Summary of purification procedure for human carbonic anhydrase (hCA) I, and II from fresh
human erythrocytes with Sepharose-4B-L-tyrosine-sulphanilamide affinity chromatography.

Purification Steps Volume
(mL)

Total Enzyme
Activity (EU)

Total
Protein

(mg)

Specific
Activity
(EU/mg)

Yield
(%)

Purification
Fold

Hemolysate 50 6300 700 9.0 100 1

Sepharose-4B-L-tyrosine-
sulphanilamide affinity

chromatography

hCA I 10 4030 3.5 1151.4 63.9 127.9

hCA II 5 3550 0.50 7100.0 56.4 788.9
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Tacrine (TAC) was used as a standard inhibitor for all AChE; * These values were obtained from [54].

(1) Cytosolic hCA I is expressed in the body and can be found in high concentrations in the blood
and gastrointestinal tract. All β-lactam derivatives 2a–k exhibited effective inhibitory activity against
the cytosolic isoenzyme hCA I with a Ki value of 0.35± 0.105–6.29± 2.068 nM (Table 1). Also, β-lactam
derivative 2g shown the most powerful CA I inhibition effect with a Ki value of 0.35 ± 0.105 nM.
On the other hand, we found that acetazolamide (AZA), which is used as a clinical CA inhibitor in
the treatment of glaucoma, cystinuria, epilepsy, altitude sickness, periodic paralysis, dural ectasia,
idiopathic intracranial hypertension, and central sleep apnoea [52], has a Ki value of 170.34 ± 2.48 nM
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(Table 2). The results clearly show that all β-lactam derivatives 2a–k demonstrate more effective hCA
inhibitory activity than that of AZA.

(2) With regard to the profiling assay against cytosolic hCA II, β-lactam derivatives 2a–k
have similar inhibition effects; with Ki values ranging from 0.93 ± 0.295 through 8.34 ± 3.530 nM.
For comparison, AZA, which is used as a clinical CA inhibitor showed a Ki value of 115.43 ± 1.63 nM.
This result clearly shows that all β-lactam derivatives 2a–k are a rather effective inhibitor for the
cytosolic isoform hCA II. The most powerful CA II inhibition effect was found in β-lactam derivatives
of 2i with a Ki value of 0.93 ± 0.295 nM.

(3) The compounds or drugs possessing AChE inhibitory effects are used for the treatment
of AD. However, these drugs and compounds have many undesired side effects. Also, the
utilization and development of new effective AChEIs is highly desired. Currently the most
prescribed AChEIs are Tacrine, Galantamine, Rivastigmine, and Donepezil [55]. In the present study,
AChE was very effectively inhibited by β-lactam derivatives 1–11, with Ki value in the range of
0.25 ± 0.019–1.13 ± 0.472 nM (Table 2) and calculated from Lineweaver-Burk plots [56]. On the other
hand, Tacrine had a Ki value of 3.90 ± 0.792 nM.

3. Materials and Methods

3.1. Chemicals

CN-Br-activated Sepharose-4B, p-nitrophenylacetate, and chemicals for electrophoresis were
purchased from Sigma-Aldrich Co. (Steinheim, Germany). All other chemicals were of analytical
grade and obtained from Merck (Darmstadt, Germany).

3.2. General Procedure for the Synthesis of Imines

2-Amino indane (1 eq) and benzaldehyde (1 eq) were stirred in a beaker for five minutes.
The resulting crude imine product was recrystallized from dichloromethane/hexane to give target
compound in 95%–99% yield. General synthesis route of novel β-lactam derivatives (2a–k) is given in
Figure 1.

(E)-N-Benzylidene-2,3-dihydro-1H-inden-2-amine (1a). Yield 98%; 1H NMR (300 MHz; ppm; CDCl3) δ
3.14 (dd, J = 16.05, 7.36 Hz, 2H), 3.21 (dd, J = 8.0, 16.3 Hz, 2H), 4.32 (p, J = 7.1 Hz, 1H), 7.16–7.26 (m,
4H), 7.39–7.43 (m, 3H), 7.74–7.77 (m, 2H), 8.39 (1H, s); 13C NMR (75 MHz; ppm; CDCl3) δ 41.2 (2C),
71.5, 124.7, 126.7 (2C), 128.4, 128.8, 130.83, 136.5, 142.2 (2C), 160.1.

(E)-N-(3-Methoxybenzylidene)-2,3-dihydro-1H-inden-2-amine (1b). Yield 96%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.12 (dd, J = 15.8, 7.0 Hz, 2H), 3.20 (dd, J = 8.41, 16.4 Hz, 2H), 3.82 (3H, s), 4.26 (p, J = 7.14 Hz,
1H), 6.94 (dt, J = 7.62, 1.66 Hz, 1H), 7.14–7.35 (m, 7H), 8.33 (s, 1H); 13C NMR (75 MHz; ppm; CDCl3) δ
41.1 (2C), 55.6, 71.4, 111.9, 117.5, 121.7, 124.7 (2C), 126.7 (2C), 129.8 (2C), 137.9, 142.3 (2C), 160.1.

(E)-N-(4-Methylbenzylidene)-2,3-dihydro-1H-inden-2-amine (1c). Yield 97%; 1H NMR (300 MHz; ppm;
CDCl3) δ 2.36 (3H, s), 3.13 (dd, J = 15.3, 6.9 Hz, 2H), 3.17 (dd, J = 7.3, 15.4 Hz, 2H), 4.27 (p, J = 7.2 Hz,
1H), 7.14–7.23 (m, 6H), 7.63 (d, J = 7.99 Hz, 2H), 8.32 (s, 1H); 13C NMR (75 MHz; ppm; CDCl3) δ 21.8,
41.2 (2C), 71.6, 124.7 (2C), 126.7 (2C), 128.4 (2C), 129.5 (2C), 133.8, 141.1, 142.3 (2C), 160.1.

(E)-N-(3-Methylbenzylidene)-2,3-dihydro-1H-inden-2-amine (1d). Yield 97%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.10 (dd, J = 16.0, 7.4 Hz, 2H), 3.19 (dd, J = 7.6, 15.8 Hz, 2H), 3.81 (3H, s), 4.26 (p, J = 7.20 Hz,
1H), 7.26–7.42 (m, 6H), 7.61–7.63 (d, J = 6.27 Hz, 1H), 7.73 (s, 1H), 8.43 (1H, s); 13C NMR (75 MHz; ppm;
CDCl3) δ 21.6, 41.3 (2C), 71.7, 124.8 (2C), 126.2, 126.8 (2C), 128.7, 128.8, 131.8, 136.5, 138.6, 142.3 (2C), 160.5.

(E)-N-(3-Chlorobenzylidene)-2,3-dihydro-1H-inden-2-amine (1e). Yield 98%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.19 (dd, J = 15.7, 6.4 Hz, 2H), 3.26 (dd, J = 7.3, 15.7 Hz, 2H), 4.36 (p, J = 6.9 Hz, 1H), 7.32–7.44
(m, 6H), 7.63 (d, J = 6.64 Hz, 1H), 7.84 (1H, s), 8.35 (1H, s); 13C NMR (75 MHz; ppm; CDCl3) δ 41.2 (2C),
71.4, 124.8 (2C), 126.8 (2C), 126.8 (2C), 128.0, 130.1, 130.8, 135.0, 138.3, 142.1, 158.6.
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(E)-N-(3,4-Dichlorobenzylidene)-2,3-dihydro-1H-inden-2-amine (1f). Yield 98%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.11 (dd, J = 15.6, 6.7 Hz, 2H), 3.18 (dd, J = 7.3, 15.6 Hz, 2H), 4.28 (p, J = 7.0 Hz, 1H), 7.15–7.24
(m, 4H), 7.35 (dd, J = 8.50, 2.26 Hz, 2H), 7.66 (dd, J = 8.50, 2.26 Hz, 2H), 8.30 (1H, s); 13C NMR (75 MHz;
ppm; CDCl3) δ 41.2 (2C), 71.5, 124.8 (2C), 126.8 (2C), 129.1 (2C), 129.7 (2C), 134.9, 136.7, 142.1 (2C), 158.8.

(E)-N-(3-Bromobenzylidene)-2,3-dihydro-1H-inden-2-amine (1g). Yield 95%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.11 (dd, J = 15.6, 6.5 Hz, 2H), 3.19 (dd, J = 7.3, 15.6 Hz, 2H), 4.29 (p, J = 6.9 Hz, 1H), 7.15–7.27
(m, 5H), 7.51 (d, J = 7.67 Hz, 1H), 7,61 (d, J = 7.67 Hz, 1H), 7.93 (1H, s), 8.29 (1H, s); 13C NMR (75 MHz;
ppm; CDCl3) δ 41.1 (2C), 71.4, 123.1, 124.7 (2C), 126.7 (2C), 127.3, 130.3, 130.9, 133.7, 138.5, 142.1
(2C), 158.5.

(E)-N-(2-Bromobenzylidene)-2,3-dihydro-1H-inden-2-amine (1h). Yield 97%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.17 (dd, J = 15.6, 6.4 Hz, 2H), 3.26 (dd, J = 7.2, 15.7 Hz, 2H), 4.42 (p, J = 6.8 Hz, 1H), 7.13–7.36
(m, 6H), 7.59 (dd, J = 7.67, 1.69 Hz, 1H), 8.08 (dd, J = 7.66, 1.43 Hz, 1H), 8.77 (1H, s). 13C NMR (75 MHz;
ppm; CDCl3) δ 41.2 (2C), 71.3, 124.7 (2C), 125.2, 126.7 (2C), 127.8, 129.2, 131.9, 133.2, 134.8, 142.1
(2C), 159.1.

(E)-N-(4-Bromobenzylidene)-2,3-dihydro-1H-inden-2-amine (1i). Yield 98%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.11 (dd, J = 15.6, 6.6 Hz, 2H), 3.19 (dd, J = 7.3, 15.6 Hz, 2H), 4.29 (p, J = 6.9 Hz, 1H), 7.15–7.24
(m, 4H), 7.52 (dd, J = 8.4, 5.0 Hz, 2H), 7.59 (dd, J = 8.6, 4.8 Hz, 2H), 8.30 (1H, s). 13C NMR (75 MHz; ppm;
CDCl3) δ 41.1 (2C), 71.4, 124.7 (2C), 125.1, 126.7 (2C), 129.8 (2C), 132.0 (2C), 135.3, 142.1 (2C), 158.9.

(E)-N-(2-Nitrobenzylidene)-2,3-dihydro-1H-inden-2-amine (1j). Yield 97%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.13 (dd, J = 15.7, 5.9 Hz, 2H), 3.25 (dd, J = 7.2, 15.7 Hz, 2H), 4.39 (p, J = 6.6 Hz, 1H),
7.15–7.25 (m, 4H), 7.56 (dt, J = 7.46, 1.54 Hz, 2H), 8.02 (dd, J = 7.71, 1.39 Hz, 2H), 8.9 (1H, s); 13C NMR
(75 MHz; ppm; CDCl3) δ 41.1 (2C), 71.2, 124.5, 124.8 (2C), 126.8 (2C), 130.1, 130.8, 131.5, 133.7, 141.9
(2C), 149.0, 156.2.

(E)-N-(4-Fluorobenzylidene)-2,3-dihydro-1H-inden-2-amine (1k). Yield 94%; 1H NMR (300 MHz; ppm;
CDCl3) δ 3.11 (dd, J = 15.6, 6.7 Hz, 2H), 3.18 (dd, J = 7.3, 15.6 Hz, 2H), 4.28 (p, J = 7.0 Hz, 1H), 7.03–7.24
(m, 6H), 7.71 (dd, J = 4.9, 5.5 Hz, 2H), 7.59 (dd, J = 8.6, 4.9 Hz, 2H), 8.32 (1H, s); 13C NMR (75 MHz; ppm;
CDCl3) δ 41.2 (2C), 71.3, 115.7 (2C), 116.0 (2C), 124.7 (2C), 126.7 (2C), 130.2, 130.3, 142.2 (2C), 158.6.

3.3. General Procedure for the Synthesis of β-Lactams

To a solution of imine (1 eq) and triethylamine (3 eq) in dichloromethane, a solution of
acetoxyacetyl chloride (2 eq) in dichloromethane was added dropwise over a period of 10 min at
room temperature. The reaction mixture was then stirred for an additional 1 h at room temperature.
The mixture was concentrated, then extracted with Ethyl Acetate and dried over Magnesium Sulphate;
the solvent was removed in a vacuum. Obtained product was purified over a silica gel packed column
chromatography using Hexane: EtOAc (1:1 v/v). The purified product was dried under vacuo and
recrystallized from Ethanol yields β-lactam derivatives (70%–93% yield).

3.4. Spectral Data

(3S*,4R*)-1-(2,3-Dihydro-1H-inden-2-yl)-2-oxo-4-phenylazetidin-3-yl acetate (2a). Yield 91%, m.p. 171–173 ◦C;
1H NMR (300 MHz; ppm; CDCl3) δ 1.65 (3H, s), 2.88 (dd, J = 15.8, 6.1 Hz, 1H), 2.89 (dd, J = 15.8, 7.1 Hz,
1H), 3.14–3.28 (m, 2H), 4.54 (p, J = 7.0 Hz, 1H), 4.81 (d, J = 4.6 Hz, 1H), 5.72 (d, J = 4.6 Hz, 1H), 6.93–6.96
(m, 1H), 7.04–7.21 (m, 5H), 7.29–7.31 (m, 3H); 13C NMR (75 MHz; ppm; CDCl3) δ 20.1, 37.3, 37.4, 54.0,
61.7, 76.6, 124.6 (2C), 127.0 (2C), 128.3 (2C), 128.5 (2C), 128.9, 133.7, 140.3, 140.3, 165.3, 169.2; MS: m/z
344.10 [M + Na]+.

(3S*,4R*)-1-(2,3-Dihydro-1H-inden-2-yl)-2-(3-methoxyphenyl)-4-oxoazetidin-3-yl acetate (2b). Yield 70%,
m.p. 98–100 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.70 (3H, s), 2.90 (dd, J = 15.9, 6.1 Hz, 1H), 2.99
(dd, J = 15.8, 7.1 Hz, 1H), 3.13–3.27 (m, 2H), 3.75 (s, 3H), 4.54 (p, J = 6.6 Hz, 1H), 4.77 (d, J = 4.7 Hz, 1H),
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5.72 (d, J = 4.7 Hz, 1H), 6.66–6.67 (1H, m), 6.77–6.85 (2H, m), 6.96 (d, J = 6.94 Hz, 1H), 7.04–727 (m, 4H);
13C NMR (75 MHz; ppm; CDCl3) δ 20.2, 37.3, 37.4, 54.0, 55.4, 61.6, 76.5, 113.8, 114.6, 120.8, 124.5, 124.6
(2C), 127.0 (2C), 129.4, 135.4, 140.4, 159.5, 165.2, 169.3; MS: m/z 344.16 [M + Na]+.

(3S*,4R*)-1-(2,3-Dihydro-1H-inden-2-yl)-2-oxo-4-p-tolylazetidin-3-yl acetate (2c). Yield 92%, m.p. 113–115 ◦C;
1H NMR (300 MHz; ppm; CDCl3) δ 1.68 (3H, s), 2.29 (3H, s), 2.88 (dd, J = 15.8, 6.0 Hz, 1H), 2.98 (dd,
J = 15.8, 7.1 Hz, 1H), 3.13–3.27 (m, 2H), 4.53 (p, J = 6.6 Hz, 1H), 4.76 (d, J = 4.6 Hz, 1H), 5.71 (d, J = 4.6 Hz,
1H), 6.92–7.27 (m, 8H); 13C NMR (75 MHz; ppm; CDCl3) δ 20.1, 21.5, 37.3, 37.4, 54.0, 61.7, 76.5, 124.5,
125.6, 127.0 (2C), 128.1, 129.3, 129.6, 133.6, 138.0, 140.4 (2C), 165.3, 169.3; MS: m/z 358.04 [M + Na]+.

(3S*,4R*)-1-(2,3-Dihydro-1H-inden-2-yl)-2-oxo-4-m-tolylazetidin-3-yl acetate (2d). Yield 87%, m.p. 96–98 ◦C;
1H NMR (300 MHz; ppm; CDCl3) δ 1.69 (3H, s), 2.34 (3H, s), 2.87 (dd, J = 15.8, 6.4 Hz, 1H), 2.97 (dd,
J = 15.7, 7.3 Hz, 1H), 3.18 (m, J = 7.2, 15.3 Hz, 1H), 3.22 (m, J = 6.3, 15.3 Hz, 1H), 3.75 (3H, s), 4.51 (p,
J = 6.8 Hz, 1H), 4.79 (d, J = 4.6 Hz, 1H), 6.95-6.97 (m, 1H), 7.02–7.17 (m, 7H); 13C NMR (75 MHz; ppm;
CDCl3) δ 20.2, 21.4, 37.2, 37.3, 53.9, 61.6, 76.6, 124.6 (2C), 127.0, 127.0, 128.5 (2C), 129.0 (2C), 130.6, 138.7,
140.4, 140.4, 165.4, 169.4; MS: m/z 358.09 [M + Na]+.

(3S*,4R*)-2-(3-Chlorophenyl)-1-(2,3-dihydro-1H-inden-2-yl)-4-oxoazetidin-3-yl acetate (2e). Yield 98%, m.p.
115–117 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.78 (3H, s), 2.83 (dd, J = 15.9, 7.0 Hz, 1H), 3.00 (dd,
J = 15.9, 5.2 Hz, 1H), 3.10–3.24 (m, 2H), 4.57 (p, J = 6.1 Hz, 1H), 4.72 (d, J = 4.6 Hz, 1H), 5.71 (d, J = 4.6 Hz,
1H), 6.89–6.91 (m, 1H), 7.01–7.28 (m, 7H); 13C NMR (75 MHz; ppm; CDCl3) δ 20.1, 37.5, 37.6, 54.0, 61.1,
76.6, 124.5, 124.6, 126.7, 127.1, 127.2, 128.6, 129.1, 129.5, 134.3, 136.0, 140.2, 164.9, 169.2; MS: m/z 358.20
[M + 2H]+.

(3S*,4R*)-2-(3,4-Dichlorophenyl)-1-(2,3-dihydro-1H-inden-2-yl)-4-oxoazetidin-3-yl acetate (2f). Yield 84%,
m.p. 138–140 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.77 (3H, s), 2.79 (dd, J = 4.4, 16.0 Hz, 1H),
3.01 (dd, J = 16.0, 3.8 Hz, 1H), 3.10 (dd, J = 6.6, 17.1 Hz, 1H), 3.18 (dd, J = 4.6, 16.0 Hz, 1H), 4.56 (p,
J = 6.2 Hz, 1H), 4.76 (d, J = 4.6 Hz, 1H), 5.70 (d, J = 4.6 Hz, 1H), 6.87–6.90 (m, 1H), 6.97 (d, J = 8.28 Hz,
1H), 7.04–7.14 (m, 4H), 7.33 (d, J = 8.28 Hz, 1H); 13C NMR (75 MHz; ppm; CDCl3) δ 20.3, 37.5, 37.9,
54.0, 60.5, 76.5, 124.5, 124.6, 127.2, 127.3, 127.7, 130.2, 130.5, 132.6, 133.0, 134.3, 140.1, 140.1, 164.8, 169.2;
MS: m/z 392.20 [M + H]+.

(3S*,4R*)-2-(3-Bromophenyl)-1-(2,3-dihydro-1H-inden-2-yl)-4-oxoazetidin-3-yl acetate (2g). Yield 78%, m.p.
132–134 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.73 (3H, s), 2.83 (dd, J = 4.9, 16.0 Hz, 1H), 3.00 (dd,
J = 15.9, 7.0 Hz, 1H), 3.17 (ddd, J = 5.2, 6.5, 15.6 Hz, 2H), 4.58 (p, J = 6.0 Hz, 1H), 4.70 (d, J = 4.6 Hz,
1H), 5.70 (d, J = 4.6 Hz, 1H), 6.89–6.92 (m, 1H), 7.05–7.17 (m, 4H), 7.26–7.27 (m, 2H), 7.40–7.43 (m, 1H);
13C NMR (75 MHz; ppm; CDCl3) δ 20.1, 37.5, 37.6, 54.0, 61.0, 76.5, 122.3, 124.5, 124.5, 127.1, 127.3, 129.8,
131.5, 132.0, 136.3, 140.2, 140.2, 164.9, 169.2; MS: m/z 424.05 [M + H + Na]+.

(3S*,4R*)-2-(2-Bromophenyl)-1-(2,3-dihydro-1H-inden-2-yl)-4-oxoazetidin-3-yl acetate (2h). Yield 83%, m.p.
123–125 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.69 (3H, s), 2.92 (dd, J = 6.0, 15.8 Hz, 1H), 3.02 (dd,
J = 15.8, 7.0 Hz, 1H), 3.22 (d, J = 6.2 Hz, 2H), 4.53 (p, J = 6.5 Hz, 1H), 5.40 (d, J = 4.7 Hz, 1H), 5.85 (d,
J = 4.7 Hz, 1H), 6.99–7.01 (m, 1H), 7.06–7.19 (m, 4H), 7.29–7.38 (m, 2H), 7.47–7.50 (m, 1H); 13C NMR
(75 MHz; ppm; CDCl3) δ 20.1, 37.2, 37.5, 54.2, 60.6, 76.0, 124.5, 124.6, 124.7, 126.9, 127.1, 127.2, 129.4,
130.1, 133.0, 133.3, 140.1, 140.2, 165.5, 168.9; MS: m/z 422.03 [M + Na]+.

(3S*,4R*)-2-(4-Bromophenyl)-1-(2,3-dihydro-1H-inden-2-yl)-4-oxoazetidin-3-yl acetate (2i). Yield 76%, m.p.
114–116 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.73 (3H, s), 2.83 (dd, J = 5.3, 15.9 Hz, 1H), 2.99 (dd,
J = 15.9, 7.0 Hz, 1H), 3.15 (m, J = 5.7, 13.2 Hz, 1H), 3.18 (m, J = 6.6, 13.2 Hz, 1H), 4.56 (p, J = 6.2 Hz, 1H),
4.74 (d, J = 4.6 Hz, 1H), 6.92 (m, 1H), 7.02 (d, J = 8.28 Hz, 2H), 7.06–7.16 (3H, m), 7.41 (d, J = 8.41 Hz,
2H); 13C NMR (75 MHz; ppm; CDCl3) δ 20.2, 37.5, 37.5, 54.0, 61.1, 76.5, 122.9, 124.5, 124.6, 127.1 (2C),
130.1 (2C), 131.5 (2C), 133.0, 140.2, 140.2, 165.0, 169.2; MS: m/z 421.92 [M + Na]+.

(3S*,4R*)-1-(2,3-Dihydro-1H-inden-2-yl)-2-(2-nitrophenyl)-4-oxoazetidin-3-yl acetate (2j). Yield 93%, m.p.
117–119 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.70 (3H, s), 2.99 (dd, J = 5.6, 15.9 Hz, 1H), 3.08 (dd,
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J = 15.8, 6.9 Hz, 1H), 3.25 (d, J = 6.1 Hz, 2H), 4.57 (p, J = 6.6 Hz, 1H), 5.59 (d, J = 5.2 Hz, 1H), 6.04 (d,
J = 5.2 Hz, 1H), 6.97–6.99 (m, 1H), 7.04–7.12 (m, 3H), 7.46–7.52 (m, 1H), 7.59–7.63 (m, 2H), 7.95–7.98 (m,
1H); 13C NMR (75 MHz; ppm; CDCl3) δ 20.1, 37.2, 37.7, 54.7, 57.4, 76.4, 124.4, 124.6, 125.3, 127.2, 127.4,
129.4, 129.5, 130.3, 132.9, 139.9, 140.1, 149.0, 165.9, 168.6; MS: m/z 388,93 [M + Na]+.

(3S*,4R*)-1-(2,3-Dihydro-1H-inden-2-yl)-2-(4-fluorophenyl)-4-oxoazetidin-3-yl acetate (2k). Yield 91%, m.p.
114–116 ◦C; 1H NMR (300 MHz; ppm; CDCl3) δ 1.71 (3H, s), 2.84 (dd, J = 5.5, 15.8 Hz, 1H), 2.99 (dd,
J = 15.9, 7.1 Hz, 1H), 3.18 (d, J = 6.2 Hz, 2H), 4.56 (p, J = 6.3 Hz, 1H), 4.77 (d, J = 4.6 Hz, 1H), 5.70 (d,
J = 4.6 Hz, 1H), 6.91–6.99 (m, 3H), 7.04–7.16 (m, 5H); 13C NMR (75 MHz; ppm; CDCl3) δ 20.1, 37.4, 37.5,
53.9, 61.0, 76.6, 115.2, 115.5, 124.5, 124.5, 127.1 (2C), 129.6, 129.6, 130.2, 130.3, 140.2 (2C), 165.1, 169.2;
MS: m/z 344.13 [M + Na]+.

3.5. Biochemical Assays

Erythrocytes were obtained from the Research Hospital at Atatürk University. The red
cells were haemolysed with ice-cold water after washing with 0.9% NaCl. The hemolysate
was applied to the prepared Sepharose-4B-tyrosine-sulfanylamide affinity gel [57]. Both CA
isoenzymes were purified by Sepharose-4B-L-tyrosine-sulfanilamide affinity chromatography in a
single step [58–60].Sepharose-4B-L-tyrosine-sulfanilamide was prepared according to a previous method.
Thus, homogenate solution acidity was adjusted and supernatant was transferred to the previously
prepared Sepharose-4B-L-tyrosine-sulphanilamide affinity column [61,62]. The proteins flow in the
column eluates was spectrophotometrically determined at 280 nm. All purification steps were
performed at 4 ◦C. Protein quantity was determined at 595 nm according to the Bradford method [63].
Bovine serum albumin was used as the standard protein [64–66]. To monitor purification of both
isoenzymes, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used
according to the procedure of Laemmli [67]. In this application, the imaging method was performed in
10% and 3% acrylamide for the running and the stacking gel, respectively, with 0.1% SDS [68–70].

Enzyme activity was determined hydrolysis of p-nitrophenylacetate (PNA) to p-nitrophenolate at
348 nm according to the method of Verpoorte et al. [71] and described previously. The inhibitory effects
of β-lactam derivatives 2a–k were examined. To obtain the half maximal inhibitory concentration
(IC50) values, CA I, and II activity was measured in the presence of β-lactam derivatives at different
cuvette concentrations. Activity (%)-[β-lactam] graph was drawn for each of the β-lactam derivatives
2a–k [72–74]. To determine Ki values, three different β-lactam derivative concentrations were tested.
In these experiments, different substrate (PNA) concentrations were used and Lineweaver-Burk curves
were drawn [56] as previously described [54].

The inhibition effects of β-lactam derivatives 2a–k on AChE activities were measured according
to the Ellman’s method [75] described previously [76]. Acetylthiocholine iodide (AChI) and
5,5′-dithio-bis(2-nitro-benzoic) acid (DTNB) were used as substrate. To this end, 100 µL of Tris/HCl
buffer (1 M, pH 8.0) and 10 µL of β-lactam derivative solution at different concentrations and 50 µL
AChE (5.32 × 10−3 U) solution were mixed and incubated for 10 min at 25 ◦C. Then 50 µL of
DTNB (0.5 mM) was transferred. Then the reaction was initiated by the addition of 50 µL of AChI.
The hydrolysis of AChI was recorded spectrophotometrically by the formation of 5-thio-2-nitrobenzoate
anion as the result of the reaction of DTNB with thiocholine at a wavelength of 412 nm [77]. The IC50

values were determined by spectrophotometric measurement of the effect of increasing test compound
(β-lactam derivatives 2a–k) concentrations on AChE activity. The IC50 and Ki values are calculated in
the same way as for CA isoenzymes. Tacrine was used as positive control.

4. Conclusions

The hCA I, and II isoenzymes were inhibited by β-lactams 2a–k at different functional groups
(CH3, NO2, Br, F, Cl, and phenol) in the micromolar range. These compounds have shown nanomolar
inhibition against both cytosolic hCA I, and II. These results indicate that the β-lactam ring and



Int. J. Mol. Sci. 2016, 17, 1736 9 of 13

derivatives may be new CA inhibitors in addition to the well-known sulphonamides. Also, AChE was
potently inhibited by β-lactams 2a–k with Ki values in the range of 0.25 ± 0.019–1.13 ± 0.472 nM.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/10/1736/s1.
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28. Akıncıoğlu, A.; Akbaba, Y.; Göçer, H.; Göksu, S.; Gülçin, I.; Supuran, C.T. Novel sulfamides as potential
carbonic anhydrase isoenzymes inhibitors. Bioorg. Med. Chem. 2013, 21, 1379–1385. [CrossRef] [PubMed]

29. Gülçin, I.; Beydemir, S. Phenolic compounds as antioxidants: Carbonic anhydrase isoenzymes inhibitors.
Mini Rev. Med. Chem. 2013, 13, 408–430. [PubMed]

30. Nar, M.; Çetinkaya, Y.; Gülçin, I.; Menzek, A. (3,4-Dihydroxyphenyl) (2,3,4-trihydroxyphenyl) methanone
and its derivatives as carbonic anhydrase isoenzymes inhibitors. J. Enzym. Inhib. Med. Chem. 2013, 28,
402–406. [CrossRef] [PubMed]
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60. Çoban, T.A.; Beydemir, Ş.; Gülçin, I.; Ekinci, D. The inhibitory effect of ethanol on carbonic anhydrase
isoenzymes: In vivo and in vitro studies. J. Enzym. Inhib. Med. Chem. 2008, 23, 266–270. [CrossRef]
[PubMed]
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62. Hisar, O.; Beydemir, Ş.; Gülçin, I.; ArasHisar, Ş.; Yanık, T.; Küfrevioğlu, Ö.İ. The effect of melatonin hormone
on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and
in vivo. Turk. J. Vet. Anim. Sci. 2005, 29, 841–845.

63. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]
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