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ABSTRACT DNA from 250 million-year-old pink and gray salts from mines in Tarija,
Bolivia, subjected to 16S rRNA gene amplicon sequencing and analysis provided evi-
dence for similar but distinct prokaryotic communities. The results constitute a snap-
shot of archaeal and bacterial microorganisms in these remote and ancient salt de-
posits.

Ancient subsurface salt deposits are of interest from the perspective of extremo-
philes, evolutionary biology, and astrobiology (1, 2). Studies on their microbial

diversity are needed for expanding our understanding of adaptation to hypersaline
environments, including high-salinity/low-water conditions and UV/ionizing radiation
tolerance, and potential habitability on Mars (3–5). To date, relatively few studies have
been conducted that address microbial diversity in salt evaporites (6–12). Ancient salt
deposits have been identified in the Department of Tarija, Bolivia, that were formed
during the Early Triassic epoch �250 million years ago and are a source of both pink
and gray salt (13). This study provides the first insights into microbial diversity in
subsurface Bolivian salt mines.

Samples were collected in April 2010 from the salt mines at San Simón (Burdet
O’Connor Province, Department of Tarija, Bolivia). The mines are located at an elevation
of 1,230 m above sea level, where temperatures range from 10°C to 37°C. The samples,
BOL5 (gray salt) (21°24=29.27�S, 64°07=55.55�W) and BOL6 (pink salt) (21°24=19.73�S,
64°07=51.52�W), were processed as previously described (12, 14, 15). Briefly, samples
were collected using flame-sterilized tools and placed into sterile plastic bags. Salt
crystals were sterilized with 70% ethanol prior to DNA extraction using PowerLyzer
PowerSoil DNA extraction kits (MO BIO Laboratories, Inc., Carlsbad, CA). Library con-
struction and 16S rRNA gene amplicon paired-end sequencing (2 � 300 nucleotides) of
the V3 to V4 region was performed on a MiSeq platform per the manufacturer’s
recommendations (Illumina, Inc., San Diego, CA) using the primers Bakt_341F and
Bakt_805R (16).

Sequencing resulted in 53,325 (BOL5) and 307,289 (BOL6) paired-end raw reads. The
raw reads were processed with Mothur v1.44.1 and the sequences analyzed with R
v3.6.1 (https://www.mothur.org/wiki/MiSeq_SOP) (17–19). The reads were assembled
with a quality score threshold of 20. Sequences longer than 475 bp, those with
ambiguities and homopolymers (�8 bp), and chimeras were removed. The remaining
sequences (BOL5, 18,333 sequences; BOL6, 74,789 sequences) were aligned against the
SILVA small subunit (SSU) Ref NR 99 database v132, and sequences with at least 97%
similarity were binned into operational taxonomic units (OTUs) (20). The OTUs were
classified with a pseudobootstrap value of 80 against the reference database, trimmed
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to positions 201 to 1000 of the 16S rRNA gene sequence of Escherichia coli (GenBank
accession number J01859.1). Singletons and nonprokaryotic sequences were removed,
resulting in 41 (BOL5) and 69 (BOL6) OTUs and 18,194 (BOL5) and 74,460 (BOL6)
sequences.

For the BOL5 and BOL6 sequences, 15.67% and 40.62% were classified as Archaea
and 84.33% and 59.38% as Bacteria, respectively. All archaeal sequences were classified
as the genus Halorubrum (phylum, Euryarchaeota) (Table 1). All bacterial sequences
were classified at the phylum level. Proteobacteria (BOL5, 69.74%; BOL6, 78.99%) was
the most prevalent genus, phylum, followed by Chloroflexi (17.96%) for BOL5 and
Firmicutes (9.92%) for BOL6. For BOL5 and BOL6, 54.99% and 66.66% of the sequences,
respectively, were classified at the genus level. Delftia (17.36%) was the most prevalent
genus for BOL5, followed by Sulfuritalea (11.34%), and for BOL6, Anaeromyxobacter

TABLE 1 Prevalence of archaeal and bacterial 16S amplicons at the phylum and genus
levels in gray (BOL5) and pink (BOL6) salt from the San Simón salt mines (Burdet
O’Connor Province, Department of Tarija, Bolivia)

Sample and taxonomic categorya Total no. of sequences Abundance (%)b

Gray salt (BOL5)
Archaea

Phylum
Euryarchaeota 2,851 100

Genus
Halorubrum 2,851 100

Bacteria
Phyla

Proteobacteria 10,701 69.75
Chloroflexi 2,755 17.96
Actinobacteria 1,439 9.38

Genera
Delftia 2,664 17.36
Sulfuritalea 1,740 11.34
Pseudomonas 1,529 9.97
Iamia 632 4.12
Pedomicrobium 592 3.86
Pseudolabrys 466 3.04
Sphingomonas 340 2.22
Microbacterium 248 1.62
Methylobacillus 84 0.55
Corynebacterium 52 0.34

Pink salt (BOL6)
Archaea

Phylum
Euryarchaeota 30,245 100

Genus
Halorubrum 30,245 100

Bacteria
Phyla

Proteobacteria 34,927 78.99
Firmicutes 4,387 9.92
Chloroflexi 3,286 7.43

Genera
Anaeromyxobacter 9,892 22.37
Delftia 7,283 16.47
Pseudomonas 7,229 16.35
Ralstonia 1,859 4.20
Iamia 1,501 3.39
Sphingomonas 775 1.75
Anaerolinea 772 1.75
Caldalkalibacillus 101 0.23
Kroppenstedtia 28 0.06
Staphylococcus 17 0.04

a The 3 most prevalent phyla and 10 most prevalent genera for each sample are shown.
b Abundance was calculated based on the total number of sequences in each domain.
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(22.37%) was the most prevalent, followed by Delftia (16.47%) (Table 1). These findings
represent the first insights into prokaryotic diversity in San Simón gray and pink salts.

Data availability. The 16S rRNA gene amplicon data sets are available at NCBI
GenBank under accession numbers SRR12127162 (BOL5) and SRR12127193 (BOL6).
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