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Abstract

There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of
learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to
gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and
phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents
to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and
GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma
either with or without coincident changes in theta amplitude. When the model was used to explore the relationship
between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage
capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing
theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in
the cortex or hippocampus.
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Introduction

The roles of different brain oscillatory rhythms, either alone or

in combination, in controlling learning and memory functions

have been the subject of intensive investigation and speculation.

Local field potential (LFP) recordings in the hippocampus have

shown that low frequency theta oscillations (4–8 Hz) are important

in carrying information about memory processes [1,2] and

function to decreasing reaction times in decision making tasks

[3]. Recording studies in the CA1 region of the hippocampus have

also shown that both synaptic plasticity and the strength of inputs

vary systematically with ongoing theta oscillations [4,5]. On the

other hand, high frequency oscillations such as gamma waves (30–

80 Hz) can provide tighter co-ordinated control than those in low

frequency ranges [6]. EEG and MEG as well as LFP recordings

have revealed that synchronous firing of a group of neurons in

visual processing is associated with binding problem in which

gamma synchronization can combine features in a visual scene to

form a coherent percept [7,8]. Modulation of oscillatory synchro-

nisation can also lead to the increase in synaptic gain at

postsynaptic target sites thereby potentiating responses to learned

stimuli [8,9].

Both low and high frequency oscillations occur in many brain

regions [10] and recent interest has focused on how these can be

coupled and what the functional consequences of such coupling

might be. With the development of mathematical tools such as

Bayesian network and Granger causality analysis [10], several

cross-frequency interactions have been observed, e.g. n : m

amplitude-independent phase coupling [11], and the phase of slow

frequency wave interacts with the amplitude of fast rhythm

[12,13]. Cross-frequency coupling (CFC) of theta phase with

gamma amplitude has recently been shown to strengthen

significantly as a function of learning both in the inferior temporal

cortex (IT) following a visual face-discrimination task [14] and also

in the hippocampus during an item-context association task [15].

The change in coupling strength also correlated positively with

behavioral performance. However, while in the IT changes in

coupling strength occurred in conjunction with increased theta

power [14], although they appeared not to be causally linked, in

the hippocampus they occurred without theta power changes [15].

Another potential functional role of theta-gamma coupling may

also relate to short term memory and its capacity. In 1956, Miller

first provided evidence that people can only hold around 762

items in a variety of short-term memory (STM) tasks [16]. It has

subsequently been proposed that this capacity limit on STM

storage can be explained by a multiplexing mechanism based on

coupled theta and gamma oscillations [17]. If individual memory

items, for instance a sequence of words, are stored in separate high
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frequency (gamma) subcycles coupled to a low frequency (theta)

oscillation, then only around 762 gamma sub-cycles can occur in

each theta cycle corresponding to short term memory (i.e. one

memory per sub-cycle) [17]. A recent study in humans has also

shown that there is a significant correspondence between the

number of gamma-subcycles nested on a theta wave and actual

individual short-term memory capacity [18]. Furthermore, slow

NMDA receptors were found to account for recalling these stored

memories at the gamma frequency range [18]. The theta wave in

the neuronal networks proposed by Lisman and Jensen [17–19]

was driven by an external input. However it has been demon-

strated that there are two forms of GABAA receptor-mediated

inhibitory currents (slow and fast) in hippocampus [20,21] which

can generate the simultaneous occurrence of both slow and fast

frequency oscillations. Recently, GABAA slow inhibitory postsyn-

aptic currents (IPSCs) have also been observed in visual cortex

[22]. All these findings suggest that control over theta and gamma

power and coupling can occur within both cortical and

hippocampal networks using a combination of NMDA and slow

and fast GABAA receptors.

Recently, we have investigated the effects of face and object

discrimination learning on theta and gamma oscillations and the

interactions between them in sheep IT using 64-electrode

recording arrays [14]. The experiment gave two prominent

results: i). From the wavelet-analyzed results of the recorded LFP

data, it was found substantial theta-band activity occurring at

about 300 ms after the presentation of stimulus, accompanied by a

much smaller contribution from gamma-band activity in the time-

dependent spectrum. ii). Following training, the amplitude of theta

but not gamma was increased. Over 75% of electrodes showed

significant increase of the coupling between theta phase and

gamma amplitude. We have already produced a spiking neural

network model based on two kinetically distinct GABAA receptor-

mediated currents to reproduce the above visual-discrimination

learning effects on theta power and theta and gamma coupling by

altering the strength of NMDA receptors [14]. However, we have

not fully characterised the influence of different elements of our

model or tested its efficacy for generating the different patterns of

learning-evoked changes observed in the hippocampus and

elsewhere. The utility of the model for investigating the

relationship between theta and gamma in relation to potential

memory span in short-term memory tasks has also not been

established.

In this paper, we firstly carried out a detailed investigation of the

contributions made by the different individual components in the

model to theta and gamma oscillations. Using this knowledge we

then established the most effective combinations of altered

synaptic mechanisms in the model which can produce the

different patterns of learning-evoked changes in theta and gamma

power and theta-gamma coupling and neuronal firing that have

been reported in [14]. Lastly, using the same spiking neuronal

network model, we investigated its utility in demonstrating the

proposed relationship between short-term memory capacity and

theta/gamma dual oscillations and what parameters can increase

or decrease this. Our results show that this model whether in its

original all-to-all connection form or with more realistic sparse

connectivity is able to reproduce different permutations of learning

evoked changes primarily using a combinations of altered NMDA

and GABAA receptor strength. They also show that while 762

sub-cycles can be nested on theta waves that this can be modulated

by alterations in theta amplitude and phase.

Results and Discussion

Biophysical models for generating hippocampal theta and

gamma rhythms have already been provided by Kopell et al. in

[23], where it was claimed that theta nested-gamma activity is due

to the h-current in the oriens-lacunosum molecular cell in the

hippocampus. Instead of using a Hodgkin-Huxley type neuronal

network with the h-current, here we applied a simple spiking

neural network based on two kinetically distinct GABAA receptor-

mediated currents to explore the synaptic mechanism of learning-

evoked changes in theta amplitude and theta-gamma coupling. A

schematic showing the neural network model is given in Figure 1A.

Here only 100 excitatory (EX) neurons, 50 inhibitory fast (INf)

neurons and 50 inhibitory slow (INs) neurons with all-to-all or

sparse connections are considered. Each cell, receives AMPA and

NMDA receptor mediated currents from pyramidal cells and

GABAA receptor mediated currents from INf and INs neurons.

The weight and direction of the connections are shown in

Figure 1A. For example, gGAserepresents the connection from INs

neuron to EX neuron mediated by GABAA receptors, gNMee

represents the recurrent connection among EX neurons mediated

by NMDA receptors, etc. For detailed modeling equations of the

network, see the methods section. To mimic a typical visual-

evoked response lasting 300 ms we applied a transient current

pulse to represent the stimulus, with intensity corresponding to

stimulus strength and the transient time corresponding to stimulus

duration.

Figures 1B, 1C and 1D respectively illustrate the effects of an

applied stimulus lasting 300 ms in the model on the firing of the

slow and fast inhibitory and EX neurons, on the local field

potential (LFP), power spectrum and theta and gamma amplitude

and on the strength of coupling between theta phase and gamma

amplitude. This mimics multi-unit neuronal activity (MUA spikes)

and the averaged field potential (LFP) recorded in the animal’s IT

cortex in the presence of a transient object representation.

The Importance of Fast and Slow Inhibitory Neuron
Connections for Generating Theta and Gamma
Oscillations, their Coupling and Neuronal Firing

In order to establish the key contributions of the slow (INs) and

fast (INf) inhibitory neuron connections in the network for

influencing theta and gamma power and coupling we compared

the effects of three different network configurations upon them (see

Figure 2A).

Figure 2A1 shows that if the connection from the INs cells to the

EX cells is blocked (gGAse~0) EX cells only exhibit gamma

oscillations. Contrarily, when the connection from the INf inter-

neurons is minimal (gGAfe&0) and that from the INs ones (gGAse) is

strong, it is seen in Figure 2A2 that theta power is enhanced but no

neuronal spikes fire in the gamma frequency range and as a result

the downstream neuron becomes silent. Only when both gGAfe and

gGAse are functionally modulated, then the EX cells exhibit theta-

nested gamma oscillations and the magnitude of the averaged LFP

is significantly increased in response to the stimulus (see

Figure 2A3). In this case, the power spectrum is highly

concentrated in the theta band and increases when the stimulus

is applied. Moreover, compared with the case in Figure 2A2, here

both the EX and downstream neurons are more active during the

period when the stimulus is on. Hence both INfREX and

INsREX connections are required to achieve the presence of both

theta and gamma and oscillations. An optimal coupling between

them is necessary for both EX and downstream neurons to

respond strongly and selectively during a stimulus.

Learning and Theta-Nested Gamma Oscillations
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To explore more fully the effects of these two inhibitory synaptic

couplings on the behavior of the network we plotted theta and

gamma amplitudes, the coherence of CFC and theta phase

variation as a function of increases in either gGAse or gGAfe

strengths. Effects of increasing the reciprocal connection strength

were also plotted by increasing the strength of AMPA receptor

(gAMes and gAMef). In Figures 2B and C, respectively it can be seen

that across a range of gAMes values, as gGAse is strengthened then

Figure 1. Stimulus-enhanced theta wave as well as CFC. (A) A network of 100 excitatory (EX), 50 fast inhibitory (INf) and 50 slow inhibitory
neurons (INs). The outputs of EX neurons are projected to a downstream neuron. (B) The firing behaviors of single INs, INf and EX neurons. The
bottom trace is the firing pattern of 50 EX neurons. (C) Input stimulus (Iapp), the LFP which is the average of membrane potentials of all EX neurons,
the time-dependent power spectrum of the LFP of mean powers in the theta (red curve) and in the gamma band (blue curve). (D) Coherence of CFC
between the theta phase and the gamma amplitude for the pre and during stimulus epochs.
doi:10.1371/journal.pone.0036472.g001

Learning and Theta-Nested Gamma Oscillations
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gamma amplitude exhibits a monotonic decrease while theta

amplitude progressively increases. The coherence of CFC also

increases progressively a sgGAse is strengthened and the variation

of theta phase decreases. Increasing gAMes has very little effect.

This tells us that strengthening the connection from INs neurons to

EX neurons not only increases theta amplitude, but also coupling

between theta phase and gamma amplitude. There is also tighter

regulation of the timing of theta phase. An explanation for these

findings is that with the increase in gGAse, the EX neurons are

more and more tightly controlled by the theta-band oscillation

from the INs neurons. Since the synaptic inputs from INs neurons

are inhibitory, the firing rate decreases with the increase in gGAse,

resulting in a reduction in the number of nested spikes in each

theta cycle and a corresponding decrease in gamma amplitude.

Figure 2C also shows that when the INfREX connection is

strengthened theta amplitude gradually decreases at first but, after

reaching a minimum, starts to increase slightly again as gGAfe is

further strengthened. Gamma amplitude on the other hand shows

the opposite pattern slightly increasing to begin with and then

decreasing again as gGAfe is strengthened progressively. The

strength of theta-gamma coupling remains fairly constant and

theta-phase variation is initially sharply increased and then slowly

reduces in a similar pattern to that of theta amplitude. These

observations show that when gGAse is not strong and the INfREX

connection is weak, then there are very high frequency bursting

oscillations nested in each theta cycle so that gamma amplitude is

weak while theta amplitude is strong. With the increase strength of

gGAfe, the nested high frequency oscillations gradually shift to

Figure 2. Coordinated regulation of GABAA,fast and GABAA,slow currents is the key for generating theta-nested gamma oscillations.
(A) Three different response behaviors of the network to a stimulus: (A1) Only gamma rhythm (by blocking INsREX connection); (A2) only theta
rhythm (by blocking INfREX connections); (A3) theta-nested gamma rhythm (in the presence of both INsREX and INfREX connection). The three
traces from the upper to the bottom are the time-frequency power spectrum, the firing behaviors of EX cells and the firing behavior of a downstream
neuron, respectively. (B-C) Effects of increasing ggGAse and gGAfe on the theta and gamma amplitudes, the coherence of cross-frequency coupling, the
tightness of theta phase.
doi:10.1371/journal.pone.0036472.g002

Learning and Theta-Nested Gamma Oscillations
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oscillations in the gamma band and thus gamma amplitude

increases while theta amplitude decreases. Since the synaptic

inputs from INf to EX neurons are also inhibitory, further

increasing gGAfe will eventually shut down the gamma-band

oscillations although theta-band (subthreshold) oscillations are

always present. Thus after a critical value of gGAfe, gamma

amplitude decreases while theta amplitude increases.

Figure 3 shows the effects of altering the strength of connections

within (gGAss in INs and gGaff in INf) and between inhibitory (gGAsf

from INs to INf) neurons. The three connections all contribute to

increased firing rate but they have different effects on the theta

amplitude and theta-gamma coupling: The connection within INs

neuron gGAss decreases theta amplitude as well as the coherence of

CFC between theta and gamma, while the connection gGAsf is

responsible for increasing theta amplitude and theta-gamma

coupling (although increasing the strength of this connection too

much tends to saturate these two quantities). Increasing the

connection within INf neurons gGAff does not have much effect on

increasing either theta amplitude or theta-gamma coupling (see

Fig 3B).

In summary, the simultaneous occurrence of theta and gamma

oscillations requires the presence of recurrent couplings in both

INf and INs neurons, and a delicate balance between the

INsREX and INfREX connections. To increase theta amplitude

as well as the coherence of CFC between the two rhythms, the

INsREX connection should be relatively strong, while the

INfREX is required to be relatively weak.

Effects of Excitatory Neuron Connections on Altering
Theta and Gamma Oscillations, their Coupling and
Neuronal Firing

We found that just increasing the conductance of the NMDA

receptors between and within EX cells (gNMee) increased their

firing rate and that of the downstream neuron. Coupling between

theta and gamma was initially stable but then was reduced,

whereas theta phase variation progressively increased (see

Figure 4A). On the other hand increasing NMDA receptor

conductance between EX and INs neurons (gNMes) increased theta

amplitude, but slightly decreased gamma amplitude. Theta-

gamma coupling increased progressively in strength whereas theta

phase variation decreased.

Increasing the coupling strength between EX and INf neurons

(gNMef) has the effect of reducing the firing frequency of EX and

the downstream neuron and theta amplitude. It also reduces theta-

gamma coupling and increases theta phase variation while having

no effect on gamma amplitude (see Figure 4).

Effects of Sparsening Network Connections
We chose at the outset for simplicity to use an all to all

connection design in our network. However, to show that the

results obtained are not entirely dependent upon this design we

also investigated if they could be replicated by a progressively

sparsened network, which would perhaps be more representative

of normal physiological neural networks. The same numbers of

neurons were included in the network and sparseness was realized

by randomly assigning the coupling between neurons. In this case

the probability that a pair of neurons are connected in either

direction is p = 0.8. Results shown in Text S1 confirmed that the

Figure 3. Effects of modulating GABA conductances between and within inhibitory cells. The amplitudes of theta and gamma oscillations,
the coherence of CFC, theta phase variation and the firing of excitatory neurons as a function of changes in the strength of (A) gGAss’ (B) gGff (C) gGAsf

are shown.
doi:10.1371/journal.pone.0036472.g003

Learning and Theta-Nested Gamma Oscillations
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sparsened network produced similar changes in theta and gamma

parameters, including theta-gamma coupling (see Figure S1).

Although such a coupling probability between neurons is still far

from estimating real neuronal networks, larger network sizes can

compensate for sparse connectivity [24,25]. It has been previously

reported that in network of 106 neurons with 5% sparseness and

an average rate of 5 spikes21 received by a neuron, then

simulating a network of 105 neurons, the sparseness could increase

to 20% and average rate of 12.5 spikes21 to obtain the same

afferent spike statistics [24]. In our model, numerical simulation

shows that when the network size increases to NEX = 200,

NINf = 100, NINs = 100, the coupling probability can be reduced

to p = 0.6 and all results still hold true (see Figure S2).

Learning Effects on Theta Amplitude and Theta-gamma
Coupling Optimally Require Coordinated Regulation of
NMDA and GABAA,slow Receptors

Experimental recordings in sheep IT cortex have revealed that

after learning, theta amplitude and the theta/gamma ratio as well

as the strength of theta-gamma coupling are enhanced whereas

gamma amplitude remains unchanged. The proportionate chang-

es in these parameters were positively correlated with actual

discriminatory performance [14]. On the other hand in the dorsal

hippocampus of rats theta-gamma coupling is increased in rats

after they learned to associate items with their spatial context but

without any increase in theta amplitude and again the strength of

theta–gamma coupling was directly correlated with the increase in

performance accuracy during learning sessions [15]. We used our

neural network model to investigate whether it could reproduce

both of these outcomes.

Firstly we investigated the role of NMDA and GABAA receptors

in mediating changes where both theta amplitude and theta-

gamma coherence are altered. This confirmed that altering the

strength of recurrent coupling of NMDA receptors in EX neurons

and that between EX neurons and INs neurons could reproduce

the findings in IT as we have previously reported [14]. However, it

was found that only moderate increases in theta amplitude could

be produced by just using changes in NMDA receptors (both

gNMee and gNMes). We found that a more robust and greater range

of increased theta amplitude in conjunction with strengthened

theta-gamma coupling could be produced by increasing both the

strength of the NMDA receptors and that of the GABAA receptors

between the INs and EX ones (gGAse) (see Figure 5). This had the

effect of both increasing EX and downstream neuron activity.

Increasing the conductance gGAse alone results in decreased firing

by EX neurons leading to a decreased firing rate by the

downstream one. However, the decreased firing rate of a

downstream neuron caused by the increase of gGAse can be

compensated for by moderately increasing the conductance gNMee.

Interestingly it has also recently been proposed that homeostatic

synaptic plasticity may optimally involve both changes in

glutamatergic and GABAergic transmission [26]. The remaining

parameters in the model do not appear to play an important role

in generating such learning effects as those observed by

coordinately regulating NMDA and GABAA, slow receptors. Indeed,

Figures 2, 3 and 4 show that altering the couplings gGAfe, gGAff,

gGAss, gNMef, gNMee do not result in increased theta amplitude, and

Figure 4. Effects of modulating NMDA conductances from excitatory to inhibitory neurons. The amplitudes of theta and gamma
oscillations, the coherence of CFC, the phase variation vs.gNMes and gNMee are depicted, respectively. (A) shows the effect of increasing gNMee , (B)
shows the effect of increasing gNMes, (C) shows the effect of increasing gNMef .
doi:10.1371/journal.pone.0036472.g004

Learning and Theta-Nested Gamma Oscillations
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the parameter range of gGAsf for increasing theta amplitude is

restricted to a very small range.

We used the network model to further explore the correspond-

ing dynamic mechanism behind all these learning-altered changes.

Numerical simulations show that increasing gNMee induces gamma

waves to become more and more shallowly nested on the theta

wave (Figure 5E), but at the same time it increases the number of

the nested spikes per theta cycle (i.e., increasing the firing rate of

EX cells). The former situation is favorable for increasing theta

power, while the later plays an opposite role by redistributing the

power from the slow frequency band to the high frequency band.

The distribution of power in the two frequency bands depends on

the competition between the number and shape (deep or shallow)

of the nested gamma subcycles. If only the conductance gNMee is

increased, the effect of increasing the firing rate but decreasing

theta amplitude may compete with that of increasing theta

amplitude by enhancing the shallowness of the nested gamma.

Thus it is difficult to produce all potential learning effects involving

increased theta amplitude by only increasing gNMee. However, the

GABAA,slow receptor-mediated synaptic currents from the INs

neurons to the EX neurons, which are comparable to the time

scale of the theta range oscillations, in turn give feedback to EX

neurons via the INsREX connection. With the increase of the

conductance gGAse, the EX neurons are more and more tightly

controlled by the theta-band oscillations, but at the cost of

decreasing the firing rate. Thus it is necessary to modulate the

conductance of NMDA receptors together with the conductance

of GABAA receptors to enhance both the effects in frequency

(theta power and the phase-to-amplitude modulation) and time

domains (the concentration of the theta-band phases and the firing

rate of a downstream neuron), as observed in Figures 5A4–C4 and

Figure 5D.

Finally we confirmed that we could produce the same learning

outcomes using a sparsened as opposed to an all-to-all version of

our network for both the situation where only conductances of

NMDA receptor are altered (see Figure S3) or where both NMDA

excitatory and GABA inhibitory connections are altered (see

Figure S4). As with the all-to-all network the combined changes in

NMDA and GABA synaptic strengths produced the most robust

effect.

In the second learning scenario involving the hippocampus it

was reported that, unlike in the IT [14], increased theta and

gamma coupling strength occurred without a corresponding

increase in theta amplitude [15]. It can be seen from Figure 5

that this cannot be reproduced by changes in gNMee together with

gGAse since across the range of stimulus strengths applied theta

amplitude is always increased as well as the strength of theta-

gamma coupling. However, it can be seen from Figure 2C that by

slightly increasing gGAfe from a small value (from 0.005 to 0.02)

theta amplitude decreases but the strength of theta gamma

coupling is increased. It can further be seen in Figures 3B and C

that increasing the couplings gGAff and gGAsf results in increased

theta amplitude as well as the theta-gamma coupling. Thus we can

balance the decreased and increased effects on theta amplitude

produced by increasing the coupling strengths of both gGAfe and

gGAsf + gGAff. At the same time the changes in these three couplings

can produce an increase in the coherence of CFC between theta

and gamma. Figure S5 illustrates this finding and shows that

increases in theta amplitude are not necessarily correlated with

increases in theta-gamma coupling. Obviously the possibility that

plasticity changes in these different GABA receptors are important

requires experimental support and there are clearly other potential

variants of coupling changes that can result in a similar learning

outcome and could involve changes in NMDA as well as GABA

receptors.

Short-term Memory: Theta Amplitude, Phase Precision
and Memory Capacity

Here we have tested the ability of our model to reproduce the

proposed function of the dual oscillations in limiting the capacity

of short-term memory. We first investigated the spectrum property

of combined theta/gamma oscillations in the short-term memory.

Figures 6A and B show that with increases in stimulus strength the

amplitude of the theta-band oscillation exhibits a bell-shaped

property, reaching a maximum at a critical stimulus strength Ic
Amp.

Corresponding to the peak of theta amplitude the number of

nested gamma spikes per theta cycle, denoted as Nc
nested spike, is

around 3,9 (see Figures 6A and B). Spike and gamma-sub-cycle

activity are highly synchronized such that each spike corresponds

to a gamma-subcycle. Interestingly, it was shown that when

Nc
nested spike = 562, the frequency range of maximal gamma power

at Ic
Amp is around 30,50 Hz (Figure 6A); and when

Nc
nested spike = 762 (Figure 6B), the frequency range of gamma

power at Ic
Amp is around 50,80 Hz.

To see whether this was a general result, we calculated different

curves of theta amplitude vs. the stimulus amplitude IAmp, by

modulating the system parameters gGAse and background currents.

From these curves, we counted the number of nested spikes per

theta cycle at the critical stimulus amplitude Ic
Amp and plotted

Nc
nested spike vs. the frequency corresponding to the maximal

gamma amplitude in Figure 6C. It was found that 562 nested

spikes correspond to low-frequency gamma oscillations, whereas

762 spikes correspond to high-frequency gamma oscillations.

Why does theta amplitude reach its maximum at around 3,9

gamma sub-cycles per theta cycle? The reason can be understood

from the counterbalance of the shape of nested gamma wave and

the number of nested gamma-range spikes. When the stimulus

strength IAmp is weak, the oscillations are mainly sub-threshold and

under these circumstances increasing IAmp will push the mem-

brane potentials of EX neurons closer to the threshold. As a result,

the amplitudes of both theta and gamma oscillations increase. One

may intuitively think that theta amplitude attains a maximum at a

stimulus strength which drives the EX neurons to fire only a single

spike in each theta cycle. However, this is not the case because

there are sub-threshold gamma oscillations that are deeply nested

in the theta wave. As the stimulus strength increases, these deeply

Figure 5. Effect of coordinately regulating synaptic gains of NMDA and GABAA,slow to simulate learning effects. (A1–A3) Theta
amplitude. (B1–B3) The coherence of CFC. (C1–C3) The temporal dynamics of theta phase. The stimulus is applied during 0–500 ms. To mimic
different learning stages, we set NMDA receptor mediated conductances gNMes, gNMee and the GABAA,slow mediated conductance gGAse as: 0.0001, 0.001,
0.05 (1st), 0.00025, 0.0025,0.06 (2nd), 0.00035 and 0.004, 0.07 (3rd), 0.00045, 0.005, 0.08(4th). The values of gNMes and gNMee in the three panels in A1–C1
are corresponding to the three marked points (1st, 2nd and 3rd) in A2–C3. The values of other parameters are stated in Table 1. (A4–C4) Variations of theta
and gamma amplitudes, the coherence of cross-frequency coupling and the phase variation with the increase of IAmp. (D) The firing rates of a
downstream neuron vs.IAmp . (E) Comparison of the membrane potentials of single EX neurons before and after learning. In (C) the blue curve where
gNMes~0:0001,gNMee~0:001,gGAse~0:05 represents before learning, while the red one where gNMes~0:00035,gNMee~0:004,gGAse~0:07 represents
after learning.
doi:10.1371/journal.pone.0036472.g005
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nested gamma oscillations gradually become more and more

shallowly nested. This effect plays a dominant role in increasing

theta amplitude when IAmp is small. But, when the stimulus

strength becomes too strong, the increased number of gamma sub-

cycles in each theta cycle gradually redistributes the power from

theta band to gamma band, which reduces theta amplitude. The

competing result of the shape vs. the number of nested gamma-

range spikes produces a critical value of the stimulus strength, say

Ic
Amp, that maximizes theta amplitude.

From the large body of evidence showing the involvement of

both theta and gamma oscillations in working memory and in

phase precession of hippocampal place cells, it appears that the

phase of the theta oscillation functions as a clocking system for a

neural code: phase coding. In view of the coincidence of maximal

theta amplitude and storage capacity shown in Figures 6A and B,

we speculated that the peak of the theta amplitude, or the optimal

storage capacity, could be related to the precision of theta phase.

To verify this, we applied a Hilbert transform on the membrane

potentials of the EX neurons and extracted the corresponding

phases of the theta waves. The variation of theta-band phases of

the EX neurons was then calculated at each time point. The time-

averaged value of the variations is used to measure the precision of

the theta phase, and the phase variation is shown in Figures 7A

and B. Interestingly, our computational results revealed that

maximizing theta power corresponds to minimizing the variation

of theta phases (this is in line with positive correlation between

theta amplitude and theta-phase variation we have already

presented in the previous sections). Figure 7D gives an illustration

of the effects of stimulus strength on theta phase and from this is

can be seen that for too weak or too strong stimulus strengths, the

variations in theta phases are both larger than that of the

intermediate stimulus strength Ic
Amp.

To further show the relationship of the theta power and the

phase precision, we modulated the synaptic connection from INs

to EX cells. It was shown that with the increase of gGAse, theta

power increases, while the variation of theta-band phase decreases

correspondingly. The variation of theta phase in EX cells vs. theta

power is plotted in Figure 7A. For illustration, we selected three

points (with weak, intermediate and lager theta amplitudes) in the

curve of IAmp~0:8 in Figure 7A, and plotted the corresponding

time-frequency spectrum and theta phase in Figures 7B and C,

respectively. From these it is clear that with the increase of the

theta amplitude, the gamma oscillation becomes more and more

shallowly nested in the theta wave, and the theta-band phase in

EX cells becomes less and less variable resulting in a more

accurate in phase code.

The fact that theta amplitude reaches its maximum at around 7

gamma subcycles per theta cycle also has functional significance.

Biological systems are usually assumed to work in an optimal

setting. Since maximizing theta power corresponds to minimizing

the variation of the theta phase among neurons, it is reasonable to

assume that neural networks involved in learning tend to

maximize theta power during the performance of memory tasks.

As an example, let us suppose that there are 7 spikes (i.e., 7

memory items) per theta cycle at Ic
Amp which corresponds to the

maximal theta power. In performing a short term memory task

with less than 7 items (for an example, 3 items: A B C), the phase

variation is large since the power is weaker than the optimal one.

But the phase can be improved by simply including more items

(for example A A B B C C C or A B C D E F G) which drives theta

power close to its maximum. However, with items larger than 7

(for an example, 10 items: A B C D E F G H I J), the theta power is

lower than the maximum and phase variation is large. If one wants

to improve the precision of retrieving memory under the latter

circumstances then some items need to be lost. This indicates that

the storage capacity of memory should correspond to the maximal

theta power: one can retrieve all the memory items in the left side

of Ic
Amp, but cannot retrieve all the items in the right side of Ic

Amp.

From this a reasonable assumption would be that the number of

nested gamma sub-cycles which result in maximum theta

amplitude represents the maximum accurate memory storage

capacity. This number is consistent with the one proposed by

Lisman and his colleagues from the time domain [17–23,26,27]

However, in their model it was impossible to elaborate the

underlying mechanism whereby theta and gamma oscillations

optimally distribute their powers in processing information. In

contrast, our model enables us to show how the dual oscillations

may contribute to short-term memory capacity by optimally

distributing their power. In the following subsection, one can

further see that this capacity limit obtained from the maximal

theta power also corresponds to the precision of phase coding.

Table 1. Values of parameters.

Variable Definition Value Range

gAMee EXREX connection mediated by AMPA receptors 0.03 0.01–0.05

gAMef EXRINf connection mediated by AMPA receptors 0.03 0.02–0.08

gAMes EXRINs connection mediated by AMPA receptors 0.001 0.0001–0.01

gNMee EXREX connection mediated by NMDA receptors 0.001 0.0001–0.008

gNMef EXRINf connection mediated by NMDA receptors 0.001 0.0001–0.005

gNMes EXRINs connection mediated by NMDA receptors 0.0001 0.0001–0.0005

gGAff INfRINf connection mediated by GABA receptors 0.05 0.01–0.08

gGAfe INfREX connection mediated by GABA receptors 0.015 0.005–0.05

gGAfs INfRINs connection mediated by GABA receptors 0.00 0.0–0.05

gGAss INfRINf connection mediated by GABA receptors 0.08 0.007–0.05

gGAse INfREX connection mediated by GABA receptors 0.06 0.02–0.1

gGAsf INfRINs connection mediated by GABA receptors 0.04 0.02–0.08

IAmp The stimulus amplitude 0.8 0.5–1.5

doi:10.1371/journal.pone.0036472.t001
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It was recently pointed out that working memory maintenance

in general is accompanied by increased coupling between theta

phase and gamma amplitude [28]. The results shown in previous

sections (Figure 2B and Figure 5B) provided a consistent

conclusion that increasing theta power is accompanied by

enhanced phase-to-amplitude modulation and improved precision

of phase coding. Together these findings demonstrated that

maximizing theta power may correspond to the best retrieval of

working memory, accompanied by the strongest modulation of

theta phase to gamma amplitude.

Hippocampal Place Cells: Phase Precision and Position
Reconstruction

From the results above, we concluded that the working memory

capacity limit proposed by others from the time-domain informa-

tion [16,17,29,30], coincides with the optimal capacity obtained

from the maximal theta amplitude from the frequency domain.

Furthermore, the maximum theta power is achieved when theta-

band phase becomes most precise. This indicates that 762 nested

spikes per theta cycle corresponds to the most precise theta phase.

This is also in agreement with what Jensen and Lisman have

proposed in their work on the contribution of the theta phase to

position construction from an ensemble of hippocampus place cells

[31]. In their experiment, they simultaneously recorded spikes

from 38 hippocampal place cells of rats which were trained to run

for a food reward in a triangular maze. Spikes with inter-spike

intervals in a theta period were considered and were assigned a

phase for further data analysis. The first 500 s of recorded spikes

were used to construct correlations of position and the firing phase

of individual cells, and the last 500 s of data were used to

reconstruct position from the observed spikes. The decoding error

was defined as the average distance between the reconstructed

position and the actual position. It was found that the best

reconstruction was obtained when theta phase is more finely

divided into around 7 bins (see Figures 7 A–C in [31]). In our

model, we simply considered the averaged variation of theta-band

phase in the each of the 100 EX cells. We found that if the

number of nested spikes was smaller than 3 or larger than 9 then

Figure 6. Relationship of maximal theta amplitude, the number of nested spikes per theta cycle and theta-phase concentration. (A-
B) From the upper trace to the bottom trace:Theta amplitudes vs. the stimulus strength IAmp , the corresponding number of nested spikes per theta cycle
vs.IAmp, theta phase variation vs. IAmp, and the time-frequency spectra at Ic

Amp of one curve. In (A), aGABA,fast~1,tGA:fast~9,aGABA,slow~0:2,tGABA,slow~50,

the three curves correspond to gGAse~0:05,0:06,0:07. In (B), aGABA,fast~0:5,tGA:fast~4:5,aGABA,slow~0:2,tGABA,slow~80, the three curves correspond to
IINs~0:45,0:55,0:6. (C) The number of nested spikes per theta cycle calculated at Ic

Amp vs. the frequency of the corresponding maximal gamma power. The

marked points are obtained from different curves of theta amplitude vs. Ic
Amp . One can see that for low gamma power (20–50 Hz), around 562 spikes could

be nested in each theta cycle, while for high gamma power (.50 Hz), around 762 spikes could be nested. (D) Theta phases of the EX cells for different
stimulus strength. It was shown that for too weak and too strong stimulus, the theta phases of neurons are less synchronized than that of the intermediate
stimulus strength.
doi:10.1371/journal.pone.0036472.g006
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the theta phase variation was larger than when 7 spikes were

generated. This agreement between the modeling and the

experimental results shows that when too few spikes are nested

in a theta cycle this is not enough to reconstruct position precisely,

whereas when too many spikes are nested in a theta cycle this

introduces redundant information, causing an inaccurate recon-

struction. Thus in agreement with the results from Jensen and

Lisman [31], we conclude that around 7 spikes per theta cycle can

precisely reconstruct or retrieve memory.

Summary
The results we have obtained from a simple spiking neuronal

network show that several oscillation related phenomena can be

produced by configuring a particular set of parameters: i). The

network can successfully generate theta and gamma oscillations as

well as coupling between theta phase and gamma amplitude. It

can also do this whether in its original form where the network has

an all-to-all connection configuration or where this connectivity is

sparsened. We have also shown that two kinetically different

GABAA (GABAA,slow and GABAA,fast) receptor-mediated currents

are key in generating theta-nested gamma oscillations while the

rest of parameters do not play an important in producing such

oscillations although they may help shape the gamma oscillation

form. ii). In either all-to-all or sparsened connection form the

model can also successfully reproduce observed learning-induced

changes in theta-gamma coupling in either the cortex [14] or

hippocampus [15]. In the first learning scenario where both theta

amplitude and theta-gamma coupling are increased (as observed

in IT cortex), coordinated regulation of NMDA and GABAA,slow

receptors-mediated currents are shown to be the underlying

synaptic mechanism. In the second learning scenario where

increased theta and gamma coupling occur without a correspond-

ing increase in theta amplitude (as observed in hippocampus), we

can reproduce this phenomenon by increasing the coupling

strength of both gGAfe and gGAsf +gGAff. iii). Finally the presented

model could also be used to further elucidate a mechanism

whereby an optimal working memory capacity of around 7 can be

explained by interactions between theta and gamma coupling.

Here it showed that maximal theta amplitude and synchronization

occur across the network when an optimal number of 7 gamma

sub-cycles are nested on each theta wave.

While our numerical results were obtained using only a small

network, they could easily be extended to larger size networks.

However, simply increasing the network size will destroy the

established rhythm by a small network. Actually, in a sparsely

connected network of excitatory and inhibitory networks, there is a

very rich behavior including synchronous regular states, synchro-

nous irregular states, asynchronous regular states as well as quench

states [25]. The occurrence of these states and the transition from

one to another depends crucially on the network size, the

sparseness of its connections, the delay of synaptic interactions

and the external inputs as well as other factors. Indeed, finite size

Figure 7. Relationship of theta amplitude, shape of nested gamma wave and the phase precision. (A). Variation of theta phase vs. theta
amplitude. The increased theta amplitude is realized by increasing the conductance gGAse . (B) and (C). From the upper panel to the bottom panel are
corresponding to three points chosen for low, intermediate and high theta powers in (A) for IAmp~0:8. It was shown in that with the increase of theta
amplitude, gamma oscillation becomes more and more shallowly nested in the theta rhythm, and meanwhile, the theta-band phases among EX
neurons become more and more concentrated.
doi:10.1371/journal.pone.0036472.g007
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effects on spatial and temporal aspects such as entrainment and

transition synchronization are quite complex and a thorough

investigation into these issues was beyond the scope of this current

work. Nevertheless, we would expect the major conclusion

reached here using a small network would still hold in a larger

spiking network by properly scaling the probability of connections

between neurons and reweighting the synaptic couplings.

Methods

Model
We constructed a spiking neuronal network consisting of three

populations of neurons: 100 excitatory (pyramidal) neurons, 50

inhibitory fast (inter) neurons and 50 inhibitory slow (inter)

neurons with all-to-all connections (see Figure 1(G)). Each set of

neurons obeys an integrate-and-fire equation:

C
dV (t)

dt
~{gL(V{EL){IsynzIapp, ð1Þ

where C is the capacitance for the neuron, gL is the leaky

conductance, Isyn is the synaptic input from other neurons and Iapp

is the external input. When V reaches a firing threshold Vth, a

spike is discharged and V is reset to Vrest and stays there for an

absolute refractory period tref . For excitatory neurons, we set

C~0:5 nF, gL~0:025ms,EL~{70mV Vth~{52mV, Vrest~

{59mVtref ~2msec while for inhibitory neurons, we set C~

0:2nF, gL~0:02ms,EL~{65mVVth~{52mV,Vrest~{60mV,
tref ~1msec:

Each neuron receives AMPA and NMDA receptor-mediated

currents from excitatory (EX) cells, GABAA receptor-mediated

currents from fast inhibitory (INf) neurons as well as slow

inhibitory (INs) neurons. The gating variable s for AMPA and

NMDA receptors is described by two first-order kinetics [32]:

dx

dt
~ax

X
j

d(t{tj){x=tx,
ds

dt
~asx(1{s){s=ts, ð2Þ

where tj is the presynaptic spike time. We used ax~1(in

dimensionless), tx~0:05msec,as~1:0msec{1,ts~2:0msec for

AMPA receptors, and (in dimensionless),

tx~2msecas~1:0msec{1ts~80msec for NMDA receptors.

The gating variable sGABA for GABAA receptors obeys a simple

first-order kinetics [33]:

dsGABA

dt
~aI

X
j

d(t{t{j )(1{sGABA){sGABA=tI , ð3Þ

where t{j indicates the time immediately before the spike at time

tj . We used tI~9msec,aI~1msec{1 for the fast GABAA

channels, and tI~50msec,aI~0:2msec{1 for the slow GABAA

channels. The AMPA and NMDA receptors-mediated currents

are given by: IAMPA~gAMPAsAMPA(V{VE), and

INMDA~gNMDAsNMDAB(V )(V{VE), respectively, with

B(V )~½1z exp ({0:062V )=3:57�{1
. The GABAA receptor-me-

diated current is given by IGABA~gGABAsGABA(V{VI ). Here

VE~0mV,VI~{70mV.

We assumed that all neurons receive background currents all of

the time. In studying learning mediated alterations of theta and

gamma parameters these were set as: 0.7 (1610%) nA for EX

neurons, 0.85 nA for INf neurons and 0.6 nA for INs neurons.

The stimulus was assumed to be applied to the EX neurons. The

strengths of synaptic connections are given in Table 1.

Local Field Potential
Recent report of local field potentials (LFPs) recorded in

macaque IT cortex has confirmed that LFPs are selective to

different stimuli [34] and carry robust information that can be

used to decode the object category and identity rapidly and

accurately [35]. Although it is still unclear whether the LFP is

related to synaptic or ionic current, or membrane potentials [36],

here we adopted the description of the LFP in the model as the

average of membrane potential of the 100 EX cells in the network

[37], i.e.,

LFP~
1

100

X100

i~1

Vi
e tð Þ: ð6Þ

Time-frequency Analysis
To extract more information relating to time, frequency and

space, we used a wavelet transform convolving the LFP x(t) with a

mother wavelet y(t) [38]:

CWTx(t,f )~

ffiffiffiffi
f

f0

s ð?
{?

x(t)y�
t{t

f0

� �
dt: ð7Þ

Here we used a Morlet wavelet f0~0:849 defined as

ŷy(f )~p1=4
ffiffiffi
2
p

e
{1

2
(2pf {2pf0)2 : ð8Þ

We extracted the amplitudes (or powers) of the wavelet transform

at 4–8 Hz and averaged them across this frequency band. For the

gamma band, amplitudes in the 30–70 Hz frequency range were

averaged. We therefore have time-dependent mean amplitudes (or

powers) for theta and gamma rhythms, as we shown in the bottom

of Figure1C. To quantify the learning-related changes in theta and

gamma amplitudes, we further averaged the above time-depen-

dent mean amplitudes over the time and got a quantity for

averaged theta amplitude as well as a quantity for gamma

amplitude, we simply called them theta amplitude and gamma

amplitude.

Coherence of Cross-frequency Coupling
We used coherence analysis to detect the modulation of phase to

amplitude of the two band limited signals at each frequency band.

In the literature, several different methods have been used to

measure phase to amplitude modulation [13–15,39]. In the

current paper, we adopted the method proposed by Tort et al

[39], which is outlined as follows:

i) Separate the raw signal into two sets of band-pass filtered

signals. The first set had centre frequencies from 2 Hz to

20 Hz, in 1 Hz steps with a 2 Hz bandwidth. This created

a r e a l - v a l u e b a n d - p a s s f i l t e r e d s i g n a l s e t

x
phase
i (t),i~1, � � � ,m~19. The second set of real-value

band-pass filtered signals x
Amplitude
j (t),j~1, � � � ,n~25 was

created by filtering the raw signal with centre frequencies

from 30 Hz to 70 Hz, in 2 Hz steps with a 4 Hz

bandwidth.
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ii) Extract the phase signals from x
phase
i (t) and the amplitude

signals from x
Amplitude
j (t), and apply a Hilbert Transform to

both sets to generate complex-valued analytic band-passed

signals. Denoted the phase sets as wi(t) and the amplitude

time series as Aj(t),i~1, � � �m; j~1, � � � n.

iii) For each pair of signals w(t) and A(t), w(t) is binned into N

intervals from 0 to 2p with 2p
N

bin size (here N = 18), and the

mean of amplitude of A(t) over each phase bin is

calculated. We denoted by SATw(n) the mean amplitude

at the nth phase bin.

iv) Normalize the mean amplitude to get a distribution-like

function as the ‘‘amplitude distribution’’:

P(n)~
SATw(n)PN

n~1

SATw(n)

,n~1, � � �N: ð9Þ

And then calculate Kullback-Leiber (KL) distance of P from the

uniform distribution U:

DKL(P,U)~
XN

n~1

P(n) log
P(n)

1=N

� �

~ log (N)z
XN

n~1

P(n) log P(n)

ð10Þ

i) The coherence of CFC between the ith phase signal wj(t) and

the jth amplitude signal Aj(t) is then defined by dividing the

above KL distance by log(N):

Cij~
D

ij
KL(P,U)

log (N)
,i~1, � � �m; j~1, � � � n: ð11Þ

We took the average of the above pair-wised coherence as the

coherence of CFC between theta phase and gamma amplitude:

C~mean(Cij): ð12Þ

Theta-phase Variation
The wavelet transform also provides phase information in the

time-frequency domain. We applied the wavelet transform to the

membrane potential of each EX neuron, and applied the Hilbert

transform to take out the phase signal of the complex wavelet

transform at 4–8 Hz frequency band for each EX neuron. We

therefore obtained 100 different time series of phase signals. The

time courses of phase signals of the 100 EX neurons shown in

Figure 5C1 and Figure 6D were calculated by this method. To

quantify the synchronization of theta-band phase between

neurons, we calculated the variation of the phase at each fixed

time and then averaged the variation over the whole period. This

quantity is denoted as theta-phase variation to measure the

concentration of theta-band phase. The smaller this value is, the

more synchronized the phase of theta is between neurons.

Supporting Information

Figure S1 Stimulus-enhanced theta wave as well as CFC
in a sparsely connected network with NEX = 100,
NINf = 50, NINs = 50, and the probability of connection
p = 0.8. (A) The firing behaviors of single INs, INf and EX

neurons. The bottom trace is the firing pattern of 50 EX neurons.

(B) The response of the LFP to a stimulus lasting 500 ms and

correspondent time-dependent power spectrum of the LFP. (C)

Coherence of CFC between theta phase and the gamma

amplitude for the pre and during stimulus epochs.

(TIF)

Figure S2 The corresponding figures in Fig.S1 for
NEX = 200, NINf = 100, NINs = 100, and the probability of
connection p = 0.6. The corresponding weights of connections

are as follows: gGAfe = 0.015; gGAse = 0.06, gNMee = 0.002,

gNMes = 0.0003, gAMee = 0.007, gAMef = 0.08, gNMef = 0.003,

gGAff = 0.08, gGAfs = 0.0, gGAsf = 0.1, gAMes = 0.005, gGAss = 0.08.

(TIF)

Figure S3 Effects of increasing only NMDA receptor
(gNMee and gNMes) strengths in a sparse network on
(A) theta and gamma amplitude, (B) the coherence of
CFC between theta phase and gamma amplitude and (C)
the variation of theta-band phase.
(TIF)

Figure S4 Dependence of theta amplitude and gamma
amplitude (A), the coherence of CFC (B) and the
variation of theta-band phase (C) on the EX-to-EX
connection mediated by NMDAR and the Ins-to-EX
connection mediated by slow GABAA receptors.
(TIF)

Figure S5 Increasing theta-gamma coupling without a
corresponding change in theta amplitude by appropri-
ately increasing the couplings gGAfe, gGAff and gGAsf

together. In (A1–C1), to mimic the learning effects, the values of

the couplings (gGAfe, gGAff,gGAsf) are chosen as: (0.007,

0.03,0.02) for 1st, (0.01,0.05,0.02) for 2nd, (0.015,0.06,0.035) for

3rd, and (0.02, 0.07, 0.04) for 4th. In (A2–C2), the theta and

gamma amplitudes, the coherence of CFC and the phase variation

are plotted vs. the stimulus strength. The black curve corresponds

to before learning with (gGAfe, gGAff, gGAsf) = (0.007,0.03,0.02),

the pink one corresponds to after learning with (gGAfe, gGAff,

gGAsf) = (0.015,0.06,0.03).

(TIF)

Text S1 Supporting material: Results in a sparse
network.
(DOCX)
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