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Autism spectrum disorder is a highly prevalent and highly heritable neurodevelopmental condition, but studies have mostly taken

traditional categorical diagnosis approach (yes/no for autism spectrum disorder). In contrast, an emerging notion suggests a con-

tinuum model of autism spectrum disorder with a normal distribution of autistic tendencies in the general population, where a full

diagnosis is at the severe tail of the distribution. We set out to investigate such a viewpoint by investigating the interaction of poly-

genic risk scores for autism spectrum disorder and Age2 on neuroimaging measures (cortical thickness and white matter connectiv-

ity) in a general population (n¼391, with age ranging from 3 to 21 years from the Pediatric Imaging, Neurocognition and

Genetics study). We observed that children with higher polygenic risk for autism spectrum disorder exhibited greater cortical thick-

ness for a large age span starting from 3 years up to �14 years in several cortical regions localized in bilateral precentral gyri and

the left hemispheric postcentral gyrus and precuneus. In an independent case–control dataset from the Autism Brain Imaging Data

Exchange (n¼ 560), we observed a similar pattern: children with autism spectrum disorder exhibited greater cortical thickness

starting from 6 years onwards till �14 years in wide-spread cortical regions including (the ones identified using the general popula-

tion). We also observed statistically significant regional overlap between the two maps, suggesting that some of the cortical abnor-

malities associated with autism spectrum disorder overlapped with brain changes associated with genetic vulnerability for autism

spectrum disorder in healthy individuals. Lastly, we observed that white matter connectivity between the frontal and parietal

regions showed significant association with polygenic risk for autism spectrum disorder, indicating that not only the brain struc-

ture, but the white matter connectivity might also show a predisposition for the risk of autism spectrum disorder. Our findings

showed that the fronto-parietal thickness and connectivity are dimensionally related to genetic risk for autism spectrum disorder in

general population and are also part of the cortical abnormalities associated with autism spectrum disorder. This highlights the ne-

cessity of considering continuum models in studying the aetiology of autism spectrum disorder using polygenic risk scores and

multimodal neuroimaging.
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Introduction
Autism spectrum disorders (ASD) comprise a collection of

neurodevelopmental conditions characterized by difficul-

ties with social interactions, verbal and non-verbal com-

munication and repetitive behaviours. ASD is highly

prevalent (�1 in 59 individuals) and highly heritable

(Gaugler et al., 2014; Iossifov et al., 2014). ASD is con-

ceptualized as a brain disorder, with several neuroimag-

ing studies showing cortical alterations in individuals

with ASD compared to healthy individuals (read as con-

trols, CTL) (Hadjikhani et al., 2006; Hyde et al., 2010;

Wallace et al., 2010; Zielinski et al., 2014; Lange et al.,

2015; Khundrakpam et al., 2017). For instance, a recent

study with the largest sample size (n¼ 3222: 1571 ASD,

1651 CTL with age 2–64 years) observed increased cor-

tical thickness in the frontal cortex and decreased thick-

ness in the temporal cortex with effect size ranging from

�0.21 to 0.20 (van Rooij et al., 2017). However, these

studies so far have, as with other traditional approaches

in psychiatric imaging research, compare cases to CTL

(yes/no for ASD) and ignore the possibility of intermedi-

ate outcomes.

In contrast, an emerging viewpoint suggests ASD as a

continuum with a normal distribution of autistic tenden-

cies in the general population, where a full diagnosis is

at the severe tail of the distribution (Constantino and

Todd, 2003; Wakabayashi et al., 2006; Plomin et al.,

2009; Robinson et al., 2011, 2016). For instance, consid-

erable variability in social communication and social

interaction capabilities has been observed in the general

population (Plomin et al., 2009). In addition, subthres-

hold autistic traits have been observed in unaffected sib-

lings and family members of people with ASD

(Constantino et al., 2010; Hazlett et al., 2012, 2017;

Elison et al., 2013). The idea of continuum models for

phenotypes is not new and has been shown for pheno-

types that are easily quantifiable (such as intellectual dis-

ability and intelligence). For instance, in individuals with

de novo deletions of chromosome 16p11.2, a quantitative

reduction (�2 standard deviation) in intelligence (from

that of their non-carrier parents’ mean IQ) was observed

as opposed to a traditional categorical diagnosis (yes/no

for intellectual disability) (Moreno-De-Luca et al., 2015).

Treating ASD as continuum will enable the study of

intermediate levels of ASD in larger more accessible sam-

ples. Furthermore, this will allow investigation of the

underlying mechanisms of ASD without the potential con-

founding effect of clinical state. Such approach has been

beneficial for depression, where studying subclinical levels

of depression largely highlights similar genetic mecha-

nisms (McIntosh et al., 2019). We propose using a simi-

lar approach in ASD. However, traditionally such

approach is limited by the fact that not many biological

cohorts have included a continuum measure of ASD.
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We aimed to resolve this question by studying the genetic

potential for ASD in general (paediatric) population using

polygenic risk scores (PRS). The polygenic form of autism is

made up of the additive effects of individual single-nucleotide

polymorphisms (SNPs), which collectively capture the vari-

ance explained by common alleles (Plomin, 2013; Wray

et al., 2014). This way, the brain patterns of autistic-like traits

can be studied in any cohort, with genetic and brain informa-

tion available. This approach has already been used to show

that PRS for ASD correlates with cognitive abilities (including

educational attainment, intelligence quotient, logical memory

and executive function) in general population (Clarke et al.,

2016; Grove et al., 2019; Schork et al., 2019). To the best of

our knowledge, no study has yet explored polygenic risk

profiling along with neuroimaging data to shed light on iden-

tifying brain changes/alterations in people (among the general

population) who are at a high risk for ASD.

We, therefore, set out to investigate the association be-

tween PRS for ASD (based on the most recent and larg-

est genetic training dataset available; Grove et al., 2019)

and neuroimaging measures (cortical thickness and white

matter connectivity) in a general (paediatric) population.

We chose cortical thickness and white matter connectivity

because they are highly heritable and have been shown

to be suitable neuroimaging measures for imaging genet-

ics (Meyer-Lindenberg and Weinberger, 2006; Meyer-

Lindenberg, 2009; Winkler et al., 2010). Based on find-

ings from recent large-scale MRI studies (Khundrakpam

et al., 2017; van Rooij et al., 2017), we hypothesized

age-by-PRS interactions on regional cortical thickness.

Such a hypothesis was also supported by recent reports

of non-uniform expansion of regional surface area during

development (Reardon et al., 2018). In addition, based

on findings of previous studies (Catani et al., 2016), we

also hypothesized that white matter fibres of the frontal

regions would show decreased connectivity for individuals

with higher PRS for ASD. Lastly, in an independent data-

set comprising healthy CTL and subjects with ASD, we

set out to investigate whether brain regions with high

PRS for ASD also demonstrate significant group differ-

ence (ASD–CTL) in cortical thickness.

Materials and methods

Subjects

The data for the study were obtained from the Pediatric

Imaging, Neurocognition and Genetics (PING) study

(Jernigan et al., 2016). The PING study is a wide-rang-

ing, publicly shared data resource for investigating neuro-

imaging, cognition and genetics in normally developing

children and adolescents, comprising cross-sectional data

from 1493 subjects collected from 10 different sites

across the USA. Details of the study are described else-

where (Jernigan et al., 2016).

Genomic data

A total of 550 000 SNPs were genotyped from saliva

samples using the Illumina Human660W-Quad BeadChip.

The data were prepared for imputation using the

‘imputePrepSanger’ pipeline (https://hub.docker.com/r/eau

forest/imputeprepsanger/), implemented on CBRAIN

(Sherif et al., 2014), using Human660W-Quad_v1_A-

b37-strand chip as reference. Namely, the pipeline took

Plink genotype files, adjusted the strand, the positions,

the reference alleles to match Haplotype Reference

Consortium panel and performed quality control (QC)

steps and output a vcf file. The Plink QC steps included

ensuring that people and SNPs have enough data avail-

able (–mind 0.1, –geno 0.1), keeping only common SNPs

(–maf 0.05) that pass the Hardy–Weinberg equilibrium

test (–hwe 5e�8). The pipeline also removed indels, pal-

indromic SNPs, SNPs with differing alleles, SNPs with no

match to the reference panel, SNPs with >0.2 allele fre-

quency difference to the reference and duplicates. The

data were imputated with Sanger Imputation Service

(McCarthy et al., 2016), using default settings and the

Haplotype Reference Consortium (http://www.haplotype-

reference-consortium.org/) as the reference panel.

The imputed SNPs were then filtered in Plink 1.9

(Chang et al., 2015), keeping SNPs that had (i) unique

names, (ii) only ACTG and (iii) MAF >0.05. We verified

that all SNPs had INFO scores R2 > 0.9 with Plink 2.0.

Polygenic score software PRSice 2.1.2 (Euesden et al.,

2015) excluded further ambiguous variants, resulting in

4 696 385 variants being available for polygenic scoring.

Participants were filtered to have 0.95 loadings to the

European principal component (Genetic ancestry

factor_Europe variable provided with the PING data),

resulting in 526 participants. The same participants were

used to calculate the 20 principal components (PC) with

Plink 1.9.

The polygenic risk score for ASD was based on ASD

genome-wide association study trained on 18 381 individ-

uals with ASD and 27 969 CTL (Grove et al., 2019). We

clumped the data as per PRSice default settings (clumping

distance ¼ 250 kb, threshold r2¼ 0.1), using P¼ 0.001

cut-off criterion. After matching with available variants in

the data, the autism polygenic score was based on 1245

variants.

Image acquisition and
pre-processing

Each site administered a standardized structural MRI

protocol. Steps, detailed elsewhere (Jernigan et al., 2016),

included: (i) a 3D T1-weighted inversion prepared RF-

spoiled gradient echo scan using prospective motion cor-

rection, for cortical and subcortical segmentation; (ii) a

3D T2-weighted variable flip angle fast spin echo scan,

also using prospective motion correction, for the detec-

tion and quantification of white matter lesions and
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segmentation of CSF; and (iii) a high angular resolution

diffusion imaging scan, with integrated B0 distortion cor-

rection for the segmentation of white matter tracts and

the measurement of diffusion parameters.

The CIVET processing pipeline (http://www.bic.mni.

mcgill.ca/ServicesSoftware/CIVET) developed at the

Montreal Neurological Institute (MNI) was used to com-

pute cortical thickness measurements at 81 924 regions

covering the entire cortex. The pipeline includes the fol-

lowing steps: the T1-weighted image is first non-uniform-

ity corrected and then linearly registered to the Talairach-

like MNI152 template. The non-uniformity correction is

then repeated using the template mask. The non-linear

registration from the resultant volume to the MNI152

template is then computed, and the transform used to

provide priors to segment the image into grey matter,

white matter and cerebrospinal fluid. Inner and outer

GM surfaces are then extracted using the Constrained

Laplacian-based Automated Segmentation with

Proximities algorithm, and cortical thickness is measured

in native space using the linked distance between the two

surfaces at 81 924 vertices. Each subject’s cortical thick-

ness map was blurred using a 30-mm full width at half

maximum surface-based diffusion smoothing kernel to

impose a normal distribution on the corticometric data

and to increase the signal-to-noise ratio. QC of these

data was performed by two independent reviewers: only

scans with consensus of the two reviewers were used. As

a result of this process, data with motion artefacts, a low

signal-to-noise ratio, artefacts due to hyperintensities

from blood vessels, surface–surface intersections or poor

placement of the grey or white matter surface for any

reason were excluded.

Diffusion MRI data were pre-processed using the FSL

pipeline (FMRIB Software Library v5.0.9) (Jenkinson

et al., 2012). Steps include: (i) correction of the effects of

distortion induced by eddy currents, inter-volume move-

ments and susceptibility of the diffusion data; (ii) rigid

alignment of the individual unweighted image with the

structural image using flirt; (iii) non-linear registration to

transform individual structural image to an MNI152

standard T1-weighted template using fnirt; and (iv) com-

puting the forward and backward warp field images be-

tween individual diffusion MRI and MNI T1 spaces by

concatenating (or inverting) the rigid transformation ma-

trix and the warp field image. Diffusion parameters at

each voxel were estimated by using Markov Chain

Monte Carlo sampling. In this step, up to two possible

fibre populations were modelled for each voxel after

2000 iterations. For QC, we checked the structural image

and the average of the non-diffusion-weighted images for

each participant. For example, a subject was excluded

from further analysis if the signal–noise rate of structural

image or unweighted-diffusion image was lower than

800. Also, the results of registration were evaluated by

visual inspection. Furthermore, subjects who had >2-mm

frame-wise displacements of the diffusion MRI were

excluded from further analyses.

Of the total 1493 subjects, filtering for subjects with

0.95 loadings to the European principal component

(Genetic ancestry factor_Europe variable provided with

the PING data) resulted in 526 participants. Of these, 95

subjects did not have MRI data and 2 subjects did not

have information about age, resulting to 429 subjects.

Next, 13 subjects were excluded before any processing

(raw data) due to severe motion and slicing artefacts. A

subsequent 25 subjects failed CIVET pipeline (for a num-

ber of reasons including the presence of bright blood ves-

sels and poor contrast) and were excluded in further

analysis. Thus, the final sample comprised 391 partici-

pants (males/females ¼ 207/184, age ¼ 12.1 6 4.7 years).

The demographics of the resulting participants from the

PING dataset, which were used in the study, are given in

Table 1A.

Features of the polygenic risk
scores for autism spectrum
disorders

As a first step, we investigated whether the PRS for ASD

for the whole data sample was normally distributed.

Next, using general linear model (GLM), we investigated

whether there was any effect of age on the PRS. Since

scanner is categorical variable, we used ANOVA to test

whether scanner has an effect on PRS. Lastly, using

GLM, we also investigated whether there was any associ-

ation of PRS and language measures. For the language

Table 1 Demographics of the subjects used in the study:

(A) sample from PING dataset comprising healthy indi-

viduals and (B) sample from ABIDE dataset comprising

healthy individuals and individuals with ASD

A. PING dataset

Total number of subjects, N¼ 391

Males/females ¼ 207/184

Age ¼ 3.1–21.0 (12.1 6 4.7) years

Ethnicity ¼ European (86.70%), mixed (13.30%)

Handedness ¼ Right-handed (86.71%), left-handed (9.97%), mixed

(3.32%)

B. ABIDE dataset

Total number of subjects, N¼ 560

Males/females ¼ 560/0

ASD/CTL ¼ 266/294

Age ¼ ASD: 7.1–35.0 (17.2 6 6.4) years

CTL: 6.5–35.0 (17.0 6 6.4) years

ASD (with ADOS), N¼ 218

ADOS Soc ¼ 0–14 (6.9 6 3.6)

ADOS Comm ¼ 0–8 (3.3 6 1.8)

ADOS severity ¼ 1–9 (5.4 6 2.3)

Note that ASD refers to total number of subjects categorized as autistic, while ASD

with ADOS refers to a subset of the ASD subjects with concurrent measures of

ADOS Soc and ADOS Comm. Means, with standard deviation, are given in

parentheses.

CTL ¼ healthy controls; ADOS Soc ¼ Autism diagnostic observation schedule Social;

ADOS Comm ¼ ADOS Communication.
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measures, we used the scores of the Picture Vocabulary

and the Oral Reading Recognition tests available with

the PING dataset.

Statistical analyses

GLMs were used to investigate the age-by-PRS interac-

tions on cortical thickness. Motivated by earlier studies

(Shaw et al., 2006, 2007, 2008; Nguyen et al., 2013;

Khundrakpam et al., 2017), we first explored models

with linear, quadratic and cubic age effects. For this, the

best-fit model was selected using Akaike information cri-

terion (Akaike, 1974). Akaike information criterion was

used to penalize the added parameters, and the model

with the lowest Akaike information criterion value was

selected. Models with quadratic age terms, which had the

lowest Akaike information criterion values, were, there-

fore, selected.

Cortical thickness was modelled as:

Ti ¼ interceptþ b1Ageþ b2PRSþ b3PC20þ b4Scanner

þ b5Sexþ b6ðAge� PRSÞ þ b7Age2 þ b8ðAge2 � PRSÞ
þ ei;

where i is a vertex, Age is mean centred, e is the residual

error, PRS is the polygenic risk score and the intercept

and the b terms are the fixed effects. To minimize the

chance of population structure explaining the polygenic

score results, we extracted 20 first PC (PC20) and used

them as covariates. Without controlling for those PC,

random differences in population genomic signature can

explain outcomes, if different populations also happen to

differ in the outcome (Hamer and Sirota, 2000). Since

there were 9 sites but 13 scanners, device serial number

(unique for each scanner, provided in PING) was put as

covariate in the analyses. All GLM analyses were done

using the SurfStat toolbox (http://www.math.mcgill.ca/

keith/surfstat/).

Note that the aim of our model was to compute the

significance of b8 (i.e. the influence of Age2� PRS) on

cortical thickness. However, the interpretation could be

challenging since the interaction terms and power of age

might lead to high correlation between the predictors. To

substantiate the effect, we compared the above model

using a likelihood ratio test to

Ti ¼ interceptþ b1Ageþ b2PC20þ b3Scannerþ b4Sex

þ b5Age2 þ ei;

(A)

Ti ¼ interceptþ b1Ageþ b2PRSþ b3PC20þ b4Scanner

þ b5Sexþ b7Age2 þ ei;

(B)

The comparison of original model with model (A)

would study whether PRS and its interactions with Age

and Age2 jointly have a significant impact, whereas the

comparison of original model with model (B) would test

whether the interactions of PRS with Age and Age2 joint-

ly have a significant impact.

At every cortical point, the t-statistic for the interaction

of Age2� PRS on cortical thickness (at 81 924 vertices)

was mapped onto a standard surface. Correction for mul-

tiple comparisons, using random field theory was then

applied to the resultant map to determine the regions of

cortex showing statistically significant association between

PRS-ASD and cortical thickness (Worsley et al., 2004).

Next, the median value of the PRS was used to divide

the whole data sample to two groups: low PRS (up to

median value) and high PRS (remaining data). At each of

the identified significant regions, we fit quadratic polyno-

mial curves to the thickness data (after regressing for

covariates) for both the groups separately.

To better understand the impact of sex on the inter-

action of Age2� PRS on cortical thickness, similar ana-

lysis was performed for male- and female-only groups by

splitting the data sample.

Age3 3 Group interaction on
cortical thickness in independent
dataset

Next, we set out to investigate whether the cortical

regions [that showed significant association of

Age2� PRS on cortical thickness] would also show

Age3�Group on cortical thickness (ASD and CTL

groups) in cortical thickness in an independent dataset

(cubic model of age was based on our previous study;

Khundrakpam et al., 2017). For this, we used the Autism

Brain Imaging Data Exchange (ABIDE) dataset, an ag-

glomerative dataset of MRI scans of normal subjects and

subjects with ASD (Di Martino et al., 2014). We lever-

aged the ABIDE data (Table 1B) used in our recent pub-

lication where details of the pre-processing and exclusion

criteria are described (Khundrakpam et al., 2017). The

pre-processing and QC procedure were similar as that of

the PING dataset described above. Apart from QC-failed

subjects, exclusion criteria included insufficient number of

subjects in each category (ASD and CTL) to determine

group difference, too few females resulting to excluding

all females, and excluding subjects over 35 years of age

due to insufficient numbers. The final sample comprised

560 male subjects, of whom 294 were controls

(17 6 6.4 years) and 266 were individuals with ASD

(17.2 6 6.4 years) (Table 1B). For ASD diagnosis, similar

to the previous study (Di Martino et al., 2014), ASD

diagnoses were reached by combining clinical judgement

and diagnostic instruments—Autism Diagnostic

Observation Schedule and/or Autism Diagnostic

Interview-Revised. Some sites had missing information for

the Autism Diagnostic Observation Schedule scores, and

therefore, a subset (n¼ 218) of the total data (n¼ 266)

used for the group difference analysis had information
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for Autism Diagnostic Observation Schedule Social rang-

ing from 0 to 14 (6.9 6 3.6), Autism Diagnostic

Observation Schedule Communication ranging from 0 to

8 (3.3 6 1.8) and Autism Diagnostic Observation

Schedule severity ranging from 1 to 9 (5.4 6 2.3)

(Table 1B). As has been done in our previous study

(Khundrakpam et al., 2017), GLMs (with cubic age mod-

els) were built on these data to compute Age3�Group

on cortical thickness (group ¼ ASD–CTL) in cortical

thickness for all vertices covering the entire cortex.

Ti ¼ interceptþ b1Siteþ b2Groupþ b3Age

þ b4ðAge�GroupÞ þ b5Age2 þ b6ðAge2 �GroupÞ
þ b7Age3 þ b8ðAge3 �GroupÞ þ ei;

where i is a vertex, Age is mean centred, e is the residual

error, and the intercept and the b terms are the fixed

effects.

Overlap of the map of
Age2 3 polygenic risk scores on
cortical thickness in Pediatric
Imaging, Neurocognition and
Genetics and the map of
Age3 3 Group on cortical thickness
in Autism Brain Imaging Data
Exchange

To statistically check whether there was regional overlap

between ‘map of the Age2� PRS on cortical thickness

using the PING dataset’ and ‘map of the Age3�Group

on cortical thickness using the ABIDE dataset’, we used

the spin test developed by (Alexander-Bloch et al., 2018).

In short, the method, using a spatial permutation frame-

work, generates null models of overlap by applying ran-

dom rotations to spherical representations of the cortical

surface. As in previous studies (Reardon et al., 2018),

1000 surface rotations of the PING map were generated

and the statistical overlap was checked by comparing

whether the observed cross-vertex correlation between

PING and ABIDE maps was statistically greater

(P< 0.05) than those with 1000 rotations.

Association of structural
connectivity between the identified
significant cortical regions and
polygenic risk scores-autism
spectrum disorders

Lastly, we set out to study whether the structural connect-

ivity between the identified significant cortical regions asso-

ciates with the PRS for ASD. For this, we first re-ran the

GLM analysis for the association of Age2� PRS on cortical

thickness at the region level with 64 brain regions based

on the Desikan–Killany–Tourville atlas (Desikan et al.,

2006). Next, structural connectivity (measured as stream-

line count) between these identified significant Desikan–

Killany–Tourville regions was computed. Lastly, we ran

GLM to assess the association of the structural connectivity

between the significant Desikan–Killany–Tourville regions

and the PRS for ASD. Age, sex, scanner and the first 20

PC were put as covariates. Correction for multiple compar-

isons was performed using false discovery rate at q¼ 0.05

(Genovese et al., 2002).

Data availability

The PING data used in the study are available at https://

nda.nih.gov/ after providing the necessary data user

agreement. The raw data of ABIDE are available at

http://fcon_1000.projects.nitrc.org/indi/abide/, and its pre-

processed data are available at http://preprocessed-connec

tomes-project.org/abide/.

Results

Features of the polygenic risk
scores for autism spectrum
disorders

Since our data sample (PING) did not have ASD diagno-

sis, we could not validate the PRS. However, previous re-

search has shown that polygenic score for ASD can

predict ASD diagnosis with mean added R2¼ 0.0245

(Grove et al., 2019).

As shown in Fig. 1A, subjects were properly distributed for

the whole age range. The PRS for ASD were normally distrib-

uted for our data sample (Fig. 1B). There was no significant

association of PRS-ASD with age (T¼ 1.45, P¼ 0.14,

Supplementary Fig. 1A). Scanner had no significant effect on

the PRS (F¼ 1.27, P¼ 0.23, Supplementary Fig. 1B). Thus,

the data sample characteristics such as age and scanner did

not have a significant impact on the PRS for ASD.

Age2 3 polygenic risk scores
interaction on cortical thickness

Significant positive interaction (P< 0.05, random field

theory corrected) of Age2� PRS on cortical thickness was

observed in several cortical regions located in the bilateral

precentral gyri and the left hemispheric postcentral gyrus

and precuneus (Fig. 2). To be precise, the four peak verti-

ces that survived random field theory correction were

localized at: ‘the left precentral gyrus’ (t¼ 4.30,

P¼ 0.015, MNI coordinates: X ¼ �54.8, Y ¼ �1.7,

Z¼ 8.4), ‘the left precuneus’ (t¼ 4.29, P¼ 0.016, MNI

coordinates: X ¼ �3.4, Y ¼ �63.2, Z¼ 31.8), ‘the right

precentral gyrus’ (t¼ 4.22, P¼ 0.021, MNI coordinates:

X¼ 61.4, Y¼ 4.1, Z¼ 24.8) and ‘the left postcentral

gyrus’ (t¼ 4.11, P¼ 0.031, MNI coordinates: X ¼
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�59.7, Y ¼ �4.0, Z¼ 11.2) (Table 2). At these peaks,

scatter plots of the cortical thickness were drawn for the

low-PRS and high-PRS groups (see ‘Materials and meth-

ods’ section for the groups). For all the peak vertices, the

high-PRS group exhibited greater thickness for a large

age span starting from 3 years lasting up to �14 years

(Fig. 2B). Note that, for better visualization purpose,

scatter plots were shown for only three peaks.

Comparison of the original GLM model with model

(A) (see ‘Materials and methods’ section) using likelihood

ratio test revealed: for peak at Precentral Gyrus.L, likeli-

hood ratio statistics, LRStat ¼ 17.41, P¼ 0.0005; for

peak at Precuneus.L, LRStat ¼ 16.59, P¼ 0.0008; for

peak at Precentral Gyrus.R, LRStat ¼ 15.28, P¼ 0.0015;

and for peak at Postcentral Gyrus.L, LRStat ¼ 16.45,

P¼ 0.0009. These results indicated that PRS and its inter-

actions with Age and Age2 jointly have a significant im-

pact. Next, comparison of the original GLM model with

model (B) (see ‘Materials and methods’ section) using

likelihood ratio test revealed: for peak at Precentral

Gyrus.L, LRStat ¼ 9.93, P¼ 0.006; for peak at

Precuneus.L, LRStat ¼ 9.75, P¼ 0.008; for peak at

Precentral Gyrus.R, LRStat ¼ 10.03, P¼ 0.006; and for

peak at Postcentral Gyrus.L, LRStat ¼ 9.64, P¼ 0.007.

These results indicated that the interactions of PRS with

Age and Age2 jointly have a significant impact.

Separate analysis for the male and female groups

revealed trend-level interaction of Age2� PRS on cortical

thickness for the male-only group, similar to the inter-

action pattern that was observed for the whole data sam-

ple (Supplementary Fig. 3). None of the brain regions

showed significant interaction possibly due to the consid-

erable reduction in sample size (N¼ 207 for males and

N¼ 184 for females).

Age3 3 Group interaction on

cortical thickness in the Autism

Brain Imaging Data Exchange

dataset

As shown in our previous study (Khundrakpam et al.,

2017), in the ABIDE dataset, we observed significant

(Age3�Group) interaction on cortical thickness, such

that ASD group exhibited greater cortical thickness (com-

pared to controls) for a large age span starting from 6

up to �14 years [Supplementary Fig. 4, modified from

Figure 4 of Khundrakpam et al. (2017)]. This significant

association was observed at several cortical regions

located predominantly in the left hemisphere, in the infer-

ior and precentral gyri of the frontal lobe, postcentral

and supramarginal gyri of the parietal lobe, middle and

superior temporal and fusiform gyri of the temporal lobe

and the anterior of the inferior and middle occipital gyri

of the occipital lobe. Right hemispheric regions included

the superior and inferior frontal gyri, medial prefrontal

gyrus, precuneus and fusiform gyrus.

Overlap of the map of
Age2�polygenic risk scores on
cortical thickness in Pediatric Imaging,
Neurocognition and Genetics and the
map of Age3�Group on cortical
thickness in Autism Brain Imaging
Data Exchange

Using 1000 surface-based rotations of the PING map, we

found that the observed cross-vertex correlation of the

Figure 1 Distribution of age and PRS for ASD. (A) Subjects were properly distributed for the whole age range (3–21 years). (B) PRS for

ASD were normally distributed for the data sample.
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PING and ABIDE maps (r¼ 0.28) was statistically greater

(P¼ 0.035) than those with the 1000 rotations (Fig. 3).

Thus, there was regional overlap between the ‘map of

Age2� PRS on cortical thickness in the PING dataset’

and the ‘map of Age3�Group on cortical thickness in

the ABIDE dataset’. Note that the interactive effect of

Age3 and group (ASD–CTL) on cortical thickness was

much more wide spread, and although the overlap be-

tween the PING and ABIDE maps was significant at

P¼ 0.035, one should keep in mind that the convergence

was not very strong.

Similar analysis for the male-only group from the

PING dataset with that of ABIDE (comprising of males

only) revealed significant overlap with r¼ 0.14, P¼ 0.03

(Supplementary Fig. 5). Thus, compared to the whole

data sample of PING (combining males and females), we

observed reduced overlap of the male-only PING with

that of the male-only ABIDE data, which might be due

to the considerable reduction in sample size.

Figure 2 Positive interaction of (Age2 3 PRS) on cortical thickness. (A) The t-statistics across vertices on the surface and (B) multiple

comparison-corrected P-statistics (P< 0.05, RFT corrected for multiple comparisons, see ‘Materials and methods’ section) for the interaction of

(Age2 � PRS) on cortical thickness. Note that there is significant positive interaction (P< 0.05, RFT corrected) of Age2� PRS on cortical

thickness in several cortical regions located in the bilateral precentral gyri and the left hemispheric postcentral gyrus and precuneus (for peak

vertices, see Table 2). At these peaks, scatter plots of the cortical thickness are shown for the low-PRS and high-PRS groups (see ‘Materials and

methods’ section for the groups). Note that, for all the peak vertices, the high-PRS group exhibits greater thickness for a large age span starting

from 3 years lasting up to �14 years. Note that, for better visualization purpose, scatter plots were shown for only three peaks. RFT ¼ random

field theory, L ¼ left hemisphere, R ¼ right hemisphere.

Table 2 Brain regions with significant interaction of

Age2 � PRS on cortical thickness

X Y Z Cluster ID t P-value DKT label

�54.8 �1.7 8.4 3 4.30 0.015 ‘Precentral Gyrus.L’

�3.4 �63.2 31.8 2 4.29 0.016 ‘Precuneus.L’

61.4 4.1 24.8 1 4.22 0.021 ‘Precentral Gyrus.R’

�59.7 �4.0 11.2 3 4.11 0.031 ‘Postcentral Gyrus.L’

Peak vertices (maximum t-statistics) are shown for significant interaction of Age2 �
PRS on cortical thickness (for details, see ‘Materials and methods’ section). X, Y and Z

denote MNI coordinates.

DKT ¼ Desikan–Killany–Tourville atlas.
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Association of structural

connectivity and polygenic risk

scores-autism spectrum disorders

At the Desikan–Killany–Tourville atlas level, four cortical

regions showed significant association of PRS for ASD

and cortical thickness (Supplementary Fig. 6). The struc-

tural connectivity between these regions showed negative

correlation with PRS for ASD, with two connections

namely Postcentral Gyrus.L—Precentral Gyrus.R and

Precuneus.L—Precentral Gyrus.R, showing significant

correlation (Fig. 4). To better illustrate the results, the t-

statistics of the correlation of PRS for ASD and structural

connectivity were visualized as edge weights between the

four cortical regions (represented by the nodes) on a

standard surface (Fig. 4B).

Discussion
Using MRI scans from a large population of typically

developing children and adolescents (n¼ 391), we studied

the interactive effect of Age2� PRS on cortical thickness.

We observed significant positive interaction such that

children with higher PRS for ASD exhibited greater cor-

tical thickness for a large age span starting from 3 years

up to �14 years in several cortical regions localized in bi-

lateral precentral gyri and the left hemispheric postcentral

gyrus and precuneus. Critically, we observed similar pat-

tern of interactive effect of Age3�Group on cortical

thickness in the ABIDE dataset such that children with

ASD exhibited greater cortical thickness starting from

6 years onwards till �14 years in wide-spread cortical

regions including (the ones identified using PING data-

set). We observed statistically significant regional overlap

between the maps using PING and ABIDE datasets, sug-

gesting that some of the cortical abnormalities associated

with ASD overlapped with brain changes associated with

genetic vulnerability for ASD in healthy individuals.

Lastly, we observed that structural connectivity (assessed

from diffusion tensor imaging scans) between the right

precentral gyrus and left postcentral gyrus and between

the right precentral gyrus and left precuneus showed sig-

nificant negative association with PRS for ASD, indicat-

ing that not only the brain structure, but the structural

brain connectivity might also show predisposition for risk

of ASD.

Increased cortical thickness during early brain develop-

ment has been observed in ASD (Zielinski et al., 2014;

Khundrakpam et al., 2017), consistent with the observa-

tion of brain overgrowth in ASD (Kemper and Bauman,

1998; Courchesne and Pierce, 2005; Hazlett et al., 2005).

Several studies suggest that the abnormal brain growth

pattern starts at the first year of life with a period of

accelerated growth, which continues during early child-

hood, achieving near-adult brain size earlier than in typ-

ical development (Courchesne et al., 2003; Hazlett et al.,

2005). This increased brain size relative to typically

developing children persists into adolescence (Redcay and

Courchesne, 2005). Our findings contribute to the exist-

ing evidence and suggest that increased cortical thickness

can even be observed in individuals with genetic risk for

ASD. This is not surprising because PRS/genetic risk var-

iants for neurological disorders have been shown to be

Figure 3 Overlap of the ‘map of Age2 3 PRS on cortical thickness in PING’ and the ‘map of Age3 3 Group on cortical

thickness in ABIDE’. (A) T-map of Age2� PRS interaction on cortical thickness in the PING dataset. (B) T-map of Age3�Group interaction

on cortical thickness (groups: ASD and CTL) in the ABIDE dataset. (C) Spin test for statistically checking the regional overlap between the two

maps using PING and ABIDE datasets. Note that using 1000 surface-based rotations of the map using PING, we found that the observed cross-

vertex correlation of the PING and ABIDE maps (r¼ 0.29) was statistically greater (P¼ 0.03) that those with the 1000 rotations. Diagnostic

groups ¼ ASD and CTL; CTL ¼ healthy controls.
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associated with brain measures across disorder-vulnerable

regions of interest in healthy subjects. For example,

higher PRS for Alzheimer’s disease is associated with

lower left hippocampal volume (a key brain region impli-

cated in Alzheimer’s disease) in young healthy subjects

(Foley et al., 2017). Similarly, higher PRS for major de-

pressive disorder is associated with decreased white mat-

ter integrity in right superior longitudinal fasciculus

(Whalley et al., 2013).

Although findings of structural connectivity in subjects

with ASD have been inconsistent, several studies indicate

an overall decreased fractional anisotropy and increased

mean diffusivity in corpus callosum, superior longitudinal

fasciculus and occipito-frontal fasciculus [for a detailed

review, see Rane et al. (2015)]. In particular, converging

evidence suggests that ASD is associated with altered

structural connectivity (decreased fractional anisotropy,

increased mean diffusivity and reduced number of fibres)

of the frontal lobes (Catani et al., 2016). Consistent with

this, we observed decreased number of fibres for the

fronto-parietal connections. Although diffusion tensor

imaging metrics (fractional anisotropy, mean diffusivity

and fibre count) represent different biological processes, it

seems likely that ASD is characterized by altered long-

range connectivity between the frontal and parietal

regions. Our findings, performed on general population,

add to this extant literature: abnormal structural

connectivity between the frontal and parietal regions may

be particularly susceptible to genetic predisposition for

the risk of ASD. Indeed, a recent longitudinal study

showed abnormal structural connectivity (increased frac-

tional anisotropy) in several white matter tracts including

those reported in our paper in high-risk infants who later

developed ASD (Wolff et al., 2012). It may be noted

that, in our study, we did not observe significant associ-

ation of PRS for ASD and language measures such as vo-

cabulary (Supplementary Fig. 2A) and reading

(Supplementary Fig. 2B). One possible reason could be

that, although the genetic predisposition of ASD had a

significant impact on brain structure, its impact on cogni-

tion (such as language) was not strong enough to be cap-

tured in the data.

Our findings of increased cortical thickness with

increased PRS for ASD were based on healthy individuals

(from the PING dataset); as such, the underlying biologic-

al mechanisms are not known. However, if we look at

these findings along with the observation of increased

cortical thickness in individuals with ASD (in the ABIDE

dataset), we could speculate ASD as a continuum with a

normal distribution of autistic tendencies in the general

population, where a full diagnosis is at the severe tail of

the distribution (see ‘Conclusion’ section for more discus-

sion on this). In light of this viewpoint, we can leverage

previous studies on ASD research in speculating the

Figure 4 Association of PRS for ASD and structural connectivity. (A) Matrix of the t-statistics for the association of PRS-ASD and

structural connectivity for the four DKT brain regions namely Postcentral Gyrus.L, Precentral Gyrus.L, Precuneus.L and Precentral Gyrus.R (see

‘Materials and methods’ section). Note that all connections show negative correlation with PRS. Of the total six connections (corresponding to

four regions), only two (namely Postcentral Gyrus.L—Precentral Gyrus.R and Precuneus.L—Precentral Gyrus.R) survived correction for multiple

comparisons using false discovery rate at q¼ 0.05. (B) For better visualization, the t-statistics of the correlation of PRS for ASD and structural

connectivity were visualized as edge weights between the four cortical regions (represented by the nodes) on a standard surface. DKT ¼
Desikan–Killany–Tourville; L ¼ left hemisphere; R ¼ right hemisphere.
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possible biological mechanisms behind our findings.

Increased cortical thickness in ASD is thought to reflect

increased number of synaptic spines and reduced develop-

mental synaptic pruning (Tang et al., 2014), increased

number of neurons (Courchesne et al., 2011) and greater

microglial cell density and somal volume (Morgan et al.,

2010). At the same time, under-connectivity of long-range

white matter fibres (including fibres observed in our

study) in ASD could arise from decreased myelin thick-

ness, axons with larger diameter (Zikopoulos and Barbas,

2010), increased oedema from inflammation (Vargas

et al., 2005) and increased packing density (Bauman and

Kemper, 2005). Since post mortem studies are limited,

advancements in the field of in vivo neuroimaging, par-

ticularly in the field of diffusion tensor imaging such as

neurite orientation dispersion and density mapping,

NODDI (Zhang et al., 2012; Sato et al., 2017), could

provide more clues about the underlying biological proc-

esses in the pathology of ASD.

It may be mentioned that our findings of the group dif-

ference (ASD–CTL) in cortical thickness in the ABIDE

dataset were based on male participants only, whereas

the findings of association of PRS for ASD and cortical

thickness in the PING dataset were based on both male

and female participants. However, similar analysis separ-

ately for male and female participants (in the PING data-

set) yielded similar patterns of association (albeit with

lower statistical power). Given the lack of enough male

subjects, and the fact that sex did not have an impact on

the association of PRS for ASD and cortical thickness,

we therefore compared the findings in the two datasets.

Future studies using larger datasets such as the

Adolescent Brain Cognitive Development dataset (Casey

et al., 2018) should seek to identify the association of

PRS for ASD and cortical thickness separately for males

and females.

Conclusion
In conclusion, our findings support the notion of a con-

tinuum model of ASD as opposed to traditional categor-

ical psychiatric diagnoses (Fig. 5). As shown in Fig. 5A,

conventional approach towards psychiatric neuroimaging

involves categorizing population sample in two groups:

‘individuals with ASD’ and ‘healthy controls’.

Accordingly, much of the neuroimaging studies on ASD

have focused on finding cortical differences between cases

and CTL and ignore the possibility of intermediate out-

comes. On the other hand, our findings add to the

emerging viewpoint suggesting ASD as a continuum with

a normal distribution of autistic tendencies in the general

population, where a full diagnosis is at the severe tail of

the distribution (reflected in Fig. 5B) (Constantino and

Todd, 2003; Wakabayashi et al., 2006; Plomin et al.,

2009; Robinson et al., 2011, 2016). Our main motiv-

ation here is to highlight the categorical vs continuum

model of ASD in an easily understandable way.

However, it may be noted that our figure for continuum

model (Fig. 5B) is likely too simplistic, and one should

keep in mind the multi-dimensional relationship between

genetics, epigenetics and brain development. Our findings

further indicate the added value of investigating genetic

risk rather than diagnostic categories. For instance, our

observations suggest that individuals (in the general

population) with high risk for ASD have brain alterations

that overlap with the brain abnormalities seen in subjects

with ASD (Fig. 3), indicating that although predisposed

for genetic risk, there may be compensatory factors that

protect their brains. Our findings also highlight the critic-

al role of the fronto-parietal thickness and connectivity in

a dimensional disease model of ASD spanning from

healthy individuals with genetic risk to patients with

ASD. Thus, PRS and multimodal neuroimaging should be

Figure 5 Categorical vs continuum model of ASD. (A) Categorical model of ASD treats a population as group with ASD and CTL. (B)

Continuum model of ASD treats ASD as a continuum with a normal distribution of polygenic scores in the general population, where the severe

tail of the distribution meets ASD diagnosis criteria. Note that our figure for continuum model (B) is likely too simplistic and one should keep in

mind the multi-dimensional relationship between genetics, epigenetics and brain development. CTL ¼ controls.
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considered as useful approaches to identify the underlying

brain alterations in ASD.

Supplementary material
Supplementary material is available at Brain

Communications online.
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