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Abstract

Background: Accelerometers have become common for evaluating the efficacy of rehabilitation for patients with
neurologic disorders. For example, metrics like use ratio (UR) and magnitude ratio (MR) have been shown to
differentiate movement patterns of children with cerebral palsy (CP) compared to typically-developing (TD) peers.
However, these metrics are calculated from “activity counts” – a measure based on proprietary algorithms that
approximate movement duration and intensity from raw accelerometer data. Algorithms used to calculate activity
counts vary between devices, limiting comparisons of clinical and research results. The goal of this research was to
develop complementary metrics based on raw accelerometer data to analyze arm movement after neurologic
injury.

Method: We calculated jerk, the derivative of acceleration, to evaluate arm movement from accelerometer data. To
complement current measures, we calculated jerk ratio (JR) as the relative jerk magnitude of the dominant (non-
paretic) and non-dominant (paretic) arms. We evaluated the JR distribution between arms and calculated the 50th
percentile of the JR distribution (JR50). To evaluate these metrics, we analyzed bimanual accelerometry data for five
children with hemiplegic CP who underwent Constraint-Induced Movement Therapy (CIMT) and five typically
developing (TD) children. We compared JR between the CP and TD cohorts, and to activity count metrics.

Results: The JR50 differentiated between the CP and TD cohorts (CP = 0.578 ± 0.041 before CIMT, TD = 0.506 ±
0.026), demonstrating increased reliance on the dominant arm for the CP cohort. Jerk metrics also quantified
changes in arm use during and after therapy (e.g., JR50 = 0.378 ± 0.125 during CIMT, 0.591 ± 0.057 after CIMT). The
JR was strongly correlated with UR and MR (r = − 0.92, 0.89) for the CP cohort. For the TD cohort, JR50 was
repeatable across three data collection periods with an average similarity of 0.945 ± 0.015.

Conclusions: Acceleration-derived jerk captured differences in motion between TD and CP cohorts and correlated
with activity count metrics. The code for calculating and plotting JR is open-source and available for others to use
and build upon. By identifying device-independent metrics that can quantify arm movement in daily life, we hope
to facilitate collaboration for rehabilitation research using wearable technologies.
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Background
Accelerometers, sensors that measure linear acceleration,
have become a common tool to assess physical movement
[1]. These small sensors provide objective and precise
measures of motion and are ubiquitous in modern pro-
ducts such as smartphones. In addition to monitoring
movement patterns of healthy adults [2], these sensors are
also capable of quantifying motion in clinical populations
[3–5]. Because of their portability, affordability, and
continuous monitoring capability, accelerometers provide
a quantitative adjunct to evaluating treatment efficacy and
complement other in-clinic evaluations.
One clinical application of accelerometers has been to

assess interventions to improve arm function after neuro-
logic injury, such as among stroke survivors or individuals
with cerebral palsy [6–12]. For these applications, acceler-
ometer data have been used to analyze movement in terms
of activity counts [13]. Activity counts have been shown to
provide an accurate and repeatable measure of both the
duration and intensity of activity, and have become one of
the most commonly used measures for accelerometer-
based rehabilitation research [14]. Accelerometers worn on
each wrist have been used to calculate activity counts,
which are then used to calculate common outcome mea-
sures that compare dominant and non-dominant arm use
during clinical tests or daily activity. Some of the most
common outcomes based on activity counts include the
magnitude ratio (MR), which compares the relative inten-
sity of movement between arms, and the use ratio (UR)
which compares duration of arm use [6, 12]. These metrics
have been used to evaluate function before and after inter-
ventions and can detect clinically meaningful changes in
function. For example, MR and UR have been used to
evaluate movement at home and in the clinic for adult
stroke [15, 16] and inform the efficacy of rehabilitation [17].
While pre-processed activity counts are convenient and

demonstrate less variability than raw acceleration data,
they are not standardized and depend on proprietary algo-
rithms [13]. As highlighted by Hayward and colleagues
(2010), “Different brands of accelerometers have different
processes for integrating the signal to produce activity
counts, which are not publicly available. This inherently
makes it difficult to directly compare activity counts pro-
vided by different accelerometer brands” [18]. Even for de-
vices from the same manufacturer, significant differences
in activity counts have been reported, suggesting changes
in algorithms that limit longitudinal evaluations [19]. This
lack of transparency not only limits the understanding of
the factors that influence these outcome measures, but
also hinders clinicians’ and researchers’ ability to compare
measures and interpret outcomes. While commercial plat-
forms have decreased the cost of accelerometer techno-
logy, increased access, and created user-friendly interfaces,
there remains a need to develop open-source algorithms

that can capture clinically relevant changes in arm func-
tion. Ideally, such algorithms could use raw accelerometer
data from any device to compare across studies.
The objectives of this research were to (1) derive a

metric from raw accelerometer data to quantify arm
movement, (2) evaluate whether this metric can quantify
bimanual arm use for a rehabilitation intervention, and
(3) provide open-source code for others to use and build
upon. Based upon the early research and documented limi-
tations of evaluating movement from raw acceleration data,
we focused this analysis on jerk, the time rate of change in
acceleration. As early as 1985, Flash & Hogan described the
coordination of arm movements with jerk, noting its advan-
tage of capturing smoothness of movement [20], which is
also commonly altered after neurologic injury [21]. Lucena
and colleagues in 2017 showed the potential benefits of
using jerk measured from inertial measurement units
(IMUs) to evaluate bimanual arm use among stroke survi-
vors [22]. They showed strong correlation with activity
count measures; however, an IMU requires significantly
more power, data storage, and cost than an accelerometer
alone. In this research, we propose that jerk ratio (JR), a
measure of the relative jerk between arms from wrist-worn
accelerometers, is comparable to activity count measures in
its ability to differentiate between children with unilateral
cerebral palsy (CP) and typically-developing (TD) peers.

Methods
To evaluate jerk and activity count measures, we analyzed
previously collected and reported data from five children
with unilateral CP (3M/2F, age: 7.2 ± 0.5 years, height:
125.5 ± 9.3 cm, weight: 29.0 ± 11.7 kg, average ± one stand-
ard deviation) before and after CIMT and 5 TD peers (1
M/4F, age: 7.8 ± 1.1 years, height: 127.6 ± 8.3 cm, weight:
25.8 ± 1.8 kg) [23]. While the original study had seven chil-
dren in each cohort, we excluded patients who used a
walker (n = 1) or who were outside of the age range be-
tween seven and nine to limit age effects (n = 1). The func-
tion of the children with CP were classified as Gross Motor
Functional Classification System (GMFCS) Levels I-III,
Manual Ability Classification System (MACS) Levels II-III,
and had Functional Independence Measure for children
(WeeFIM) self-care scores ranging from 2 to 7 (Table 1)
[24–26]. CP03 had mild dystonia.
Accelerometers were placed on both wrists of the

participants. Each child wore the sensors for three days
during three separate time periods. The children with
CP wore the sensors: 1) 1 to 2 weeks before the start of
CIMT, 2) during the second week of CIMT, and 3) 6 to
8 weeks after CIMT, while the TD cohort wore the sen-
sors during time periods temporally spaced to align with
the data collections for the CP cohort. The CIMT proto-
col involved wearing a cast on the paretic arm for 3
weeks, with 2 h of occupational therapy focused on upper
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extremity function at a tertiary children’s hospital on week-
days during the treatment period. Previous research using
activity count metrics from this dataset demonstrated
significant differences between TD and CP cohorts, and
significant changes in arm function during CIMT for the
children with CP. Data were collected using the ActiGraph
GT9X Link accelerometer (Actigraph, Pensacola, FL) at
100Hz. This small and wireless tri-axial accelerometer has
a dynamic range of ±8 gravitational units. We synchronized
the start time of the accelerometers using the ActiLife 6
software.
Data were stored on the device and raw accelerom-

eter data were downloaded to a local machine using
ActiLife 6. We applied a fourth order Butterworth
bandpass filter with cutoff frequencies at 0.25 and 2.5
Hz to our data as this filtering scheme was shown to
align with human motion [27]. We also obtained activ-
ity counts calculated during one-second time epochs
using ActiLife 6 as our comparison measurement. We
calculated the magnitude ratio (MR) and use ratio (UR)
from the activity counts. The MR is calculated by tak-
ing the natural logarithm of the ratio of the vector mag-
nitude of activity counts from the non-dominant arm
and dominant arm for each time epoch [12]. To avoid
infinite values, the MR excludes time points when
either arm has zero activity. The UR is calculated as the
duration of activity in the non-dominant (paretic) arm
over that in the dominant arm, where duration is
defined as the number of time epochs with activity count
magnitude greater than or equal to two [6]. For all the
children with CP, the paretic arm was the child’s non-
dominant arm.
To mirror these common activity count measures, we

quantified upper limb movement with two outcome
measures derived from jerk: jerk ratio (JR) and jerk
ratio-50% (JR50). Jerk is the time rate of change of
acceleration and can be discreetly estimated by taking
the difference of two subsequent acceleration measure-
ments in each direction and dividing by the change in
time. JR is defined as the ratio of the magnitude of jerk
of the non-dominant (ND) arm over the sum of the
magnitude of ND and dominant (D) jerk:

jerk ratio JRð Þ ¼ j NDjerk j
NDjerk

�
�

�
�þ j Djerk j

ð1Þ

Time points where |NDjerk| and |Djerk| were both zero
were excluded from the analysis, although this was rare
since raw acceleration measurements in g are less proc-
essed than activity counts. For a given time point, a JR
close to 1 or 0 suggests mostly non-dominant or domin-
ant arm movement, respectively. JR was calculated for the
collection period and filtered using a fourth order, lowpass
Butterworth filter with a cutoff frequency of 3 Hz. The
rationale behind this secondary filter was to minimize
noise that arises from changes in orientation. Without the
magnetometer to detect device orientation, the present
study assumes that jerk derived from rotational motion
would both be random and high frequency.
Once JR was calculated, a probability density function

(PDF) was estimated by normalizing the histogram with
respect to the whole three-day collection period such that
the total probability of the distribution is equal to one. In
comparing PDF across collection periods, all PDFs were
normalized by their maximum values. To provide a sum-
mary metric of the JR distribution, JR50 was calculated as
the cumulative probability from JR = 0 to 0.5, where values
over 0.5 suggest more frequent dominant arm use. Import-
antly, JR and JR50 are inversely related. In the case of high
dominant arm use, the entire JR distribution could lie to
the left of JR = 0.5 and result in a JR50 of 1.0 (100%) while
the JR of individual time points might all be less than 0.5.
We quantified the consistency of JR50 by comparing

JR distributions under different conditions and calculat-
ing Pearson’s correlation coefficient (r). Similar to JR,
MR is also a distribution of time points and summarized
with MR50. To compare whether there are advantages
to using jerk versus acceleration, we applied the same
methods (eq. 1) to the raw acceleration data to calculate
an equivalent acceleration ratio (AR). We used linear re-
gression to compare JR and AR to activity count metrics
(UR and MR) for TD and CP participants, evaluating the
fit with Pearson’s correlation coefficient (r).

Results
For TD children, the distribution of JR during daily life
was symmetric and had a median value of JR50 =
0.506 ± 0.026 (Fig. 1a). Examining the distribution of JR
provides insight into the relative amount of unimanual
versus bimanual activity in daily life. For TD children,
this distribution indicates that there is more bimanual
arm use than unimanual motion in daily life. The distri-
bution was moderately repeatable between days and
similar between TD children. The average similarity of
JR distribution between collection periods was 0.945 ±
0.015. The average similarity of the JR distribution
between TD children was 0.860 ± 0.137.

Table 1 Demographics and functional scales for the cerebral
palsy group

Gender Age GMFCS MACS WeeFIMa

CP01 M 7 II II 36

CP02 F 7 II II 35

CP03 M 7 III III 23

CP04 F 8 II II 30

CP05 M 7 I II 32
aSum of WeeFIM self-care scores for eating, grooming, bathing, dressing
(upper and lower extremity), and toileting (6 = dependence, and
42 = complete independence)
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As expected, the distribution of JR before therapy was
asymmetric for children with CP and had a higher median
value of JR50 = 0.578 ± 0.041 (Fig. 1d), indicating that they
were more reliant on their dominant, non-paretic arm in
daily life before CIMT. The JR distribution was similar be-
tween the children with CP, with an average similarity in
JR distribution of 0.913 ± 0.069 before therapy. The JR was
also sensitive to changes in arm use during therapy. The
JR50 dropped during therapy to 0.378 ± 0.125, suggesting
more paretic arm use during CIMT when the dominant
arm was in a cast. However, the JR returned to baseline
after CIMT with an average JR50 of 0.591 ± 0.057 (Fig. 2).
The average similarity to the TD JR distribution was
0.726 ± 0.184 before therapy, 0.350 ± 0.643 during therapy,
and 0.731 ± 0.225 after therapy. The changes in JR during
treatment and compared to TD peers parallel the obser-
vations made from activity counts reported in the original
analysis [23].
The JR was correlated with measures based on activity

counts for both TD and CP cohorts (Fig. 3). In the CP
cohort, JR correlated with UR and MR with an r of
−0.92 and 0.89, respectively. In the TD cohort, JR corre-
lated with UR and MR with an r of − 0.76 and 0.74. We
also evaluated whether similar conclusions could be
drawn for ratios calculated from acceleration versus jerk.

In contrast to JR, we found that AR was unable to differ-
entiate between the CP and TD cohorts and did not
demonstrate changes during therapy (Fig. 1c, f). The
AR was also poorly correlated with UR (r = 0.52 for
CP, r = − 0.24 for TD) and MR (r = − 0.68 for CP,
r = 0.44 for TD).
While the during-therapy JR distributions all shifted

relative to pre- and post-therapy for all five CP partici-
pants, the shapes of these distributions showed differ-
ences between participants. For example, the during-
therapy curve for CP05 increased monotonically while
CP02 had a convex distribution during therapy (Fig. 4).
The monotonic increase in CP05 suggests that the
participant could have been more cognizant about using
their non-dominant arm to get the intended practice.
Conversely, the convex shape in CP02 indicates that
bimanual movement was still present, suggesting that
the participant used their restrained arm during therapy.

Discussion
Calculating JR addresses limitations in contemporary accel-
erometer metrics by providing a sensitive metric of bi-
manual arm movement in daily life that avoids the use of
activity counts derived from proprietary algorithms. Similar
to activity count metrics (UR, MR), we found that the JR

Fig. 1 a: Jerk ratio histogram across all three collection periods of one TD participant. b: JR50 of all TD children demonstrates high similarity
between participants and across collection periods. c: Sample distribution if acceleration was used versus jerk. d, e, f present the same
information for the CP group. Note the asymmetric JR distribution for one child with CP (d), changes in JR50 with therapy, and that these
differences are not detected if acceleration was used (f). Similar distribution plots (e.g., a and d) for all participants can be found in the
Supplementary Material or generated from the open-source code. The colored circles (b and e) show JR50 for each child

Pan et al. Journal of NeuroEngineering and Rehabilitation           (2020) 17:44 Page 4 of 8



differentiated children with CP from TD peers and delin-
eated changes in movement as children with CP partici-
pated in CIMT. Furthermore, the consistency of this metric
across both collection periods and participants suggest
good repeatability. There was also a strong correlation
between JR and existing metrics; specifically, UR and MR
calculated from the activity counts of one of the most com-
monly used commercial devices. While one could argue the
JR lacks novelty as it resembles existing metrics, its poten-
tial lies in the cross-platform comparability as studies using
different models of accelerometers could use JR to compare
results using a shared, universal unit (g). Furthermore, since
the algorithm for this metric is open-source, others can
build upon these findings in describing both the quantity
and quality of arm motion.

Jerk has become an accepted kinematic metric in
evaluating movement of individuals with neurologic dis-
orders since the development of jerk-minimizing models
of smoothness in 1985 [20]. Jerk-based metrics have
been used with rehabilitation robots to measure smooth-
ness of motion after stroke [28] and to analyze camera-
based measures of movement in the home, such as with
the Kinect depth camera [29]. While our research ex-
plored the potential of jerk to evaluate quantity of move-
ment during daily life and clinical interventions, using
jerk measured from wearable sensors to evaluate quality
of movement represents an important area for future
inquiry. In 2017, Lucena and colleagues derived jerk
from a wrist-worn IMU and suggested “jerk asymmetry”
and other metrics to understand the correlation between

Fig. 3 Comparison of JR and activity count-based metrics. Note that as dominant arm use increases, UR decreases, while MR50 increases. Jerk
ratio metrics were similar to activity count metrics for both the TD and CP cohorts

Fig. 2 The JR50 values of all CP participants demonstrate that before and after therapy, the children with CP are more reliant on their dominant
arm than TD peers. During therapy, dominant arm movement is significantly reduced due to the cast. The dotted grey lines represent the range
of JR50 values across the TD cohort
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kinematic metrics and existing functional tests. Using
principal component analysis to identify the most indica-
tive metric of human motion, they concluded that met-
rics based on acceleration and jerk contributed to the
second principal component and accounted for 31% of
variance across nine adult stroke survivors [22]. How-
ever, this work relied on an IMU, including both acceler-
ometer and gyroscope, which increases sensor cost and
decreases battery life. Our research builds upon this
work and demonstrates that accelerometer-derived jerk
is repeatable across data collections for TD children and
can differentiate movement for a clinical population
undergoing occupational therapy for the upper extrem-
ity. Our results show that accelerometers alone can
produce similar measures to monitor bimanual arm
movement in daily life.
Several limitations of the JR need to be considered. In

order to capture the daily lives of participants, the col-
lection period in this study was 3-days based upon prior
research of individuals with CP [30]. However, due to
variations in day-to-day activities, the peak of the JR dis-
tribution could vary between data collections. Since we
were not focused on the absolute magnitude of JR, but
rather the symmetry of the distribution and cumulative
probability from JR = 0 to 50, we normalized each distri-
bution by the maximum for comparison between days.
Future research should investigate whether jerk magni-
tude should also be considered in the evaluation of
movement intensity. The JR has limited ability in differ-
entiating accelerations caused by rotational or linear
movements because it does not use an IMU containing a
gyroscope. However, by not focusing on any particular
type of motion, this research supports using JR to quan-
tify overall arm movement. While we were able to com-
pare the results to clinical data, only a limited sample

size was available for analysis (n = 5 in each cohort). The
high similarity within the CP and TD cohorts suggests
that JR demonstrates unique distributions in these popu-
lations that can be used for future comparison. However,
future research will be required to investigate the JR dis-
tribution of other populations, such as adult stroke sur-
vivors or amputees.
To facilitate collaboration among researchers and en-

courage further development, the algorithm for calculat-
ing JR, as well as user-friendly code to produce plots
similar to Fig. 1 are provided open-source as Python 3.6
code (Supplementary Material URL: https://steelelab.me.
uw.edu/2020/02/jerk-ratio/). With this resource, re-
search groups can use existing or newly created datasets
from accelerometers to analyze JR as a complementary
metric to existing measures, enabling comparison be-
tween research studies or centers that may rely on
different sensors and activity count algorithms.

Conclusion
The JR derived from raw acceleration data captured dif-
ferences in motion between TD and CP cohorts and
across different collection periods before, during, and
after therapy. We found that JR correlated with existing
activity count metrics including UR and MR that rely
on proprietary algorithms. JR was repeatable between
data collections for the TD cohort and exhibited high
inter-subject similarity within both the TD and CP co-
horts. The code for calculating and plotting jerk ratio is
open-source and available in the Supplementary Mater-
ial. By identifying device-independent metrics that can
quantify arm movement in daily life, we hope to facili-
tate collaboration for rehabilitation research using
wearable technologies.

Fig. 4 Comparison of JR distributions between two CP participants. Note the difference in shape of distribution during therapy. This distinction
might inform clinicians on the participants’ activity level and alignment with therapy goals
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