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ABSTRACT

Current strategy of hepatocellular carcinoma (HCC) surveillance evaluates 
individual risks of HCC for defining candidates for surveillance, but estimated risks 
are not utilized for clinical decision-making during actual screening. We sought to 
determine whether consideration of individual risks improve the performance of 
ultrasound (US)-based HCC screening in a real-world chronic hepatitis B (CHB) cohort. 
This single center retrospective cohort study analyzed 27,722 screening US tests 
from 4,175 consecutive CHB patients. Logistic regression analysis was performed to 
identify independent parameters predicting presence of HCC. A nomogram was built 
based on the independent predictors of HCC and compared with US-only screening by 
receiver operating characteristics analysis. The cost-effectiveness of the nomogram 
was assessed by decision curve analysis. HCC developed in 222 patients with the 
incidence of 0.769 per 1000 person-year during the median follow-up of 63 months. 
Age, sex, presence of cirrhosis, serum alpha-fetoprotein (AFP) levels and positive 
US test results were independent predictors of HCC presence. A nomogram based on 
these predictors showed higher C-statistics compared to US-only screening (0.960 
vs. 0.731 and 0.935 vs. 0.691 for derivation and validation cohort, respectively; 
p < 0.001). Decision curve analysis showed higher net benefit of the HCC nomogram-
guided screening model compared to US-only screening in the risk threshold range 
between 0 and 0.3. A nomogram composed of age, sex, presence of cirrhosis, serum 
AFP levels and US findings better predicted the presence of HCC compared to US-only 
screening in CHB on surveillance.
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INTRODUCTION

Chronic hepatitis B virus infection is one of the 
leading causes of hepatocellular carcinoma (HCC) 
worldwide [1]. Surveillance for HCC is recommended 
for chronic hepatitis B (CHB) patients with increased 
risks [2–4], and ultrasonography (US) is a universally 
recommended screening test for HCC surveillance [3–5]. 
There have been concerns, however, about the sensitivity 
of screening US for small HCC in CHB, especially in 

the presence of regenerative nodules and fibrous septa 
[6–8]. Dynamic imaging techniques such as 4-phase 
multidetector computed tomography (CT) and dynamic 
contrast enhanced magnetic resonance imaging (MRI) 
have better sensitivity for small HCC compared to US [9], 
and the high specificity of dynamic imaging techniques 
obviate the need for biopsy when typical enhancing 
patterns are observed [10]. Considering the radiation 
hazards and high cost, however, dynamic imaging 
modalities are reserved for occasions when screening 
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US suggests possibility of HCC [3, 5] or technical issues 
hamper optimal US evaluation [3, 11].

Bayesian theorem indicates that the post-test 
probability of a disease is determined by pre-test disease 
probability and likelihood ratio of the corresponding 
test [12, 13]. From the Bayesian perspective, the HCC 
probability of a CHB patient on surveillance is dependent 
not only on the results of the screening US but also on 
the baseline probability of HCC. Clinical and laboratory 
parameters such as age, sex, ethnicity, hepatitis B virus 
(HBV) viral loads, presence of cirrhosis and elevated alpha-
fetoprotein (AFP) levels have been validated for predicting 
the risk for HCC incidence [14–19], and it is suggested 
that these parameters may also estimate the probability for 
immediate development of HCC [20]. Current guidelines 
employ these risk predictors in defining at-risk population 
for surveillance, but individual risks are not considered 
in the decision to implement an enhanced follow-up or to 
trigger a recall policy during surveillance [3–5].

We speculated that predictors of long-term HCC 
risk may also be used for estimating the probability of 
HCC presence, and that integrating these predictors may 
improve the accuracy of the US-based screening. To test 
this hypothesis, we developed a nomogram predicting 
presence of HCC in a real-world CHB cohort on 
surveillance, and compared the screening performance of 
the nomogram with that of traditional US-only screening.

RESULTS

Characteristics of study cohort 

The final cohort included 4,175 CHB patients, who 
were randomly allocated to the derivation set (n = 2,087) 
and the validation set (n = 2,088) (Figure 1). The 
characteristics of the two groups were similar at baseline 
and end of follow-up (Table 1). HCC developed in 222 
patients with the incidence 0.769 per 1000 person-year 
during the median follow-up of 63 months (95% CI: 
0.674–0.877). The HCC incidence was similar between 
the derivation and validation sets (Supplementary 
Figure 1A). Patients with cirrhosis had significantly higher 
HCC incidence compared to non-cirrhotic patients (2.94 
vs. 0.17 per 1000 person-year, respectively, p < 0.001; 
Supplementary Figure 1B). The stage of HCC was 
BCLC 0, A, B and C for 41, 43, 5.3 and 10.7% of cases, 
respectively. The median size of the largest nodule was 
2.0 cm (IQR, 1.6 cm). The main reason for advanced stage 
was involvement of portal vein: 83% of BCLC-C patients 
showed portal vein invasion.

Age, sex, cirrhosis and serum AFP as 
independent predictors for presence of HCC

During the study period, 27,855 screening US 
tests were performed. After excluding 133 tests with 

‘ambiguous’ association with HCC as described in the 
Methods, the remaining 13,908 and 13,814 tests from 
derivation and validation set were analyzed respectively. 
Logistic regression analysis of the 13,908 screening events 
in the derivation dataset identified factors predicting 
presence of HCC: new nodule(s) by US, old age, male 
sex, presence of cirrhosis, high AFP levels, high HBsAg 
titers, low albumin levels, high bilirubin levels, high AST 
levels, low platelet counts and prolonged prothrombin 
time were significant predictors of HCC presence 
(Table 2). Multivariate analysis selected old age, male 
sex, presence of cirrhosis and high AFP as independent 
predictors of HCC presence in addition to the positive US 
findings. Reclassification analysis also showed significant 
improvements in prediction of HCC presence by adding 
the four independent predictors to US-only screening, 
regardless of the stages of HCC (Table 3): the NRI of 1.31 
and 1.29 for derivation and validation set, respectively, 
indicated about 65% (1/2(NRI) improvement in correct 
reclassification by the nomogram [21]. The positive IDIs 
also represented improved integrated difference in the 
corresponding Youden’s indices by the nomogram [22]. 

Development of a nomogram for predicting 
presence of HCC

Since the logistic analysis and reclassification 
analysis showed that traditional risk factors for HCC (age, 
sex, cirrhosis and AFP) provided additional information 
on the prediction of HCC presence, a nomogram was 
developed using the independent predictors to generate 
a combined indicator for estimating the probability of 
HCC presence (Figure 2). Calibration analysis showed 
that the HCC nomogram had good correlation between 
the predicted and observed probabilities within the 
clinically useful range (0–0.3), beyond which the model 
overestimated the probability in the validation set 
(Figure 3). The overall goodness-of-fit test showed that the 
nomogram satisfactorily fitted the observed probabilities 
without significant deviation ( p = 0.72 and 0.82 for 
derivation and validation set, respectively, by Hosmer-
Lemeshow test).

Performance of HCC nomogram: comparison of 
screening accuracy with US-only screening

We then sought to determine whether the 
nomogram outperformed US-only screening strategy 
in predicting presence of HCC. The sensitivity and 
specificity of US was 47.1% and 99.1% in the derivation 
cohort, respectively, and 39.1% and 99.3% in the 
validation cohort, respectively: among the 222 patients 
who developed HCC, 73 cases were confirmed by CT or 
MR although screening US showed no evidence of new 
nodule(s). Compared to US-only screening, the HCC 
nomogram showed higher sensitivity with minimal 
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trade-off of specificity (Table 3): at the cut-off of 140, 
the HCC nomogram score had sensitivity and specificity 
of 62.9% and 98.7% in the derivation set, respectively, 
and 54.2% and 98.7% in the validation set, respectively. 
In cases with negative US tests, the nomogram showed 
58–65% sensitivity at the specificity of 95% with the 
cut-off of 110–112 (Supplementary Table 1). ROC 
analysis demonstrated that the C-statistic value for 
the nomogram was significantly higher compared to 
US: 0.960 vs. 0.731 ( p < 0.001), respectively, in the 
derivation dataset, and 0.935 vs. 0.691, respectively, 
in the validation dataset ( p < 0.001) (Table 4). 
The superiority of HCC nomogram was significant 
regardless of tumor stages and history of nucleos(t)ide 
analog therapy.

Cost-effectiveness of HCC nomogram-guided 
screening model: decision curve analysis 

Because the increased sensitivity of HCC nomogram 
was associated with small decrease in specificity, decision 
curve analysis was performed to determine whether the 
benefit of the nomogram was clinically useful in terms of 
cost-effectiveness. HCC nomogram-guided screening model 
had greater net benefit compared to the US-only screening 
in the risk threshold range between 0 and 0.3, both in the 
derivation and validation dataset (Figure 4). This result 
suggested that HCC nomogram-guided decision to perform 
confirmatory tests may be clinically cost-effective for patients 
whose cost-benefit ratio, i.e., harms of confirmatory tests to 
harms of missing HCC, is less than 2/3.

Figure 1: Participant flow diagram.
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Table 1: Characteristics of patients

Parameter 
Baseline End of follow-up

Derivation set Validation set P value Derivation set Validation set P value
Number of patients 2,087 2,088 - 2,087 2,088 -
Follow-up, months - - - 62 (76) 63 (74) 0.60
Nucleos(t)ide analog (%) 644 (31) 631 (30) 0.66 1,059 (51) 1,053 (50) 0.84
Age, years 45 (16) 45 (13) 0.13 52 (17) 52 (16) 0.12
Male (%) 1,202 (58) 1,285 (60) 0.12
Liver cirrhosis (%) 431 (21) 446 (21) 0.59
HCC development (%) 113 (5.4) 109 (5.2) 0.79
HBeAg positivity (%) 719 (34) 732 (35) 0.68 400 (19) 429 (21) 0.12
HBs Ag (IU/mL) 3831 (4086) 3832 (3878) 0.92 3577 (3386) 3529 (3135) 0.68

HBV DNA (log IU/mL) 3.7 (3.9) 3.6 (3.8) 0.34 1.8 (1.5) 1.8 (1.6) 0.10
Albumin (g/dL) 4.3 (0.4) 4.3 (0.4) 0.69 4.4 (0.4) 4.5 (0.3) 0.95
Bilirubin (mg/dL) 0.9 (0.5) 0.9 (0.5) 0.60 0.8 (0.5) 0.8 (0.4) 0.52
AST (IU/L) 30 (24) 30 (23) 0.96 25 (10) 25 (11) 0.26
ALT (IU/L) 35 (39) 35 (38) 0.29 24 (17) 24 (16) 0.05
Platelet (× 109/L) 191 (79) 192 (75) 0.76 200 (78) 201 (77) 0.65
Prothrombin time (INR) 1.0 (0.1) 1.0 (0.1) 0.95 1.0 (0.1) 1.0 (0.1) 0.96

Data are presented as median (interquartile range) or numbers (percent)
ALT, alanine aminotransferase; AST, aspartate aminotransferase; HCC, hepatocellular carcinoma; INR, international 
normalization ratio.

Table 2: Logistic regression analysis of predictors for presence of HCC

n = 13,908
Parameter

Univariate Multivariate
OR (95% CI) P value OR (95% CI) P value

Positive US finding a 101.1 (61.1–167.1) <0.001 38.5 (10.4–142.1) <0.001
Age (years) 1.1 (1.0–1.1) <0.001 1.1 (1.0–1.1) 0.003
Male sex 2. 0 (1.2–3.5) <0.001 5.2 (1.2–22.4) 0.03
Liver cirrhosis 13.4 (7.4–24.7) <0.001 7.2 (1.5–33.8) 0.012
AFP (Log ng/mL) 7.6 (5.8–10.1) <0.001 19.4 (7.8–48.6) <0.001
HBeAg positivity 1.0 (0.6–1.7) 0.90
HBsAg titer (log IU/mL) 1.9 (1.0–3.5) 0.048 3.0 (0.9–9.7) 0.07
HBV DNA (log IU/mL) 1.0 (0.9–1.2) 0.81
Nucleos(t)ide analog b 1.7 (1.0–2.9) 0.04 0.5 (0.1–1.8) 0.26
Albumin (g/dL) 0.2 (0.1–0.3) <0.001 1.7 (0.4–6.6) 0.45
Bilirubin (mg/dL) 1.2 (1.1–1.4) 0.006 0.6 (0.3–1.5) 0.30
AST >40 IU/L 4.4 (2.8–7.1) <0.001 1.0 (1.0–1.0) 0.36
ALT >40 IU/L 1.6 (1.0–2.6) 0.06
Platelet (109/L) 1.0 (0.9–1.0) <0.001 1.0 (0.02–1.0) 0.07
Prothrombin time (INR) 4.0 (1.7–9.2)  0.001 0.7 (0.004–23.0) 0.85

Numbers in parenthesis indicate 95% CI obtained from 1000 bootstrapping iterations.
aDetection of nodule(s) >1 cm which had not been previously characterized or showed changes in size or echo pattern.
bExposure to nucleos(t)ide analog during study period.
AFP, alpha-fetoprotein; AST, aspartate aminotransaminase; ALT, alanine aminotransferase; INR. international normalized 
ratio; OR, odds ratio.
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DISCUSSION

In this study, we demonstrated that consideration 
of individual risks helps predicting presence of HCC 
in a real-world CHB cohort on surveillance: the HCC 
nomogram which integrated the HCC risk predictors 
with the results of screening US had superior accuracy 
compared to US-only screening. The nomogram-guided 
screening model also showed cost-effectiveness by 
decision curve analysis.

The reported sensitivity of US for early HCC vary 
among studies [23], but recent studies suggested relatively 
low sensitivity in the surveillance setting [7, 8, 24]. Our 
data also revealed similarly low sensitivity of US in CHB. 
Advances in the dynamic imaging technology allows 
imaging diagnosis of smaller HCCs [2, 5], and it can be 
speculated that the sensitivity of US may decrease as HCC 
is diagnosed in the earlier stage [9]. In addition, we classified 
serial screening data up to 6 months before final diagnosis of 

Table 3: Reclassification, sensitivity and specificity of HCC screening models

Derivation set (N = 13,908) Validation set (N = 13, 814)
US-only HCC nomogram US-only HCC nomogram 

All HCC
NRI a - 1.31 (1.17–1.52) - 1.29 (1.05–1.49)
IDI a - 0.14 (0.09–0.21) - 0.13 (0.07–0.19)
Sensitivity b 47.1 (35.1–59.4) 78.6 (67.1–87.5) 39.0 (26.5–52.6) 67.8 (54.4–79.4)
Specificity b 99.1 (99.0–99.3) 96.1 (95.7–96.4) 99.2 (99.1–99.4) 95.9 (95.6–96.2)
Youden index 0.463 (0.349–0.577) 0.784 (0.703–0.829) 0.382 (0.263–0.501) 0.745 (0.637–0.815)
BCLC 0/A HCC
NRI a - 1.29 (1.05–1.49) - 1.14 (0.90–1.39)
IDI a - 0.13 (0.07–0.19) - 0.07 (0.02–0.13)
Sensitivity b 47.1 (35.1–59.4) 62.9 (50.5–75.4) 39.1 (25.1–54.6) 54.2 (40.8–67.3)
Specificity b 99.1 (99.0–99.3) 98.7 (98.5–98.9) 99.3 (99.1–99.4) 98.7 (98.5–98.9)
Youden index 0.463 (0.349–0.577) 0.777 (0.707–0.812) 0.384 (0.263–0.501) 0.741 (0.624–0.812)

N indicates the numbers of HCC screening tests performed during the study period; numbers in parenthesis indicate 95% 
confidence intervals.
aImprovements by adding age, sex, cirrhosis and AFP levels to US by continuous net reclassification improvement (NRI) and 
integrated discrimination improvement (IDI) analyses with 300 bootstrapping iterations. 
 bConfidence interval from 1000 bootstrapping iterations; cut-off value of 140 for HCC nomogram score.

Figure 2: Nomogram for predicting presence of HCC in chronic hepatitis B patients on surveillance. The individual point 
score for each variable is obtained on the corresponding perpendicular position on the top “Points” axis. Continuous values, i.e. age and 
logAFP, outside of the boundaries are replaced by the corresponding boundary value. The sum of all points, HCC nomogram scores, are 
converted to predicted HCC probability on the bottom probability axis. 
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Figure 3: Calibration of the HCC nomogram score model. The predicted probability of HCC presence was plotted against HCC 
nomogram score in the derivation dataset (A) Agreement between the predicted and observed HCC probabilities were plotted for the 
derivation (B) and validation (C) datasets with 300 bootstraps. The HCC nomogram score showed good calibration within the expected 
probability range up to 0.3, which corresponds to HCC nomogram score of 195. Hosmer and Lemeshowʼs goodness-of-fit test showed 
no significant discrepancies between the predicted and observed probabilities for HCC presence ( p = 0.72 and 0.82 for derivation and 
validation set, respectively).
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HCC as HCC-associated US, and this classification scheme 
may also have contributed to the low sensitivity.

Several studies have shown that age, sex, cirrhosis 
and AFP levels are predictors for long-term HCC risk in 
CHB [14–20, 25, 26]. A recent Korean multicenter cohort 
study also confirmed the long-term predictive significance 

of age, sex and cirrhosis in CHB patients on oral NA 
therapy [26]. Our data demonstrated that these predictors 
can be used to estimate the probability of presence of HCC 
as well. This finding is in line with the recent report in 
which age, AFP, platelets, and alanine aminotransferase 
(ALT) predicted immediate development of HCC [20]. 

Table 4: Comparison of areas under receiver operating characteristic curves between US- and HCC nomogram-based 
HCC screening

Derivation set Validation set
All HCC N US-only HCC nomogram P value N US-only HCC nomogram P value
Total 13,908 0.731

(0.724–0.739)
0.960

(0.956–0.963)
<0.001 13, 814 0.691

(0.683–0.699)
0.935

(0.931–0.939)
<0.001

NA (+) 8,208 0.725
(0.715–0.735)

0.943
(0.938–0.948)

<0.001 7,997 0.698 
(0.687–0.708)

0.913
(0.907–0.919)

<0.001

NA (–) 5,700 0.746
(0.735–0.758)

0.985
(0.981–0.988)

<0.001 5,817 0.674
(0.662–0.686)

0.967
(0.963–0.972)

<0.001

BCLC 0/A N US-only HCC nomogram P value N US-only HCC nomogram P value
Total 13,833 0.741

(0.734–0.749)
0.956

(0.952–0.959)
<0.001 13,717 0.692

(0.684–0.700)
0.943

(0.939– 0.947)
<0.001

NA (+) 8,147 0.721
(0.711–0.731)

0.938
(0.933–0.943)

<0.001 7,907 0.702
(0.692–0.712)

0.925
(0.919–0.931)

<0.001

NA (–) 5,686 0.791
(0.780–0.801)

0.983
(0.979–0.986)

<0.001 5,810 0.674
(0.662–0.686)

0.968
(0.963–0.972)

<0.001

N indicates the number of HCC screening tests performed during the study period.
The numbers in parenthesis indicate 95% confidence intervals.
NA (+) and NA (–) denote patients with or without exposure to nucleos(t)ide analog therapy during the study period.
All HCC: total patients; BCLC 0/A: patients without development of advanced HCC, i.e. BCLC B/C/D.

Figure 4: Decision curve analysis for HCC screening models. Decision curves for derivation set (A) and validation set (B). 
Ultrasound-only indicates traditional US-based screening in which decisions to request confirmatory tests are guided only by positive US 
tests. HCC nomogram indicates that the decisions are guided by HCC nomogram scores.  Risk threshold and cost:benefit ratio indicate the 
relative significance of correct detection of HCC to correct exclusion of HCC of the models. All indicates that all CHB patients receive 
confirmatory tests, i.e. dynamic imaging studies or biopsy, and None indicates that no patients receive confirmatory tests. The net benefit of 
HCC nomogram was higher than that of US-only across given range of threshold probabilities, indicating that nomogram-based screening 
model would produce cost-effective clinical outcome irrespective of patient preference.
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The unique strength of our study was the inclusion of US 
test results in the multivariate analysis, which suggested 
that the four predictors may supplement US-based HCC 
screening. Since US is the only recommended screening 
tool for HCC, confirmatory dynamic imaging studies are 
triggered only by positive US findings and underlying risks 
of HCC are not reflected in the clinical decisions once 
surveillance is started under current recommendations 
[2, 3]. Our HCC nomogram showed good calibration 
profile in predicting presence of HCC within the clinically 
relevant range, beyond which the confirmatory tests 
would be warranted without considering the nomogram 
scores. Furthermore, the HCC nomogram had significantly 
superior reclassification and discrimination characteristics 
over US-only screening, regardless of HCC stages. Taken 
together, it can be suggested that consideration of age, sex, 
status of cirrhosis and AFP levels along with US results 
improves the screening accuracy of HCC detection, 
probably by identifying additional patients for whom 
dynamic imaging studies are likely to produce positive 
results [27]. Long-term prospective validation is needed, 
however, to determine whether personalized surveillance 
based on HCC nomogram improves the performance and 
outcome of HCC surveillance in CHB.

Current AASLD and EASL guidelines do not 
recommend AFP as a screening test, mainly because of 
low sensitivity and specificity [2, 3, 28, 29]. Hepatitis 
activity may elevate AFP levels in CHB [30, 31], and 
elevated AFP levels may just signify increased risk for 
future development of HCC [18, 20, 29, 32]. However, 
AFP comprised one of the major components of our 
nomogram. Hepatitis activity may decrease over the 
course of CHB, either with or without NA therapy, and 
false positivity of AFP may decrease accordingly [33]. In 
our cohort, the median ALT level was 24 IU/L with IQR 
of 17 at the end of follow-up, and HBV DNA levels also 
showed decreasing tendency. Patients with hepatitis flare 
were likely to start NA therapy during the study period, 
as suggested in Table 1. Because we analyzed all of the 
serial screening data rather than baseline or final ones, 
AFP values associated with hepatitis flare may not have 
significantly affected the performance of the nomogram. 
This explanation is also in line with the finding that the 
superiority of nomogram over US was independent of 
exposure to NA therapy. The fact that elevated AFP may 
imply both high baseline risk and presence of HCC may 
not necessarily disprove its role, but rather render AFP 
suitable for our probability-oriented nomogram.

Currently AFP is seldom used alone in HCC 
surveillance, and there have been several reports indicating 
increase in the sensitivity of US-based surveillance by adding 
AFP [7, 34]. However, previous cost analyses provide no 
solid evidence supporting the combined use of AFP, and 
the benefit may be offset by increased false positivity and 
the following costs of confirmatory tests [7, 11, 34–36]. To 
address the same issue in our data, we performed the decision 

curve analysis, which revealed that the HCC nomogram-
based screening model had greater net benefit compared to 
US-only model in the clinically appropriate risk threshold 
range [37], indicating that HCC nomogram-guided screening 
model may be cost-effective and can be recommended for all 
CHB patients with reasonable threshold probabilities without 
compromising specificity [38]. 

The main limitation of our study is retrospective design 
in single center. Consecutive patient was recruited from 
the comprehensive electronic registry [39–41] to reduce 
selection bias, and we adopted a split-sample approach 
with bootstrapping to reduce the possibility of overfitting. 
Nevertheless, our findings need further external validation in 
prospective settings. Secondly, our simulated decision curve 
analysis needs to be validated by including the performances 
of confirmatory imaging tests and cost-effectiveness 
parameters which are specific to regional settings. Lastly, the 
final outcome measurements of prospective validation studies 
need to include improvement of survival. 

In conclusion, a nomogram composed of age, sex, 
presence of cirrhosis, serum AFP levels and US findings 
better predicts the probability of presence of HCC 
compared to US-only screening in CHB on surveillance. 
HCC nomogram-based screening has superior performance 
compared to US-only screening and cost-effective. The 
clinical usefulness of HCC nomogram-guided surveillance 
strategy needs to be validated in prospective studies.

MATERIALS AND METHODS 

Study population

This single center retrospective cohort study 
enrolled consecutive CHB patients who were over age 
eighteen and underwent regular surveillance for HCC 
between Mar. 2003 and Dec. 2015 in a tertiary referral 
center in South Korea. Clinical and laboratory data were 
retrieved from the liver disease registry of Seoul National 
University Bundang Hospital Clinical Data Warehouse 
[40, 42]. Patients with detection of HCC within 6 months 
after initial screening, malignancy other than HCC, 
hepatitis C virus or human immunodeficiency virus 
coinfection, Child-Pugh class C or non-compliance of 
surveillance were excluded (Figure 1).

Screening US examination was carried out every 
6–12 months along with blood tests including serum 
AFP levels, transaminases, prothrombin time, albumin, 
bilirubin and platelet counts. The presence of liver 
cirrhosis was defined by ultrasonographic features 
(coarse liver echotexture with nodularity) plus evidence 
of portal hypertension including ascites, splenomegaly, 
thrombocytopenia (<100 × 109/L) and varices [15, 43]. 
US findings were classified dichotomously as “positive” 
if nodule(s) >1 cm was detected which had not been 
previously characterized or showed changes in size or echo 
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pattern [2], or “no evidence of HCC” otherwise. When US 
detected suspicious nodule(s), multidetector 4-phase CT or 
MRI was performed. Dynamic imaging studies were also 
considered at the attending physicians’ discretion in the 
case of successive rise in serum AFP levels, incomplete 
US examination due to poor sonic window, or very coarse 
echo-pattern with numerous nodules [3, 11]. Diagnosis of 
HCC was made according to the AASLD criteria [2].

The institutional review board of our hospital 
approved this study (IRB No: B-1609/361102). All 
clinical investigation has been conducted according to 
the principles expressed in the Declaration of Helsinki. 
Informed consent was wavered by IRB, due to the 
retrospective observational nature of study and anonymous 
analysis of data.

Data collection and imputation

In patients who developed HCC, the US 
examinations up to 6 months before the confirmatory test 
were classified as “associated with HCC” [20], whereas 
US examinations performed more than 12 months before 
the confirmatory test were classified as “not associated 
with HCC” and analyzed as such. US examinations 
6–12 months before confirmatory test were classified as 
“ambiguous” and excluded from the logistic regression 
analysis. Blood tests performed within 45 days before 
or 15 days after each US examination were linked to 
the corresponding US results and data outside of this 
range were excluded. Missing AFP data were predicted 
by multiple imputations with the number of imputations 
of 10 using bootstrap and predictive mean matching by 
R aregImpute package. The variables included in the 
multiple imputation model were previously identified 
as significant predictors of AFP elevation: presence of 
cirrhosis, AST, ALT, albumin, prothrombin time, HBV 
DNA levels and history of nucleos(t)ide analogues [41]. 
HCC was excluded from the imputation model, however, 
for the conservative estimation of the predictive  
role of AFP. 

Development and validation of a model 
predicting presence of HCC

Logistic regression analysis was used to identify 
predictors for presence of HCC at the time of each US 
measurement. For the internal validation, the final patients 
were randomly allocated to either derivation or validation 
dataset (Figure 1), and bootstrapping procedure was 
performed [44]. Predictor variables were selected by 
backward stepwise selection with a P value > 0.05 for 
removal. The outcome variable of the logistic model was 
presence of HCC. Reclassification analysis was performed 
by continuous net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) index 
to determine whether addition of independent predictors 
improve the prediction of present HCC [21, 22].

A nomogram was established from the independent 
predictors of the logistic model. The endpoint of the 
nomogram was detection of HCC at the time of US 
examination. The HCC nomogram score, the point 
sum of each parameter, was tested for calibration and 
discrimination [22, 45]. Calibration of the nomogram 
was evaluated for correct detection of HCC by calibration 
curves and Hosmer-Lemeshow goodness-of-fit test [46]. 
The discriminative ability was assessed by the receiver 
operating characteristic (ROC) curve analysis with 
comparison of concordance (C) statistic [47]. 

Decision curve analysis

In order to determine whether HCC nomogram 
is cost-effective compared to US-only screening, we 
employed decision curve analysis. Decision curve 
analysis takes misclassification costs of diagnostic tests 
into account without assuming pre-defined utility, and 
balances the benefit of true positivity against the cost of 
false positivity of diagnostic tests [37, 38]. The threshold 
probability is defined as the probability where the expected 
benefit of opting for confirmatory tests is equal to the 
expected benefit of avoiding confirmatory tests [38, 47].  
For example, the risk threshold of 0.1 corresponds to 
cost-benefit ratio of 1:9 [0.1 / (1–0.1)] and signifies that a 
rational patient with this risk threshold will opt for HCC 
nomogram-based screening instead of US-only screening 
if the expected probability of having HCC is 0.1 or greater 
because the harms associated with a missed HCC is nine 
times greater than the harms associated with unnecessary 
additional tests. Net benefit indicates the difference 
between proportions of true positive and false positive, 
weighted by the risk threshold [38].

Statistical analysis

Statistical analyses performed using STATA 
version 14 (College Station, Texas) and R package 
(version 3.3.2, www.r-project.org). Continuous and 
categorical variables were tested by Student’s t-test and 
χ2 test, respectively. Kaplan-Meier analysis was used to 
calculate the cumulative incidence of HCC of the study 
population. Generation of nomogram and calibration 
analysis was performed by R rms package. Comparison 
of ROC curves was made by STATA ROCgold command. 
Reclassification analysis was performed by STATA incrisk 
command. Decision curve analysis was performed by R 
DecisionCurve package.
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