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ABSTRACT: A recently identified variant of SARS-CoV-2 virus,
known as the United Kingdom (UK) variant (lineage B.1.1.7), has an
N501Y mutation on its spike protein. SARS-CoV-2 spike protein binds
with angiotensin-converting enzyme 2 (ACE2), a key protein for the
viral entry into the host cells. Here, we report an efficient
computational approach, including the simple energy minimizations
and binding free energy calculations, starting from an experimental
structure of the binding complex along with experimental calibration of
the calculated binding free energies, to rapidly and reliably predict the
binding affinities of the N501Y mutant with human ACE2 (hACE2)
and recently reported miniprotein and hACE2 decoy (CTC-445.2)
drug candidates. It has been demonstrated that the N501Y mutation markedly increases the ACE2-spike protein binding affinity
(Kd) from 22 to 0.44 nM, which could partially explain why the UK variant is more infectious. The miniproteins are predicted to
have ∼10,000- to 100,000-fold diminished binding affinities with the N501Y mutant, creating a need for design of novel therapeutic
candidates to overcome the N501Y mutation-induced drug resistance. The N501Y mutation is also predicted to decrease the binding
affinity of a hACE2 decoy (CTC-445.2) binding with the spike protein by ∼200-fold. This convenient computational approach
along with experimental calibration may be similarly used in the future to predict the binding affinities of potential new variants of
the spike protein.

■ INTRODUCTION

The novel SARS-CoV-2 virus that causes the well-known
COVID-19 disease is responsible for the deaths of over one
million people, with over 90 million confirmed cases.1 SARS-
CoV-2 enters host cells via its spike protein binding to
angiotensin-converting enzyme 2 (ACE2). With such wide-
spread infection, local variants of the virus have begun to be
identified, with some showing increased infectivity.2 One
variant of SARS-CoV-2, that has gained national prominence,
is known as the United Kingdom (UK) variant, early analysis
of which has revealed a nearly 70% increase in infectivity when
compared to original SARS-CoV-2 virus identified in 2019.3

Of note with the UK variant is an N501Y mutation on the
SARS-CoV-2 spike protein, which is responsible for the virus’
identification and attachment to the target host cells. This
mutation manifests itself on the receptor-binding domain
(RBD) region of the spike protein, a change that has direct
consequences on the binding of the protein with ACE2. This
mutation has been identified not only within the UK variant of
the virus but has arisen independently in South Africa (lineage
B.1.351) and Brazil (lineage P.1), denoting this mutation’s
effect on transmissibility.4−6 The amino-acid residue N501 of
the SARS-CoV-2 spike protein is located directly on the
interface between these two proteins (Figure 1A,B), and thus,

any mutation on N501 has potential implications for any
therapeutic that relies on the spike protein as its vector.
Promising therapeutic candidates, such as miniprotein
inhibitors,7 have been reported with picomolar activities
against the SARS-CoV-2 spike protein. However, these
miniproteins mimic the α-helix binding domain of the ACE2
protein to bind with the same interface of the spike protein as
ACE2 and are therefore not immune to the potential changes
that the N501Y mutation on the spike protein might cause.
With the increase in infectivity that the UK SARS-CoV-2
variant displays, it is essential to know whether the N501Y
mutation on the spike protein has compromised the binding
affinities of the spike protein-targeted therapeutics that are
currently being developed.
To investigate the potential change in binding affinity

associated with the N501Y mutation, we have modeled both
the SARS-CoV-2 spike protein and its N501Y mutant binding
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with wild-type human ACE2 (hACE2) and a previously
reported T27Y/L79T/N330Y mutant of ACE2 (known as
ACE2.v2.4) which has a 40-fold increased binding affinity with
the wild-type spike protein of SARS-CoV-2.8 Additionally, we
have modeled the wild-type and N501Y mutant spike proteins
with a truncated ACE2 peptide to investigate the potential
impacts of the N501Y residue change of the spike protein on
ACE2 mimicking therapeutics such as the aforementioned
miniprotein drug candidates, demonstrating that the N501Y
mutation significantly improves binding affinity to soluble
ACE2 derivatives but diminishes affinity to miniprotein drug
candidates. The obtained binding and affinity data help to
understand why the UK variant is more infectious and provide
new insights concerning rational drug design targeting the
variant.

■ METHODS
The increasing widespread availability of high-resolution
cryoelectron microscopy (EM) structures of the spike/ACE2
complex9 have precluded the need to perform homology
modeling from previously obtained coronavirus spike protein
structures. Recent studies of protein/ligand, protein/nucleo-
tide, and protein/protein binding systems have also revealed
methodologies to accurately predict binding affinity without
the need for long-timescale molecular dynamics (MD)
simulations, instead only utilizing energy-minimized structures;
even with residue mutations introduced, these energy-
minimized X-ray crystal or cryo-EM structures still produced
results consistent with in vitro experimental data.10−15 These
methodologies allow for reliable and computationally efficient
studies of this recently discovered variant of SARS-CoV-2
spike protein as long-timescale MD simulations of this complex
could be subject to artifacts introduced when simulating the
membrane-bound protein with periodic conditions.16−20

In general, for predicting the mutation-caused shift of the
protein/protein binding free energy, it should be reasonable to
conceptually consider the amino-acid residue change as a
“minor change” or “perturbation” to the entire protein/protein
binding complex and, thus, computationally model the
“perturbed” complex (i.e., the complex after the residue
change) structure starting from the energy-minimized structure
of the “unperturbed” complex (i.e., the complex prior to the
residue change). Therefore, the energy-minimized structures of
both the “perturbed” and “unperturbed” complexes were used,
in this study, to perform the molecular mechanics-Poisson−
Boltzmann surface area (MM-PBSA) binding free energy
calculations to predict their difference in the binding free
energy as we did previously for predicting mutation-caused
binding free energy shifts in other protein/protein binding
systems.21

Notably, described here is a simplified computational
approach for fast and reliable computational prediction of
the mutation-caused binding free energy shifts, as compared to
the popularly used free-energy perturbation (FEP) approach
based on extensive MD simulations.22−43 Usually, the MD
simulations may help to appropriately account for the
conformational dynamics of the binding structures, making
the FEP simulation methods very attractive for use in
computational prediction of relative binding free energies.
On the other hand, extensive MD simulations sometimes
induce artifacts as noted above. Therefore, when a reliable
experimental structure of the “unperturbed” binding system is
available, the simple energy minimization (without MD
simulation) of the experimental structure will allow us to
focus on the minor structural changes associated with the
amino-acid substitution and their effects on the binding free
energy without worrying about any computational artifacts
associated with the imperfect force fields used in the MD
simulations. The simple energy minimizations and MM-PBSA
binding free energy calculations starting from a reliable
experimental structure of the “unperturbed” binding system
will ensure a qualitatively reasonable binding structure of the
“perturbed” system and the corresponding binding free energy
shift. The same simplified computational approach has led to
successful design and discovery of a promising mutant of a
long-acting protein drug candidate having a markedly
improved binding affinity with its protein target.21 This is
why the same computational protocol (including the energy-
minimization and MM-PBSA calculation)21 was used in this
study to predict the mutation-caused shifts of the binding free
energies. In brief, using the cryo-EM structure (RCSB: 7KMB)
of the spike/ACE2 complex, after the energy-minimization, the
reported mutant of the spike mutant (N501Y) or ACE2
mutant (ACE2v2 and ACE2.v2.4) in the spike/ACE2 complex
was reconstructed using the PyMol mutation tool to replace
each residue with the reported mutations (T27Y/L79T/
N330Y/A386L for ACE2.v2 and T27Y/L79T/N330Y for
ACE2.v2.4).8,9,44 These structures were energy-minimized
using the Sander module of the Amber20 package, and their
MM-PBSA binding free energies (ΔGPB) were evaluated using
the MM-PBSA.py module of Amber20, as previously
reported.45−47 Additionally, to estimate the change in binding
free energy with the miniprotein inhibitors, the available crystal
structures of miniproteins LCB1 (RCSB: 7JZU)7 and LCB3
(RCSB: 7JZM)7 were energy-minimized, and their binding
free energies with both the wild-type spike protein and the
N501Y variant were estimated using the same methodology.

Figure 1. (A) Energy-minimized binding mode of the wild-type
SARS-CoV-2 spike protein and hACE2, with the spike protein residue
N501. (B) Energy-minimized binding mode of the N501Y mutant
spike protein and hACE2 with mutated spike protein residue Y501.
(C) Interactions between the energy-minimized structure of the wild-
type SARS-CoV-2 spike and hACE2 protein. (D) Interactions of
N501Y mutant with the hACE2 protein. In all panels, the spike
protein residue #501 is highlighted with balls and sticks.
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Further, as shown previously,21,47 the MM-PBSA calcu-
lations overestimated the absolute binding free energies.
Nevertheless, we have previously reported a methodology
that utilizes known in vitro experimental data to correct these
overestimations using a linear regression equation, allowing for
both accurate and precise protein/ligand and protein/protein
binding affinity predictions.21,47,48 Therefore, in this study, the
previously reported experimental binding affinities8 for the
wild-type spike protein of SARS-CoV-2 with wild-type ACE2,
ACE2.v2, and ACE2.v2.4 (along with the binding affinities of
the N501Y variant spike protein with both wild-type ACE2
and ACE2.v2.4, which were published while this article was
under review49) were used to calibrate the calculated binding
free energies. Thus, we were able to obtain to empirical linear
correlation relationship for prediction of binding free energies
(see below).

■ RESULTS AND DISCUSSION
The obtained binding structures for the wild-type ACE2
binding with the wild-type and N501Y spike proteins are
depicted in Figure 1. The computational and experimental data
correlation graph is depicted in Figure 2, and the binding

modes for the miniproteins LCB1 and LCB3 are depicted in
Figure 3. The obtained energetic data are summarized in
Tables 1 and 2. Based on the directly calculated MM-PBSA
binding free energies and the empirical correction analysis
using the available experimental binding affinities summarized
in Table 1, we obtained the following empirical linear
correlation relationship

Δ = *Δ +G G0.265 9.66 (kcal/mol)corr PB (1)

Interestingly, in eq 1 (which was updated using the newly
reported experimental data49 for the N501Y mutant of SARS-
CoV-2 spike, published while our article was under review),
the correction coefficient of the ΔGPB value is 0.265 (see
Figure 2 for the correlation between the directly calculated
ΔGPB values and the experimental binding free energies),
which is very close to our previously reported correction
coefficient (0.3057) obtained for the cannabinoid 2 (CB2)
receptor binding with its ligands using the methodology.47

Equation 1 was then used to correct all the ΔGPB values
obtained, creating an estimated binding affinity (Kd) for the
N501Y mutant spike protein at 0.44 nM (which is very close to
the experimentally determined binding affinity of 0.8 nM,49

reported while our article was under review). Summarized in
Table 1 are the directly calculated MM-PBSA binding free

energies (ΔGPB), the corrected ones (ΔGcorr), and the
corresponding experimental/predicted Kd values.
The cause behind the increase in binding affinity from the

wild-type spike protein to the N501Y mutant is clear when
looking at interactions between the ACE2 and the spike
protein when the N501Y mutation is introduced. Shown in

Figure 2. Calculated binding free energy vs experimental binding free
energy of ACE2 proteins and SARS-CoV-2 spike proteins listed in
Table 1.

Figure 3. (A) Overview of the spike/ACE2 binding region, with wild-
type residues modified in ACE2.v2.4 with balls and sticks. (B)
Overview of the spike/ACE2.v2 binding region with mutated residues
highlighted with balls and sticks. (C) Binding mode of the wild-type
spike protein and wild-type hACE2, displaying the hydrogen-bonding
interactions. (D) Binding mode of the wild-type spike protein and
ACE2.v2, with mutated residues visualized as the balls and sticks, the
residue changes in the ACE2.v2 increases the overall strength of
several ACE2/spike hydrogen bonds, especially those between R403
and E37. (E) Overview of the spike/ACE2 binding region, with wild-
type residues modified in ACE2.v2.4 with balls and sticks. (F)
Overview of the spike/ACE2.v2.4 binding region with mutated
residues highlighted with balls and sticks. (G) Binding mode of the
wild-type spike protein and wild-type hACE2, displaying the
hydrogen-bonding interactions. (H) Binding mode of ACE2.v2.4
with the wild-type spike protein; while the introduction of N330Y still
contributes hydrophobic interactions with G496, the loss of the
A386L mutation results in the loss of the strengthened hydrogen
bonds between R403 and E37 seen in ACE2.v2.
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Figure 1 are the energy-minimized binding structures. Whereas
N501 in the wild-type spike protein hydrogen-bonds with no
ACE2 residues (Figure 1C), the hydroxyl group on the Y501
side chain in the N501Y mutant can hydrogen-bond with both
the amine group on the K353 side chain of ACE2 and
intramolecularly with the amine group on the Q498 side chain
(Figure 1D). This additional intermolecular hydrogen bond
accounts for the increased binding affinity for the N501Y
mutant with ACE2.
While the introduced mutations in the engineered ACE2

mutants ACE2.v2 and ACE2.v2.4 do not directly introduce
hydrogen bonding in the RBD region between ACE2 and wild-
type spike, they do exert steric pressure on nearby residues,
strengthening already existing hydrogen bonds. This can
especially be seen with the hydrogen bonding between the

guanidinium group of R403 of the spike protein and the
carboxylic acid of E37 within ACE2. The A386L mutation
introduces a sterically bulkier residue next to E37, pressing it
closer to R403. This effect is lost between ACE2.v2 and
ACE2.v2.4 due to the lack of the A386L residue change
(Figure 3B,F). The N330Y mutation has an effect similar to
the A386L mutation, a sterically bulkier residue presses upon
G496 in the spike protein, pressing it closer Y41 and
strengthening its hydrogen bond (Figure 3D,H). Future
versions of these engineered ACE2 proteins may wish to
focus on residue changes that directly implicate new hydrogen
bonds with either the wild-type or N501Y spike protein.
The quantitative analysis the binding of the miniproteins

with the wild-type spike protein is complicated by the lack of
published Kd values against the said spike protein by their
authors.7 This is primarily due to the authors’ lack of more
sensitive equipment for the bilayer interferometry (BLI)
experiments, obfuscating the binding signal at miniprotein
concentrations below 200 pM.7 Additionally, the authors’ use
of viral neutralization to obtain an IC50 value for these
miniproteins does not reflect the actual binding affinity due to
the long incubation time with the target cells (30 h). However,
a rough approximation of the Kd can still be obtained from the
BLI values above 200 pM for LCB1 and LCB3. With these
approximations in place, a more quantitative estimation of the
effects of the N501Y spike mutation can be performed,
allowing for an estimation of the N501Y spike Kd with these
miniproteins.
While the N501Y mutation appears to increase the binding

affinity against the wild-type and engineered ACE2 proteins,
the same cannot be said of the miniprotein designs. The top
performing miniproteins LCB1 and LCB3, both with sub-
nanomolar dissociation constants, are reliant on the N501
residue in the wild-type spike protein (Figure 4D,H). This
change to Y501 removes a strong hydrogen bond with E22 and
D3 in LCB1 and LCB3, respectively, leading to a large ΔΔG
change between the wild-type and N501Y spike proteins
(Table 2). These decreases in the binding affinity implicate a
change that could increase the Kd of these miniproteins from
picomolar to potentially micromolar when using the free
energy change equation ΔGexp = −RT ln(Kd). This loss in
affinity is also seen in the recently published hACE2 decoy,
CTC-445.2, revealing an urgent need to find COVID
therapeutics that are resistant to this residue change (Table
2 and Figure S1).50

■ CONCLUSIONS

In conclusion, through the use of MM-PBSA binding free
energy estimation in correlation with known experimental

Table 1. Calculated Binding Free Energies for Wild-Type SARS-CoV-2 Spike Protein and Its N501Y Mutant Binding with
hACE2 and ACE2 Mutants (ACE2.v2 and ACE2.V2.4)

system ΔGPB (kcal/mol)a Kd (nM) ΔGexp (kcal/mol)d ΔGcorr (kcal/mol)e predicted Kd (nM)f

ACE2/spike (WT) −76.1 22b −10.5 −10.5 24
ACE2.v2.4/spike (WT) −84.2 0.6b −12.7 −12.6 0.66
ACE2.v2/spike (WT) −86.4 0.2b −13.3 −13.2 0.25
ACE2/spike (N501Y) −85.1 0.8c −12.5 −12.9 0.44
ACE2v2.4/spike (N501Y) −88.0 0.1c −13.7 −13.6 0.12

aDirectly calculated binding free energy of the system without empirical correction. bExperimentally determined Kd.
8 cExperimentally determined

Kd (published while our article was under review).49 dExperimental binding affinity6 converted to Gibbs binding free energy: ΔGexp = −RT ln(Kd).
eComputationally predicted binding free energy (corrected from the directly calculated binding free energy ΔGPB) using eq 1. fPredicted Kd of the
system using the equation: Kd = eΔGcorr/−RT.

Table 2. Calculated Binding Free Energy of Notable
Miniprotein Therapeutic Candidates with the Wild-Type
and N501Y Spike Proteins

protein LCB1 LCB3 CTC-445.2

experimental Kd(WT) (nM) 0.50a 0.82a 21b

ΔGPB(WT) (kcal/mol)c −83.0 −85.6 −75.3
ΔGPB(N501Y) (kcal/mol)d −58.9 −58.7 −63.2
ΔΔGPB (kcal/mol)e −24.0 −26.9 −12.0
ΔGexp(WT) (kcal/mol)f −12.8 −12.5 −10.5
ΔGcorr(WT) (kcal/mol)g −12.3 −13.0 −10.2
ΔGcorr(N501Y) (kcal/mol)h −5.9 −5.9 −7.1
ΔΔGcorr (kcal/mol)i 6.4 7.1 3.2
predicted fold change of Kd

j 43,000 154,000 200
predicted Kd(N501Y) (μM)k 21 126 4.2
aEstimated Kd values for miniproteins obtained from Cao et al. BLI
experiments.7 bReported Kd value against the wild-type spike
protein.50 cDirectly calculated binding free energy of the system
with the given protein and the wild-type spike protein without
empirical correction. dDirectly calculated binding free energy of the
system with the given protein and the N501Y spike protein without
empirical correction. eDifference between wild-type and N501Y spike
binding affinities for a given protein. fExperimental binding affinity
converted to Gibbs binding free energy: ΔGexp = −RT ln(Kd).
gCalculated binding free energy of the protein/wild-type spike system
(corrected from the directly calculated binding free energy ΔGPB)
using eq 1. hCalculated binding free energy of the protein/N501Y
spike system (corrected from the directly calculated binding free
energy ΔGPB) using eq 1. iDifference between wild-type and N501Y
spike corrected binding affinities for a given protein: ΔΔGcorr =
ΔGcorr(N501Y) − ΔGcorr(WT). jPredicted fold change of Kd (from
the binding affinity of a given protein with the wild-type spike to that
with the N501Y mutant) converted from ΔΔGcorr.

kPredicted Kd for a
given protein binding with the N501Y spike using the original Kd for
wild-type spike and the predicted fold change.
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binding affinities of both wild-type and mutant versions of
hACE2 proteins, we have been able to reasonably predict the
binding affinities of the recently reported N501Y mutant of
SARS-CoV-2 spike protein with both the hACE2 and the
recently reported miniproteins. Particularly, the N501Y
mutation has markedly increased the ACE2-spike protein
binding affinity (Kd) from 22 nM (for the wild-type spike) to

0.4 nM (for the N501Y mutant spike), which could partially
explain why the UK variant of SARS-CoV-2 (with N501Y
mutation on the spike protein) is more infectious. However,
this same increase in binding affinity is not seen within the
miniprotein inhibitors (LCB1 and LCB3) of the spike protein
due to the loss of a critical hydrogen bond between the spike
and miniproteins. The N501Y mutation is also predicted to
decrease the binding affinity of a hACE2 decoy (CTC-445.2)
binding with the spike protein. These decreases in affinity for
recently published therapeutic candidates implicates a dire
need to redesign them to lessen their dependence on
interactions with the N501 residue due to the prevalence of
variants where the residue is changed. These convenient
computational methodologies, including the convenient energy
minimizations and MM-PBSA binding free energy calculations,
starting from an experimental structure of the “unperturbed”
binding complex along with experimental calibration of the
calculated binding free energies, may be similarly used in the
future to predict the binding affinities of potential new mutants
of the spike protein with ACE2 and potential therapeutics/
therapeutic candidates targeting the spike protein.
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Figure 4. (A) Overview of the wild-type spike/LCB1 binding region,
with wild-type mutated residues N501Y represented as balls and
sticks. (B) Overview of the N501Y Spike/LCB1 binding region with
mutated residues highlighted with balls and sticks. (C) Binding mode
of the wild-type spike protein and miniprotein LCB1, displaying the
hydrogen-bonding interactions. (D) Binding mode of the N501Y
spike protein and LCB1, with mutated residues visualized with balls in
sticks, the N501Y residue change removes a hydrogen bond with E22,
resulting in the loss of binding affinity. (E) Overview of the wild-type
spike/LCB3 binding region, with wild-type mutated residues N501Y
represented as balls and sticks. (F) Overview of the N501Y spike/
LCB3 binding region with mutated residues highlighted with balls and
sticks. (G) Binding mode of the wild-type spike protein and
miniprotein LCB3, displaying the hydrogen-bonding interactions.
(H) Binding mode of the N501Y spike protein and LCB3, with
mutated residues visualized with balls in sticks; the N501Y residue
change removes a hydrogen bond with N1, resulting in a similar loss
of calculated binding affinity as with the LCB3 with N501Y spike.
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