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One characteristic feature of Alzheimer’s
disease (AD) neuropathology is the pro-
gressive generation, aggregation and depo-
sition of the 42 amino acid amyloid beta
(Aβ42) peptide, and other related amy-
loidogenic molecules, into dense clumps of
insoluble, pro-inflammatory senile plaque
cores in the extracellular space of the brain.
It is not generally appreciated that the
Aβ42 peptide, derived via tandem beta-
gamma secretase cleavage of the larger
∼770 amino acid transmembrane beta-
amyloid precursor protein (βAPP) is one
of the “stickiest” peptides known, due
in part to its high content of lipophillic
and hydrophobic peptide domains (21.4%
valine-isoleucine; Mager, 1998; Watson
et al., 2005). Aβ42 peptide monomers have
tremendously high potential for relatively
rapid self-aggregation into Aβ42 peptide
dimers and higher order fibrillar structures
via long-range, non-covalent hydropho-
bic forces that over time promote β-
pleated sheet conformations (Mager, 1998;
Watson et al., 2005; Boutajangout and
Wisniewski, 2013; Chang et al., 2013).
There is abundant evidence that under
normal, homeostatic conditions, Aβ42
peptide monomers and perhaps other
higher order Aβ42 peptides are effectively
“cleared” from the brain’s extracellular
medium by highly active and efficient
innate-immune surveillance and phago-
cytic systems that limit excessive Aβ42
peptide dimerization, accumulation and
further self-aggregation into pathological
senile plaque lesions. Recently described,
one of the key phagocytosis sensor-
receptors responsible for Aβ42 peptide
clearance from the human central nervous
system (CNS) is very likely the triggering

receptor expressed in myeloid/microglial
cells 2 (TREM2) enriched in myeloid
cells and microglial cells of the CNS
(Benitez et al., 2013; Forabosco et al., 2013;
Gonzalez Murcia et al., 2013; Guerreiro
et al., 2013; Neumann and Daly, 2013;
Zhao et al., 2013; Jones et al., 2014;
Figure 1). This short paper is an update
on some very recent observations on
TREM2 neurobiology, on newly discov-
ered roles for miRNA-34a-mediated sig-
naling in human degenerative disease,
including miRNA-34a-mediated effects on
TREM2 expression, and how dysfunc-
tional TREM2 signaling may contribute to
amyloidogenesis in AD and in related pro-
gressive, inflammatory neurodegenerative
diseases of the human CNS.

TREM2 (TREM-2, Trem2a), a vari-
ably glycosylated 230 amino acid type 1
transmembrane sensor-receptor protein
of the immunoglobulin gene super-
family is translated from a ∼1098
nucleotide (nt) linear mRNA tran-
scribed at chr6p21.1, is highly expressed
in microglial cells of the human CNS
(NCBI GenBank NG_011561; BC032362;
http://www.genecards.org/cgi-bin/carddisp
.pl?gene=TREM2; Zhao et al., 2013; Jones
et al., 2014). As a recently recognized
myeloid/microglial cell surface phago-
cytosis sensor-receptor, TREM2 appears
to play a critical function in immune
surveillance, the sensing of extracellu-
lar debris and phagocytosis throughout
the CNS, including the recognition and
ingestion of neurotoxic Aβ42 peptides and
other amyloidogenic extracellular debris
(Benitez et al., 2013; Forabosco et al.,
2013; Lattante et al., 2013; Neumann and
Daly, 2013; Sieber et al., 2013; Hickman

and Khoury, 2014; Jiang et al., 2014).
TREM2 signaling is in part mediated
through a tyrosine kinase-binding pro-
tein/DNAX activation adaptor protein of
12 kDa (TYROBP/DAP12; Sieber et al.,
2013; Zhao et al., 2013; Hickman and
Khoury, 2014; Figure 1). Deficiencies in
TREM2 abundance and/or function are
associated with a defective innate-immune
system, bone fragility, deficits in phago-
cytosis and amyloidogenesis, neurological
alterations leading to presenile dementia
in the autosomal recessive, inflammatory
neurodegenerative disorder polycystic
lipomembraneous osteodysplasia with
sclerosing leukoencephalopathy (PLOSL;
MIM 221770; Jarvi-Hakola-Nasu dis-
ease), and more recently with Parkinson’s
disease (PD), AD and amyotrophic lat-
eral sclerosis (ALS; Nataf et al., 2005;
Satoh et al., 2011; Benitez et al., 2013;
Forabosco et al., 2013; Guerreiro et al.,
2013; Neumann and Daly, 2013; Sieber
et al., 2013; Zhao et al., 2013; Abduljaleel
et al., 2014; Cady et al., 2014). Conversely,
acute brain injury-induced increases in
TREM2 expression in microglia suggests
that TREM2 may contribute to neu-
rotrophic roles after brain ischemia and
this may impart a long term neurological
benefit in functional recovery (Kawabori
et al., 2013; Abduljaleel et al., 2014).
Genome-wide association studies and
meta-analysis (GWAS/MA) for AD have
recently identified an R47H (rs75932628)
loss of function TREM2 variant as a sig-
nificant risk factor for AD, conveying an
increase for AD with an odds ratio of 1.3-
8.8-fold (p = 0.008), an effect comparable
to that of the e4 allele of the 299 amino
acid APOE lipid transporter (Gonzalez
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FIGURE 1 | (A) Murine microglial cell mediated phagocytosis of Aβ42
peptides; 3 day old C8B4 murine microglia cells (ATCC CRL-2540; ATCC,
Manassus VA) were treated with 5 μM of Aβ42 for 24 h before staining;
Aβ42 peptides (American Peptide Company, Sunnyvale, CA, cat # 62-0-80A)
were prepared as described by Stine et al. (2003). Briefly, Aβ42 peptides
were initially solubilized in hexafluoroisopropanol (HFIP; Fluka Chemical, cat#
52512; Sigma-Aldrich, St. Louis MO), aliquoted, and stored at −20◦C as an
HFIP film. After vacuum evaporation of HFIP, aliquoted peptide was
re-suspended with DMSO to 5 mM and diluted to 5 μM into the cell culture
media; cells were subsequently stained using a murine amyloid beta
MABN10 (red fluorescence λmax ∼650 nm; anti-Aβ antibody, clone W0-2;
Millipore, Bellerica MA), a TREM-2 antibody (M-227): sc-48765 (green
fluorescence; λmax ∼510 nm; Santa Cruz, Santa Cruz CA) or DAPI nuclear
stain; magnification 60×; note self-aggregation of Aβ42 peptide after 24 h
and Aβ42 peptide affinity for TREM2 containing cells (leftmost panels) and
internalization (rightmost panel; yellow merge; λmax ∼580 nm); additional
relevant methods have been described (Griciuc et al., 2013; Zhao and Lukiw,
2013); (B) highly schematicized depiction of the possible actions of an
NF-kB-regulated, miRNA-34a-mediated TREM2 sensor-phagocytosis protein
down-regulated in AD brain; the triggering receptor for myeloid/microglial
cells (TREM2) is a variably glycosylated transmembrane receptor known to
be enriched in the microglial cell plasma membrane; signaling via the

tyrosine kinase-binding protein (DNAX activation protein 12) [TYROBP
(DAP12)] accessory receptor results in phagocytosis and ultimately,
clearance of Aβ42 peptides (red ovals) from the extracellular space (Satoh
et al., 2011; Benitez et al., 2013; Forabosco et al., 2013; Hickman and
Khoury, 2014); interestingly, TREM2 knockout/knockdown mice have
attenuated immunological and inflammatory responses and/or increases in
age-related neuroinflammatory markers and cognitive deficiency (Jiang
et al., 2013; Sieber et al., 2013); TYROBP knockout mice exhibit immune
system deficits and an impairment in microglial cell differentiation (Nataf
et al., 2005; Sieber et al., 2013); it is not clear what, if any, contribution
TREM2 makes directly to phagocytosis and Aβ42 clearance (question mark)
without TYROBP (DAP12); while no deficits in TYROBP (DAP12) have been
observed in sporadic AD brain, insufficient TREM2 may be in part
responsible for the inability to adequately phagocytose Aβ42 peptides,
resulting in their buildup and self-aggregation in the extracellular space.
Inset: miRNA-34a is found to be significantly increased in AD hippocampal
CA1 and superior temporal lobe and in stressed microglial cells; miRNA-34a
targeting of the TREM2 mRNA 3′-UTR appears to be in part responsible for
this (see text); because miRNA-34a is encoded on an NF-kB-sensitive
transcript, both anti-NF-kB and/or anti-miRNA strategies may be clinically
useful in the restoration of homeostatic phagocytosis in the brain
and CNS.

Murcia et al., 2013; Guerreiro et al., 2013;
Neumann and Daly, 2013; Zhao et al.,
2013). However, TREM2 R47H mutations
appear to be relatively rare occurrences
and may predispose only highly selective
human populations to increased risk for
age-related, pro-inflammatory neurode-
generative disorders such as AD (Gonzalez
Murcia et al., 2013; Guerreiro et al., 2013;
Hampel and Lista, 2013; Lattante et al.,
2013; Bagyinszky et al., 2014). Indeed, AD
cases are each highly complex, heteroge-
neous and multigenic neurodegenerative
disorders and can be divided into those

with a genetic or familial component
(∼5% of all cases) or a sporadic or
idiopathic form of AD with no known
genetic cause (95% of all cases; Blennow
et al., 2006; Lukiw, 2013b; Bagyinszky
et al., 2014). AD can be further classi-
fied as either early onset (under 65 years
of age), or late-onset AD (LOAD; over
65 years of age; Bagyinszky et al., 2014;
Rosenthal and Kamboh, 2014). Evidence
for the loss of function R47H mutation
remains extremely rare in late onset AD
in diverse human populations including
relatively large, recent studies in Chinese

Han (N = 625) or Japanese (N = 4688)
groups (Ma et al., 2014; Miyashita et al.,
2014; Rosenthal and Kamboh, 2014).
Indeed, much recent, independently
derived data support the contention that
the incidence of genetic mutations and
epigenetic factors in AD varies widely
amongst different human populations
with different evolutionary backgrounds
(Raj et al., 2010; Olson, 2012; Lukiw,
2013a,b). Interestingly, genetic-based
loss-of-function mutations in TREM2
in LOAD may have the same end effect
as a deficiency of a functional TREM2 in
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sporadic AD, with both pathways lead-
ing to compromised TREM2-mediated
signaling and defective Aβ42 sensing and
removal by phagocytosis.

MicroRNAs (miRNAs) are small non-
coding, single stranded RNAs (ssRNAs)
that currently represent the smallest
known carriers of highly selective genetic
regulatory information in the human
CNS (Lukiw, 2007; Hill et al., 2014a,b;
Maffioletti et al., 2014). As highly mobile,
autonomous genetic elements abundant
in brain cell cytoplasm, the cerebrospinal
fluid (CSF) and in the systemic circulation,
miRNAs may be diagnostic for AD and
other human CNS diseases (Alexandrov
et al., 2012; Dorval et al., 2013). The
primary mode of miRNA action is to
recognize and bind to complementary
ribonucleotide sequences in the 3-prime
un-translated region (3′-UTR) of target
messenger RNAs (mRNAs) and in doing
so, down-regulate their expression (Lagos-
Quintana et al., 2001; Lukiw et al., 2008;
Guo et al., 2010). Several independent
laboratories have recently reported the
highly selective up-regulation of specific
pathology-related miRNAs in AD brain
including: (1) a significant up-regulation
in the pro-inflammatory miRNA-34a
(encoded at chr1p36.22) in AD and in
Aβ42 peptide- and cytokine-stressed
human primary brain cells (Cogswell
et al., 2008; Lukiw, 2012; Zhao et al.,
2013); (2) a significant miRNA-34a up-
regulation in amyloid overexpressing
transgenic mouse models of AD (Wang
et al., 2009; Zhao et al., 2013); (3) a
productive and CNS-relevant miRNA-
34a-TREM2-3′-UTR interaction resulting
in TREM2 deficits in cellular models of
AD (Zhao and Lukiw, 2013; Zhao et al.,
2013; Jones et al., 2014); and (4) an NF-
kB-mediated up-regulation of miRNA-34a
coupled to a down-regulation of TREM2
in human neuronal-glial co-cultures
(Alexandrov et al., 2013). The miRNA-
34a-mediated down-regulation of TREM2
appears to be due to an unusually strong
miRNA-34a recognition feature within
the 299 nt TREM2 mRNA 3′-UTR region
(energy of association, EA <-16 kcal/mol;
http://www.genecards.org/cgi-bin/carddisp
.pl?gene=TREM2; Zhao et al., 2013;
Abduljaleel et al., 2014; Jiang et al., 2014;
Jones et al., 2014). Interestingly, the stress-
and inflammation-induced transcription

factor NF-kB, a driver for miRNA-34a
expression, is also selectively up-regulated
in AD-affected brain regions, and both
NF-kB inhibitors and stabilized anti-
miRNA-34a appear to be effective in
restoring TREM2 back to homeostatic
levels, at least in in vitro primary cell
models of inflammatory neurodegener-
ation (Crampton and O’Keeffe, 2013;
Lukiw, 2013a; Zhao and Lukiw, 2013;
Zhao et al., 2013). Pathologically up-
regulated miRNA-34a-signaling has also
been recently associated (1) with the
repression of expression of several selected
genes involved in cell survival and oxida-
tive defense pathways such as Bcl2 and
SIRT1 (Bhatnagar et al., 2014); (2) with
spinal cord tissues in ALS (Cady et al.,
2014); (3) with altered immunity associ-
ated with multiple sclerosis (Junker et al.,
2009); (4) with progressive neurotrophic
deficits including dysfunctional Bcl-2 sig-
naling in transgenic murine models of
AD (Wang et al., 2009); (5) with altered
synaptogenesis (Agostini et al., 2011); (6)
with deficient immune and phagocytotic
responses in progressive inflammatory
degeneration in cardiovascular disease
(Boon et al., 2013); (7) with aging of the
murine brain (Li et al., 2011); (8) with
vasculature aging and cellular senescence
(Boon et al., 2013; Agostini and Knight,
2014); (9) with blood mononuclear cells
in sporadic AD patients (Schipper, 2007;
Bhatnagar et al., 2014); (10) with lower
mini-mental state examination (MMSE)
scores when detected in the blood plasma
of AD patients (Bhatnagar et al., 2014) and
(11) with the progressive inflammatory
neurodegeneration and epileptiform activ-
ities associated with epilepsy and the early
stages of AD (Zhao et al., 2013; Henshall,
2014). The role of the CNS-enriched
miRNA-34a and other pro-inflammatory
miRNAs in epilepsy and AD is particu-
larly interesting due to the overlapping
neuropathology of these two neurological
disorders with respect to the incidence
of seizures and cognitive decline first
apparent in the earliest stages of each
disease (Vossel et al., 2013; Hill et al.,
2014a,b).

Strengthening evidence contin-
ues to support the hypothesis that
multiple genes, through multiple
genetic processes, drive the initiation,
propagation and course of sporadic AD.

Epigenetic mechanisms involving NF-κB-
mediated, miRNA-34a up-regulation and
consequent down-regulation of TREM2
expression may drive the progressive
extinction of the phagocytic response
that in turn contributes to dysfunc-
tional innate-immunity, amyloidogenesis
and inflammatory neurodegeneration.
Current data also suggest that the
orchestrated interaction of at least two
independent gene products on two dif-
ferent chromosomes—miRNA-34a at
chr1p36.22 and TREM2 at chr6p21.1—
modulate TREM2 activities, the sensing
of potentially hazardous waste molecules
in the extracellular space, and the phago-
cytosis and clearance of this neurotoxic
debris to maintain functional homeosta-
sis in the CNS. Importantly, defective
regulation of miRNA-34a and TREM2
signaling and other epigenetic effects on
gene expression in sporadic AD would not
be detectable via classical GWAS/MA or
single nucleotide polymorphism (SNP)
analysis of the genome (Hampel and Lista,
2013; Lukiw, 2013b). While dysfunction
along the miRNA-34a-TREM2-TYOBP
(DAP12) axis may be a particularly strong
contributor to phagocytosis deficits and
amyloidogenesis in AD it is important to
note that other miRNA-mRNA pairings
may also be involved in Aβ42 clearance
and altered innate-immune responses in
this complex genetic regulatory network.
AD-relevant stress-mediated increases in
miRNA-34a in cultured brain cells, subse-
quent down-regulation in the expression
of TREM2-3′-UTR reporter vectors, and
rescue by anti-NF-kB or anti-miRNA-
34a pharmacological strategies indicates
that TREM2 and accessory genetic sig-
naling components that drive defective
Aβ42 peptide sensing and phagocyto-
sis can be effectively quenched, at least
in in vitro studies (Lukiw, 2013b; Zhao
et al., 2013; Jones et al., 2014). There is
currently a great deal of pharmacological
interest in the use of miRNA-34a mimics
and their potential role in treating degen-
erative disease, including CNS disease
and cancer, and miRNA-34a mimics have
become the first half-life stabilized miR-
NAs to reach phase 1 clinical trials (Boon
et al., 2013; Zhao et al., 2013; Agostini
and Knight, 2014). Indeed anti-NF-kB,
anti-miRNA-34a and/or analogous phar-
macological molecular strategies may be
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useful in the future clinical management
of AD and other multi-pathway neuro-
logical diseases with an amyloidogenic
component, including novel combinato-
rial therapeutic approaches that have not
yet been considered.
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