organic compounds

V = 1021.8 (6) Å³

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3'-(p-Phenylenedimethylene)di-1Himidazol-1-ium bis(4-nitrobenzoate)-4-nitrobenzoic acid (1/2)

Gui-Ying Dong,^a[‡] Xin-Hua Liu,^b Tong-Fei Liu^a and Islam Ullah Khan^c*

^aCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, ^bCollege of Light Industry, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, and ^cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan

Correspondence e-mail: iukhangcu@126.com

Received 4 May 2010; accepted 23 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.081; wR factor = 0.191; data-to-parameter ratio = 12.0.

The asymmetric unit of the title compound, $C_{14}H_{16}N_4^{2+}$. $2C_7H_4NO_4 - 2C_7H_5NO_4$, comprises one-half of the 3,3'-(pphenylenedimethylene)di-1H-imidazol-1-ium dication, which lies on an inversion centre, one 4-nitrobenzoate anion and one 4-nitrobenzoic acid molecule. In the crystal, the components are linked into a two-dimensional network parallel to (110) by $O-H \cdots O$, $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds.

Related literature

For the synthesis of 1,4-bis(imidazol-1-ylmethyl)benzene, see: Hoskins et al. (1997). For a related structure, see: Chen et al. (2010).

Experimental

Crystal data $C_{14}H_{16}N_4^{2+} \cdot 2C_7H_4NO^{4-} \cdot 2C_7H_5NO_4$ $M_r = 906.77$

Triclinic, P1	V = 1021.8 (6) Å ³
a = 7.2659 (15) Å	Z = 1
b = 12.689 (3) Å	Mo $K\alpha$ radiation
c = 13.028 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 112.94 \ (3)^{\circ}$	T = 295 K
$\beta = 102.49 \ (3)^{\circ}$	$0.20 \times 0.20 \times 0.20$ mm
$\gamma = 101.94 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector	8835 measured reflections
diffractometer	3590 independent reflections
Absorption correction: multi-scan	2019 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.066$
$T_{\min} = 0.968, \ T_{\max} = 0.971$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.081$	298 parameters
$wR(F^2) = 0.191$	H-atom parameters constrained
S = 1.19	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
3590 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O7-H2A\cdots O3^{i}$	0.85	2.57	3.167 (5)	128
$O7-H2A\cdots O4^{i}$	0.85	1.65	2.494 (5)	173
$N4 - H4A \cdots O8$	0.86	2.03	2.690 (5)	133
C15-H15···O3	0.93	2.23	3.073 (7)	150
$C17 - H17 \cdots O5^{ii}$	0.93	2.46	3.228 (7)	140
$C21 - H21 \cdots O3^{iii}$	0.93	2.46	3.321 (6)	154

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z - 1; (iii) -x, -y + 1, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Hebei Polytechnic University and Government College University for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5093).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Chen, H., Zhu, K., Liu, G. H. & Ren, X. M. (2010). Chin. J. Struct. Chem. 29,

347-352.

Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952-2953

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

[‡] Additional corresponding author, e-mail: tsdgying@126.com.

Acta Cryst. (2010). E66, o1485 [doi:10.1107/S160053681001929X]

3,3'-(p-Phenylenedimethylene)di-1H-imidazol-1-ium bis(4-nitrobenzoate)-4-nitrobenzoic acid (1/2)

G.-Y. Dong, X.-H. Liu, T.-F. Liu and I. U. Khan

Comment

Over the past few years, efforts have been focused on the investigation of coordination polymers with flexible ligands. Diimidazole flexbile ligands such as 1,4-bis(1H-imidazol-1-yl)methylbenzene (bix) find numerous applications in constructing metal-organic coordination polymers as they can rotate freely about methylene carbon atoms to adjust to the coordination environment. We report here the crystal structure of the title compound.

The asymmetric unit comprises one-half of a bix²⁺ dication lying on an inversion centre, one 4-nitrobenzoate anion and one neutral 4-nitrobenzoic acid molecule (Fig. 1). Bond distances and angles are normal (Chen *et al.*, 2010).

In the crystal structure, the dications, anions and neutral 4-nitrobenzoic acid molecule are interlinked by O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1), forming a two-dimensional hydrogen-bonded network parallel to the (110).

Experimental

1,4-Bis(imidazol-1-ylmethyl)benzene (bix) was prepared according to a literature method (Hoskins *et al.*, 1997). 1:4 molar amounts of bix (23.8 mg, 0.1 mmol) and 4-nitrobenzoic acid (66.9 mg, 0.4 mmol) were dissolved in 95% ethanol (30 ml). The mixture was stirred and refluxed for 1 h and then filtered. The resulting colourless solution was allowed to stand in air for two weeks. Colourless crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution.

Refinement

H atoms were positioned geometrically [O-H = 0.85 Å, N-H = 0.86 Å and C-H = 0.93 or 0.97 Å] and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(O)$ and $1.2U_{eq}(C,N)$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation (-x, 1-y, -z).

3,3'-(p-Phenylenedimethylene)di-1H-imidazol-1-ium bis(4-nitrobenzoate)-4-nitrobenzoic acid (1/2)

Crystal data

$C_{14}H_{16}N_4^{2+}\cdot 2C_7H_4NO^{4-}\cdot 2C_7H_5NO_4$	Z = 1
$M_r = 906.77$	F(000) = 470
Triclinic, PT	$D_{\rm x} = 1.474 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.2659 (15) Å	Cell parameters from 3889 reflections
b = 12.689 (3) Å	$\theta = 4.6 - 22.7^{\circ}$
c = 13.028 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 112.94 \ (3)^{\circ}$	T = 295 K
$\beta = 102.49 \ (3)^{\circ}$	Prism, colourless
$\gamma = 101.94 \ (3)^{\circ}$	$0.20 \times 0.20 \times 0.20 \text{ mm}$
V = 1021.8 (6) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	3590 independent reflections
Radiation source: fine-focus sealed tube	2019 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.066$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.968, \ T_{\max} = 0.971$	$k = -15 \rightarrow 15$
8835 measured reflections	$l = -15 \rightarrow 15$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.2399P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
07	0.1748 (5)	0.3773 (3)	0.6201 (3)	0.0628 (9)
08	0.2413 (5)	0.4626 (3)	0.5069 (3)	0.0636 (9)
N4	0.2722 (5)	0.3310 (3)	0.2960 (3)	0.0468 (9)
H4A	0.2596	0.3328	0.3607	0.056*
N3	0.3203 (4)	0.3884 (3)	0.1672 (3)	0.0341 (8)
C11	0.2099 (5)	0.5846 (3)	0.6892 (3)	0.0346 (10)
C12	0.1960 (6)	0.5971 (4)	0.7973 (3)	0.0378 (10)
H12	0.1787	0.5305	0.8124	0.045*
C20	0.0546 (6)	0.4031 (4)	-0.0614 (3)	0.0417 (11)
H20	0.0910	0.3371	-0.1031	0.050*
C10	0.2349 (6)	0.6835 (4)	0.6673 (4)	0.0454 (11)
H10	0.2447	0.6753	0.5947	0.054*
C21	-0.1173 (6)	0.4176 (4)	-0.1146 (4)	0.0417 (11)
H21	-0.1952	0.3621	-0.1918	0.050*
C13	0.2074 (6)	0.7074 (4)	0.8830 (4)	0.0426 (11)
H13	0.1981	0.7160	0.9558	0.051*
C17	0.2842 (6)	0.2657 (4)	0.1182 (4)	0.0397 (10)
H17	0.2808	0.2161	0.0427	0.048*
C8	0.2328 (6)	0.8040 (4)	0.8581 (4)	0.0423 (11)
C14	0.2070 (6)	0.4663 (4)	0.5962 (4)	0.0417 (11)
C19	0.1743 (6)	0.4850 (4)	0.0531 (3)	0.0359 (10)
C9	0.2457 (6)	0.7939 (4)	0.7505 (4)	0.0510 (12)
Н9	0.2612	0.8603	0.7351	0.061*
N2	0.2409 (6)	0.9230 (4)	0.9474 (4)	0.0642 (12)
C15	0.3111 (6)	0.4252 (4)	0.2754 (4)	0.0405 (10)
H15	0.3291	0.5044	0.3279	0.049*
O6	0.2194 (6)	0.9302 (3)	1.0400 (3)	0.0946 (14)
C16	0.2548 (6)	0.2308 (4)	0.1995 (4)	0.0445 (11)
H16	0.2277	0.1525	0.1913	0.053*
05	0.2639 (7)	1.0065 (3)	0.9231 (4)	0.1088 (16)
C18	0.3622 (6)	0.4672 (4)	0.1113 (4)	0.0472 (11)
H18A	0.4226	0.4318	0.0525	0.057*
H18B	0.4567	0.5452	0.1706	0.057*
C4	0.4933 (6)	0.8837 (3)	0.5529 (3)	0.0360 (10)
O3	0.4409 (5)	0.7026 (3)	0.3853 (3)	0.0731 (11)
O2	0.4178 (6)	1.2399 (3)	0.8522 (3)	0.0791 (11)
O4	0.7429 (5)	0.7925 (3)	0.5183 (3)	0.0700 (10)
C1	0.3648 (7)	1.0618 (4)	0.6869 (4)	0.0423 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N1	0.2961 (7)	1.1562 (4)	0.7606 (4)	0.0616 (11)
C5	0.6275 (6)	0.9830 (3)	0.6549 (3)	0.0417 (11)
Н5	0.7610	0.9887	0.6779	0.050*
C3	0.2940 (6)	0.8758 (4)	0.5190 (3)	0.0432 (11)
Н3	0.2041	0.8099	0.4503	0.052*
C2	0.2281 (7)	0.9650 (4)	0.5863 (4)	0.0473 (11)
H2	0.0947	0.9596	0.5642	0.057*
C6	0.5638 (7)	1.0733 (4)	0.7224 (4)	0.0451 (11)
Н6	0.6533	1.1403	0.7903	0.054*
C7	0.5608 (8)	0.7845 (4)	0.4785 (4)	0.0470 (11)
01	0.1202 (7)	1.1467 (4)	0.7276 (4)	0.1083 (15)
H2A	0.2107	0.3206	0.5773	0.162*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
07	0.086 (3)	0.0432 (19)	0.072 (2)	0.0297 (18)	0.0469 (19)	0.0238 (18)
08	0.086 (3)	0.065 (2)	0.0381 (19)	0.0274 (19)	0.0290 (18)	0.0162 (17)
N4	0.048 (2)	0.062 (3)	0.035 (2)	0.0202 (19)	0.0143 (17)	0.025 (2)
N3	0.035 (2)	0.038 (2)	0.032 (2)	0.0177 (16)	0.0105 (15)	0.0157 (17)
C11	0.028 (2)	0.039 (2)	0.032 (2)	0.0081 (18)	0.0080 (18)	0.013 (2)
C12	0.039 (3)	0.042 (3)	0.041 (3)	0.016 (2)	0.019 (2)	0.023 (2)
C20	0.049 (3)	0.041 (3)	0.043 (3)	0.023 (2)	0.018 (2)	0.021 (2)
C10	0.058 (3)	0.047 (3)	0.034 (3)	0.017 (2)	0.017 (2)	0.019 (2)
C21	0.049 (3)	0.038 (3)	0.032 (2)	0.013 (2)	0.008 (2)	0.013 (2)
C13	0.041 (3)	0.053 (3)	0.034 (2)	0.017 (2)	0.016 (2)	0.016 (2)
C17	0.045 (3)	0.034 (2)	0.037 (3)	0.020 (2)	0.012 (2)	0.011 (2)
C8	0.038 (3)	0.036 (2)	0.041 (3)	0.013 (2)	0.009 (2)	0.007 (2)
C14	0.029 (2)	0.045 (3)	0.042 (3)	0.009 (2)	0.008 (2)	0.013 (2)
C19	0.036 (3)	0.040 (2)	0.037 (3)	0.008 (2)	0.011 (2)	0.025 (2)
C9	0.064 (3)	0.043 (3)	0.053 (3)	0.019 (2)	0.020 (2)	0.026 (3)
N2	0.065 (3)	0.050 (3)	0.059 (3)	0.022 (2)	0.013 (2)	0.008 (3)
C15	0.033 (3)	0.040 (3)	0.035 (3)	0.015 (2)	0.0044 (19)	0.006 (2)
O6	0.138 (4)	0.083 (3)	0.046 (2)	0.055 (3)	0.026 (2)	0.006 (2)
C16	0.046 (3)	0.034 (3)	0.050 (3)	0.014 (2)	0.010 (2)	0.018 (2)
O5	0.177 (5)	0.046 (2)	0.115 (4)	0.046 (3)	0.072 (3)	0.029 (2)
C18	0.041 (3)	0.054 (3)	0.053 (3)	0.015 (2)	0.014 (2)	0.032 (2)
C4	0.053 (3)	0.025 (2)	0.032 (2)	0.012 (2)	0.015 (2)	0.0134 (19)
O3	0.082 (3)	0.047 (2)	0.051 (2)	0.0251 (18)	-0.0019 (19)	-0.0063 (17)
02	0.091 (3)	0.054 (2)	0.066 (2)	0.023 (2)	0.032 (2)	-0.001 (2)
O4	0.057 (2)	0.047 (2)	0.076 (2)	0.0193 (17)	0.0156 (19)	0.0005 (18)
C1	0.056 (3)	0.036 (2)	0.046 (3)	0.021 (2)	0.025 (2)	0.021 (2)
N1	0.067 (3)	0.049 (3)	0.065 (3)	0.023 (2)	0.035 (3)	0.015 (2)
C5	0.044 (3)	0.033 (2)	0.042 (3)	0.010 (2)	0.010 (2)	0.014 (2)
C3	0.050 (3)	0.036 (3)	0.033 (2)	0.009 (2)	0.004 (2)	0.013 (2)
C2	0.047 (3)	0.044 (3)	0.043 (3)	0.013 (2)	0.011 (2)	0.016 (2)
C6	0.059 (3)	0.033 (2)	0.034 (2)	0.012 (2)	0.014 (2)	0.009 (2)
C7	0.066 (4)	0.028 (2)	0.042 (3)	0.012 (2)	0.015 (3)	0.014 (2)

01	0.072 (3)	0.086 (3)	0.129 (4)	0.040 (2)	0.037 (3)	0.003 (3)
Geometric para	meters (Å, °)					
O7—C14		1.274 (5)	C	8—N2		1.484 (5)
07—H2A		0.85	C	19		1 387 (5)
08-C14		1 227 (5)	C	19 C21		1 519 (5)
N4—C15		1.227(5)	C	9—Н9		0.93
N4-C16		1.354 (5)	N	2-05		1.210 (5)
N4—H4A		0.86	N	2-06		1.220 (5)
N3—C15		1.324 (5)	C	15—H15		0.93
N3—C17		1.373 (5)	C	16—H16		0.93
N3—C18		1.469 (5)	C	18—H18A		0.97
C11—C10		1.378 (5)	C	18—H18B		0.97
C11—C12		1.383 (5)	C	4—C5		1.389 (5)
C11—C14		1.510 (5)	C	4—C3		1.389 (5)
C12—C13		1.380 (5)	C	4—C7		1.509 (6)
С12—Н12		0.93	0	3—С7		1.224 (5)
C20—C21		1.376 (5)	02	2—N1		1.225 (5)
C20-C19		1.385 (5)	O	4—C7		1.279 (5)
C20—H20		0.93	С	1—C2		1.374 (6)
С10—С9		1.370 (6)	C	1—C6		1.377 (6)
C10—H10		0.93	С	1—N1		1.472 (5)
C21—C19 ⁱ		1.387 (5)	Ν	1—01		1.221 (5)
C21—H21		0.93	C	5—C6		1.382 (5)
C13—C8		1.373 (5)	C	5—Н5		0.93
C13—H13		0.93	C	3—C2		1.382 (5)
C17—C16		1.336 (5)	C	3—Н3		0.93
С17—Н17		0.93	C	2—Н2		0.93
С8—С9		1.382 (6)	C	6—Н6		0.93
С14—07—Н2А		111.6	0	5—N2—O6		123.9 (4)
C15—N4—C16		109.4 (3)	O	5—N2—C8		118.0 (5)
C15—N4—H4A		125.3	O	6—N2—C8		118.1 (5)
C16—N4—H4A		125.3	N	4—C15—N3		108.4 (4)
C15—N3—C17		108.0 (3)	N	4—C15—H15		125.8
C15—N3—C18		125.0 (3)	N	3—С15—Н15		125.8
C17—N3—C18		127.0 (3)	C	17—C16—N4		107.0 (4)
C10-C11-C12		119.4 (4)	C	17—C16—H16		126.5
C10-C11-C14		119.0 (4)	N	4—C16—H16		126.5
C12—C11—C14		121.6 (4)	N	3—C18—C19		111.7 (3)
C13—C12—C11		120.7 (4)	N	3—C18—H18A		109.3
C13-C12-H12	2	119.7	C	19—C18—H18A		109.3
C11-C12-H12		119.7	N	3—C18—H18B		109.3
C21—C20—C19		121.1 (4)	C	19—C18—H18B		109.3
С21—С20—Н20)	119.4	Н	18A—C18—H18B		107.9
С19—С20—Н20)	119.4	C	5—C4—C3		119.5 (4)
C9—C10—C11		121.2 (4)	C	5—C4—C7		121.0 (4)
С9—С10—Н10		119.4	C	3—C4—C7		119.6 (4)

C11—C10—H10	119.4	C2—C1—C6	122.6 (4)
C20—C21—C19 ⁱ	120.0 (4)	C2—C1—N1	118.9 (4)
C20—C21—H21	120.0	C6—C1—N1	118.5 (4)
C19 ⁱ —C21—H21	120.0	O1—N1—O2	123.3 (4)
C8—C13—C12	118.3 (4)	O1—N1—C1	118.3 (4)
С8—С13—Н13	120.8	O2—N1—C1	118.4 (5)
С12—С13—Н13	120.8	C6—C5—C4	120.4 (4)
C16—C17—N3	107.1 (4)	С6—С5—Н5	119.8
С16—С17—Н17	126.4	С4—С5—Н5	119.8
N3—C17—H17	126.4	C2—C3—C4	120.7 (4)
C13—C8—C9	122.2 (4)	С2—С3—Н3	119.7
C13—C8—N2	119.5 (4)	С4—С3—Н3	119.7
C9—C8—N2	118.2 (4)	C1—C2—C3	118.4 (4)
O8—C14—O7	124.9 (4)	С1—С2—Н2	120.8
O8—C14—C11	119.4 (4)	С3—С2—Н2	120.8
O7—C14—C11	115.7 (4)	C1—C6—C5	118.5 (4)
C20—C19—C21 ⁱ	118.8 (4)	С1—С6—Н6	120.7
C20—C19—C18	120.6 (4)	С5—С6—Н6	120.7
C21 ⁱ —C19—C18	120.5 (4)	O3—C7—O4	124.3 (4)
C10—C9—C8	118.2 (4)	O3—C7—C4	119.0 (5)
С10—С9—Н9	120.9	O4—C7—C4	116.7 (4)
С8—С9—Н9	120.9		

Symmetry codes: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H2A···O3 ⁱⁱ	0.85	2.57	3.167 (5)	128
O7—H2A····O4 ⁱⁱ	0.85	1.65	2.494 (5)	173
N4—H4A···O8	0.86	2.03	2.690 (5)	133
С15—Н15…О3	0.93	2.23	3.073 (7)	150
C17—H17…O5 ⁱⁱⁱ	0.93	2.46	3.228 (7)	140
C21—H21···O3 ⁱ	0.93	2.46	3.321 (6)	154
Symmetry codes: (ii) $-x+1$, $-y+1$, $-z+1$; (iii) x , $y-1$, $z-1$; (i) $-x$, $-y+1$, $-z$.				

