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Abstract: Retroviruses are major causes of disease in animals and human. Better understanding of
the initial host immune response to these viruses could provide insight into how to limit infection.
Mouse retroviruses that are endemic in their hosts provide an important genetic tool to dissect the
different arms of the innate immune system that recognize retroviruses as foreign. Here, we review
what is known about the major branches of the innate immune system that respond to mouse
retrovirus infection, Toll-like receptors and nucleic acid sensors, and discuss the importance of these
responses in activating adaptive immunity and controlling infection.

Keywords: murine leukemia virus; mouse mammary tumor virus; PRR; PAMP; ALR; TLR; nucleic
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1. Introduction

The mammalian innate immune system serves as one of the first lines of defense against pathogens.
It is composed of several receptors and signaling pathways involved in detecting foreign proteins, lipids,
nucleic acid sequences or structures, and other components of pathogens, termed pathogen-associated
molecular patterns (PAMPs). Pattern recognition receptors (PRRs) detect PAMPs and ensure that host
cells initiate a targeted response that ultimately rids the organism of harmful pathogens. PRRs include,
among others, Toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs),
absent in melanoma 2 (AIM2)-like receptors (ALRs), cyclic GMP-AMP synthase (cGAS), and members
of the DEAD box (Asp-Glu-Ala-Asp/His) helicase and zinc finger-containing families. Upon PAMP
detection, PRRs initiate signaling cascades that induce expression of type I interferons (IFNs),
proinflammatory cytokines and chemokines that upregulate the expression of anti-pathogen genes and
activate the adaptive immune system [1–5].

Several PRRs have been implicated in the antiviral innate response to murine retroviruses.
This is likely due to PAMPs that are generated at different times and places during the retroviral
replication cycle. For example, retroviral replication produces different forms of nucleic acids, such as
single-stranded (ss) RNA or DNA, RNA:DNA hybrids, and double-stranded (ds) RNA or DNA.
These molecules are found in the cytosol, in subcellular compartments, and in the nucleus during
replication and within endosomes when virus particles are engulfed [6] (Figure 1). Additionally,
retroviral virions and proteins are recognized by PRRs [7]. Thus, host cells have developed multiple
mechanisms to detect retroviral PAMPs and thereby control or eliminate retrovirus infection.
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Alpharetrovirus, Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, Gammaretrovirus, and Lentivirus. 
Infectious murine retroviruses belonging to only two genera have been identified: the Betaretrovirus 
mouse mammary tumor virus (MMTV) and the Gammaretrovirus family of murine leukemia viruses 
(MLV). 

 
Figure 1. Retroviral reverse transcription. (I) Cellular tRNA binds to the primer binding site (PBS) in 
the Unique 5′ Region (U5) region of the RNA, initiating minus-strand DNA synthesis. (II) Synthesis 
proceeds to the 5′ end of the RNA, generating minus-strand strong-stop DNA (-sssDNA). (III,IV) 
RNaseH degrades the RNA template, enabling -sssDNA transfer to the 3′ R region (identical to the 5′ 
R region) where DNA synthesis and RNaseH digestion proceed. (V) RNaseH is unable to digest the 
polypurine tract (PPT), leaving a segment of RNA which primes synthesis of plus-strand DNA. 
Synthesis proceeds until reaching the tRNA primer, creating plus-strand strong-stop DNA 
(+sssDNA). (VI) A second strand transfer occurs, where the +sssDNA PBS anneals to the 3’ minus-
strand PBS. (VII) The two strands act as templates for each other to complete dsDNA synthesis, 
generating identical long terminal repeats (LTR) at both ends of the dsDNA, each containing U3-R-
U5 sequences. Shown to the right are the PRRs that recognize the nucleic acids generated at the 
different reverse transcription steps. Red, RNA; blue, minus-strand DNA; purple, plus-strand DNA. 

Retroviruses encode gag, pol, and env genes. The Gag polyprotein is processed to generate the 
matrix, capsid and nucleocapsid structural proteins, and the viral protease. The reverse transcriptase 
(RT), which has both polymerase and RNaseH activity, and integrase (IN) enzymes are derived from 
pol [6]. The env gene encodes the Env polyprotein that is cleaved by host proteases called furins to 
yield the surface glycoprotein (SU) and transmembrane (TM) proteins. SU and TM are found on the 
virion surface and are needed for interaction with specific cell surface receptors. After interacting 
with a cell surface entry receptor, SU and TM undergo conformational changes which result in fusion 
of the viral and target cell membranes and release of viral capsids into the cytoplasm. The different 
strains of MLV use a variety of host multiple transmembrane-spanning proteins as entry receptors 
[8]. MLVs, like most retroviruses, enter cells by direct fusion with the cell membrane or after 
endocytosis into pH-neutral compartments [9–11]. In contrast, MMTV depends on acidic endosomes 
for fusion of viral and cell membranes after binding transferrin receptor 1, its entry receptor [12]. It 

Figure 1. Retroviral reverse transcription. (I) Cellular tRNA binds to the primer binding site (PBS) in the
Unique 5′ Region (U5) region of the RNA, initiating minus-strand DNA synthesis. (II) Synthesis proceeds
to the 5′ end of the RNA, generating minus-strand strong-stop DNA (-sssDNA). (III,IV) RNaseH
degrades the RNA template, enabling -sssDNA transfer to the 3′ R region (identical to the 5′ R region)
where DNA synthesis and RNaseH digestion proceed. (V) RNaseH is unable to digest the polypurine
tract (PPT), leaving a segment of RNA which primes synthesis of plus-strand DNA. Synthesis proceeds
until reaching the tRNA primer, creating plus-strand strong-stop DNA (+sssDNA). (VI) A second
strand transfer occurs, where the +sssDNA PBS anneals to the 3’ minus-strand PBS. (VII) The two
strands act as templates for each other to complete dsDNA synthesis, generating identical long terminal
repeats (LTR) at both ends of the dsDNA, each containing U3-R-U5 sequences. Shown to the right are
the PRRs that recognize the nucleic acids generated at the different reverse transcription steps. Red,
RNA; blue, minus-strand DNA; purple, plus-strand DNA.

2. Retroviruses Generate PAMPS during Replication

Retroviruses are enveloped, linear, nonsegmented ssRNA viruses that package two copies
of the viral RNA genome [6]. The Retroviridae family is made up of a diverse group of viral
subfamilies and genera; however, their common defining feature is the ability to replicate by
reverse transcription. There are two major subfamilies of Retroviridae: Orthoretrovirinae and
Spumaretrovirinae. The Orthoretrovirinae subfamily is further divided into six genera: Alpharetrovirus,
Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, Gammaretrovirus, and Lentivirus. Infectious murine
retroviruses belonging to only two genera have been identified: the Betaretrovirus mouse mammary
tumor virus (MMTV) and the Gammaretrovirus family of murine leukemia viruses (MLV).

Retroviruses encode gag, pol, and env genes. The Gag polyprotein is processed to generate the
matrix, capsid and nucleocapsid structural proteins, and the viral protease. The reverse transcriptase
(RT), which has both polymerase and RNaseH activity, and integrase (IN) enzymes are derived from
pol [6]. The env gene encodes the Env polyprotein that is cleaved by host proteases called furins to
yield the surface glycoprotein (SU) and transmembrane (TM) proteins. SU and TM are found on the
virion surface and are needed for interaction with specific cell surface receptors. After interacting
with a cell surface entry receptor, SU and TM undergo conformational changes which result in fusion
of the viral and target cell membranes and release of viral capsids into the cytoplasm. The different
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strains of MLV use a variety of host multiple transmembrane-spanning proteins as entry receptors [8].
MLVs, like most retroviruses, enter cells by direct fusion with the cell membrane or after endocytosis
into pH-neutral compartments [9–11]. In contrast, MMTV depends on acidic endosomes for fusion of
viral and cell membranes after binding transferrin receptor 1, its entry receptor [12]. It has also been
reported that in some cell types, MLV Env requires cleavage by cellular cathepsins located in acidic
endosomes [13].

Murine retrovirus reverse transcription likely begins in the host cell cytosol upon release of capsid
into the cytoplasm [6]. Minus-strand DNA synthesis is initiated by a host cell-derived tRNA primer
packaged with the viral genomic RNA through its annealing to the primer binding site (PBS) found in
the U5 region at the 5′ end of the RNA (Figure 1). RT-mediated DNA synthesis proceeds to the 5′ end of
the genomic RNA, creating a short DNA intermediate called minus-strand strong-stop DNA (-sssDNA)
annealed to the viral RNA. Viruses with mutations in RNaseH, which preferentially degrades RNA in
RNA:DNA hybrids, do not proceed beyond this step since degradation of the RNA template is essential
for -sssDNA transfer to the 3′ Terminal Repeat (R) region where DNA synthesis proceeds [14,15].
The transfer is facilitated by identical R regions at the 5′ and 3′ ends of the RNA. As synthesis continues,
RNAseH degrades the viral RNA until it reaches a purine-rich, RNaseH-resistant section called the
polypurine tract (PPT) [6,16]. Undigested PPT RNA mediates priming and synthesis of plus-strand
DNA. Synthesis of plus-strand DNA proceeds until it reaches the tRNA primer, generating plus-strand
strong-stop DNA (+sssDNA). Strand transfer then occurs as the tRNA is digested by RNaseH, and the
PBS in +sssDNA anneals to the complementary PBS at the 3′ end of the minus-strand DNA. This allows
the plus and minus strands to act as templates for each other to complete DNA synthesis, resulting in
linear dsDNA. Thus, ssRNA, ssDNA, dsDNA, and RNA:DNA hybrids generated during the different
steps of DNA synthesis can potentially be recognized as foreign by PRRs.

The newly synthesized viral dsDNA along with IN and other viral proteins necessary for
integration are contained within the viral preintegration complex (PIC) that enters the nucleus [6].
Host cell mitosis is required for nuclear entry of the MLV and MMTV PICs because these viruses lack
proteins to transport the PIC across the nuclear membrane [17,18]. After entry, IN, in concert with host
proteins, and in the case of MLV, the viral p12 protein, tethers and joins the ends of the viral DNA to
the host DNA to yield a provirus [19]. The provirus is then transcribed by host cell RNA polymerase II
to generate the protein-coding mRNAs and the RNA genomes for packaging and virion production.
Viral glycoproteins travel through the Golgi apparatus to the cell surface and arrive at the budding
site where Env is inserted in the cell membrane. Gag assembles new virions by directing packaging
of viral polyproteins and two molecules of dimerized plus-strand viral RNA into virions, either at
the cell surface (MLV) or from cytoplasmic structures that traffic to the membrane (MMTV); in both
cases, viral capsids then bud from the cell surface [6]. For both, newly synthesized viral mRNAs are a
potential source of ligands for PRRs [20–22].

3. Murine Retroviruses and TLRs

The TLRs are an evolutionarily conserved group of type I transmembrane proteins that play
important roles in fighting infection by many different pathogens [1,5]. Each TLR has evolved to
recognize specific PAMPs; this ensures an innate immune response to different pathogens. TLRs contain
a ligand-binding domain, located either extracellularly (TLRs 1, 2, 3, 4, 5, 6, and 11) or within
cytoplasmic compartments such as endosomes and lysosomes (TLRs 3, 7, 8, and 9) and a cytoplasmic
signaling domain called the Toll/IL-1R homology (TIR) domain. TLRs bind ligands, homo- or
hetero-dimerize and then form homotypic interactions with a number of different cytoplasmic
TIR-domain-containing adaptor proteins, including myeloid differentiation primary response 88
(MyD88), TIR-domain-containing adaptor protein-inducing IFN-β (TRIF)/TIR-domain-containing
molecule 1 (TICAM1), TRIF-related adaptor molecule (TRAM), or TIR-associated protein
(TIRAP)/MyD88-adaptor-like (MAL). The TLR-TIR-domain adaptor interaction triggers a signaling
cascade culminating in activation of nuclear factor kappa-light-chain-enhancer of activated B cells



Viruses 2020, 12, 836 4 of 14

(NF-κB) pathway or TANK-binding kinase 1 (TBK1) and interferon regulatory transcription factors
(IRF) 3 or IRF7, thereby inducing production of proinflammatory cytokines and type I IFNs (Figure 2).Viruses 2020, 12, x FOR PEER REVIEW 4 of 15 
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Figure 2. Retroviral replication and innate immune sensing. Murine retroviruses bind cell surface
entry receptors, fuse with the cell membrane, either at the plasma membrane (MLV) or in endosomes
(MMTV), and release their viral capsids into the cell cytoplasm, where reverse transcription takes place.
Cytosolic sensors such as DDX41, IFI203, and cGAS detect viral reverse transcripts and upregulate
transcription of type I IFNs and cytokines through STING-dependent signaling, which results in
the phosphorylation of TBK1 and the transcription factors IRF3 and IRF7, or in NF-κB activation.
TREX1 degrades reverse transcripts and endogenous retroelement DNA and hinders immune responses
to these ligands. IFI205 stimulates an immune response to endogenous retroelement DNA; however,
AIM2 blocks this STING-dependent immune response by sequestering IFI205 from STING. APOBEC3
blocks murine retroviral reverse transcription in the cytosol and diminishes innate immune responses.
However, some fraction of newly synthesized viral DNA enters the nucleus via the viral PIC, and viral
DNA integrates into the host cell DNA. The integrated proviral DNA is transcribed to generate viral
mRNAs and new copies of the viral genome for packaging. Sensors such as IFI204, which can localize
to the nucleus, are capable of inhibiting retroviral gene transcription. The cytosolic RNA sensor,
ZAP, recruits viral mRNAs and exosome components to RNA-containing stress granules, resulting in
degradation of retroviral mRNAs. Viral mRNAs that avoid restriction enter the cytoplasm to begin
translation of viral proteins. TLRs also detect viral ssRNA (TLR7), dsRNA (TLR3), and dsDNA (TLR9)
in endosomes and initiate cytokine responses via the adaptors MyD88 and TRIF. Packaging of new
virions occurs at the cell membrane (MLV) or in structures in the cytoplasm which are later transported
to the membrane (MMTV). MMTV incorporates LPS-binding proteins such as MD-2, TLR4, and CD14
into its membrane, which subsequently bind to bacterial LPS and facilitate virus transmission to pups
via milk.

TLRs act as PRRs for a wide variety of PAMPs. For example, while TLR4 is the PRR for
lipopolysaccharide (LPS) from Gram-negative bacteria, it also recognizes components of certain
parasites and fungi, as well as viral and host proteins [1,5,23]. TLR2 forms heterodimers with TLR1 or
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TLR6 which recognize structurally different bacterial lipopeptides, TLR5 binds the flagellin protein of
bacterial flagella, and TLR11 is the PRR for the protozoan profilin-like protein [1,5,24]. TLRs 2, 3, 4, 7,
8, and 9 also detect viral ligands. TLR2 interacts with viral proteins, largely as TLR2/6 heterodimers,
and mediates cytokine production during lymphocytic choriomeningitis virus, New World arenavirus,
measles virus, respiratory syncytial virus, and herpes simplex virus (HSV)-1 infections [25–29].
TLR3, found both on the cell surface and in endosomes, recognizes dsRNA, activates NF-κB, and
generates in vivo or ex vivo immune responses during West Nile virus (WNV), influenza A virus (IAV),
and herpesvirus infections [30–34]. TLR7 recognizes viral ssRNA and induces production of type I
IFNs and proinflammatory cytokines during infection by IAV, vesicular stomatitis virus, and WNV
and in response to transfected human immunodeficiency virus (HIV)-1 ssRNA [35–38]. The ligand for
TLR9 is unmethylated CpG DNA, common to bacterial and viral DNA. Hence, TLR9 is important for
IFN or cytokine production during herpesvirus, adenovirus, and poxvirus infections [39–41].

Several TLRs play a role in mediating immune responses during murine retrovirus infections.
During early acute infection by intravenous inoculation with Friend virus (FV), which is a complex
composed of Friend murine leukemia (F-MLV) helper virus and polycythemia-inducing spleen
focus-forming virus, mice deficient in the ssRNA sensor TLR7 had higher levels of infectious
virus in plasma which persisted until 14 days post infection (dpi), unlike wild-type (WT) controls,
which had undetectable viremia at this time. Failure to control virus replication at early time points in
TLR7-deficient mice was attributed to inability to mount effective IgM and IL-10 responses, both of
which are enhanced by TLR7 signaling [42]. Deletion of the TLR7 adaptor, MyD88, also resulted in
higher levels of FV infection in knockout (KO) mice compared with heterozygous controls, up to at
least 16 weeks post-infection, and MyD88 KO mice were unable to generate FV-specific IgG responses.
FV-infected mice with B cell-specific deletion of MyD88 also had much higher levels of virus in their
spleens and significantly reduced FV-specific IgG in their serum compared with WT controls. TLR7
was required for this antibody response and for the development of germinal center B cells critical
for appropriate antibody responses [43,44]. Similarly, both MyD88 and TLR7 KO mice were unable
to mount virus-specific antibody responses after intraperitoneal injection of MMTV, and MyD88 KO
splenocytes did not secrete proinflammatory cytokines in response to ex vivo exposure to MMTV.
TLR7 KO mice infected with Rauscher-like MLV also failed to control virus and generate virus-specific
antibodies [45]. Together, these data strongly suggest that detection of murine retroviruses and the
subsequent adaptive immune responses are TLR7-MyD88-dependent.

Conversely, a more recent study suggested that TLR7 signaling exacerbated early F-MLV infection
and spread in the popliteal lymph nodes (pLN) of mice after subcutaneous inoculation of virus. TLR7
and type I IFN signaling activated B-1 cells, a highly susceptible population of cells within the pLN,
and made them more susceptible to F-MLV infection. B-1 cells then spread virus to other B cell
populations within the lymph node [46]. It is possible that the route of infection, virus dosage, or length
of time after infection alters the ultimate outcome of infection. It is also possible that TLR7-mediated
signaling creates a pool of actively dividing cells that are highly susceptible to MLV at early times
post-infection, but in the long term, TLR7 signaling is needed to generate the innate immune response
leading to adaptive immunity and infection control.

In vivo studies have also demonstrated a role for TLR3 in murine retrovirus sensing. During acute
FV infection, TLR3-deficient mice had increased viremia compared with WT mice. TLR3 depletion
diminished expression of type I IFNs and interferon-stimulated genes (ISGs), the numbers of activated
dendritic cells (DCs), and the cytotoxicity of natural killer cells and CD8+ T cells, all of which are
important to the antiviral response [47]. Further support that activation of the TLR3 pathway can
control retroviral infection comes from studies where polyI:C was used to stimulate TLR3 during
FV infection in mice [48]. TLR3 stimulation increased type I IFN levels and CD4+ and CD8+ T cell
responses and reduced viral loads, splenomegaly, and ultimately the development of leukemia in
mice. Although these responses were dependent on TLR3, the polyI:C-treated mice were not able to
completely control infection, so additional mechanisms must be necessary to clear virus. TLR3 likely
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detects endosomal dsRNA forms of MLV that occur when ssRNAs form secondary structures or when
the two genomic ssRNAs form dimers.

Still others have identified TLR9 as a potential PRR for retroviral RNA:DNA hybrids in conventional
and plasmacytoid DCs (pDCs). Although synthetic RNA:DNA hybrids activated TLR9-mediated
signaling and RNA:DNA hybrids were detected in endosomes of cells persistently infected with
Moloney MLV (M-MLV), the latter were not tested for their ability to activate TLR9-mediated
signaling [49]. However, endosomal HIV-1 RNA induced IFN-alpha production and activation of
pDCs, likely via TLR7 [50].

TLR 7 also plays a role in controlling spontaneous endogenous retrovirus (ERV) activation and
tumor formation in mice. Specifically, TLR7 KO and MyD88 KO mice had dramatic increases in
endogenous MLV expression; this also occurred in B cell-deficient mice and recombination activating 1
gene (Rag1) KO mice, which lack B and T cells, suggesting a role for TLR7-MyD88-mediated B cell
responses in controlling the emergence of ERVs [51]. ERV reactivation resulted in retrovirus-induced
lymphomas in the Rag1 KO mice through recombination between two nonfunctional ERVs to generate
an infectious and pathogenic virus. Interestingly, the emergence of ERVs varied depending on where
the TLR7 or MyD88 KO mice were housed, suggesting an environmental role for diet or microbiome in
the activation of ERV expression.

TLR3, TLR7, and TLR9 were also implicated in the development of T cell acute lymphoblastic
lymphoma (T-ALL) associated with ERV reactivation and reintegration in triple KO mice [52]. As in
the TLR7/MyD88/Rag1 study, increased ERV levels and budding retroviruses depended on loss of
TLR7. However, T-ALL developed only in conjunction with loss of TLR3 and 9 in aged triple KO mice.
TLR3, TLR9 and TLR3/9 KOs all produced wild-type levels of ERV-specific antibodies when challenged
with purified ERVs, whereas TLR7, TLR3/7, or TLR 7/9 double or TLR3/7/9 triple KO mice were unable
to produce ERV-specific antibodies. These results suggest that ERV replication intermediates generated
during ERV reactivation are detected, that TLR7 is important for generating a protective antibody
response, and moreover, that TLR3 and TLR9 modulate this response, leading to tumor rejection.

In addition to the nucleic acid-sensing TLRs, TLR4 has been implicated in murine retrovirus
sensing. The milk-borne retrovirus MMTV associates with the microbiota, specifically by binding LPS
from intestinal bacteria, and activates TLR4- and MyD88-dependent signaling to induce expression
of the immunosuppressive cytokine, IL-10; this in turn facilitates viral persistence and transmission
via milk to pups [53]. To enable interactions with LPS and subsequent TLR4 activation and viral
transmission, MMTV incorporates LPS-binding proteins TLR4 and CD14 into its membrane. As MD-2
directly binds LPS and forms a complex with TLR4, MD-2 was required on virion particles for TLR4
activation [54] (Figure 2).

MMTV interacts with TLR4 on the cell surface [55]. One as-of-yet unsolved aspect of the role
of TLR3, TLR7, or TLR9 in detecting retroviruses is that their ligand-binding domains are located
within endosomes or on the cell surface, yet release of viral RNA and reverse transcription occurs
within the cytoplasm upon infection. This suggests that these nucleic acid-sensing TLRs are detecting
defective retroviral particles, virus-infected cells engulfed by sentinel cells, or virions endocytosed as
part of immune complexes. Indeed, TLR7 is known to encounter self RNAs that enter endosomes as
RNA-autoantigen complexes via the B cell receptor or as RNA-immune complexes that are endocytosed
via the Fc receptor [56,57].

4. ALRS, cGAS and Other Sensors

During infection, nucleic acids from viruses and bacteria found in the host cell cytosol or nucleus
likely escape detection by TLRs, which are expressed on the cell surface or in endosomal compartments.
Sensors such as RLRs, ALRs, and cGAS are responsible for the innate immune response to cytosolic
and nuclear nucleic acids produced upon infection or in actively infected cells [58–60]. RLRs are
not known to be involved in the antiviral response to mouse retroviruses and will not be further
discussed [21]. cGAS is an enzyme that upon binding to dsDNA catalyzes synthesis of cyclic guanosine
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monophosphate–adenosine monophosphate (cGAMP), which directly binds to and activates stimulator
of interferon genes (STING) [60] (Figure 2). The ALRs, also called PYHIN proteins, contain an
N-terminal pyrin domain (PYD) and one or two C-terminal HIN domains [4]. The PYD domain is
involved in protein–protein interactions with other PYD-containing proteins, while the HIN domain
binds DNA. In contrast to the four ALR genes found in humans, there are 12–13 mouse Alrs, depending
on the inbred mouse strain, encoded at a single locus on mouse chromosome 1 [58,61,62]. Several other
sensors, including members of the DEAD box helicase and zinc-finger families, such as DEAD-box
helicase 41 (DDX41) and zinc-finger antiviral protein (ZAP), respectively, have been implicated in
retrovirus nucleic acid recognition [14,21,63].

Nucleic acid sensing by cGAS and DDX41, as well as several ALRs, activates the STING-dependent
IFN induction pathway or the formation of inflammasomes and inflammatory cell death [3,4].
In contrast to cGAS, after DDX41 and ALRs detect nucleic acids, they likely directly interact
with STING [58,61,63,64] (Figure 2). STING activation induces its dimerization, association with
TBK1, and translocation from the endoplasmic reticulum (ER) to the Golgi apparatus. TBK1 then
phosphorylates the transcription factors IRF3 and NF-κB, which translocate to the nucleus, leading
to the production of type I IFNs and proinflammatory cytokines [65]. In addition to activating
STING-dependent signaling, the ALRs IFI16 and AIM2 can form inflammasomes in human cells.
They bind pathogen DNA at their HIN domains, which frees their PYDs to form homotypic interactions
with the PYD of apoptosis-associated speck-like proteins containing a carboxy-terminal CARD
(ASC). The caspase activation and recruitment domain (CARD) of ASC interacts with the CARD of
pro-caspase-1, inducing cleavage and activation of pro-IL-1β, pro-IL-18, and gasdermin-D, resulting in
inflammatory cell death called pyroptosis [4,66]. IFI16 detects abortive HIV-1 reverse transcripts in
CD4 T cells, leading to pyroptosis; however, rather than protecting the host, this mechanism depletes
CD4 T cells and contributes to progression to AIDS [67]. However, whether any of the murine ALRs
aside from AIM2 play a direct role in inflammasome formation or if murine retroviruses activate the
inflammasome has not been studied.

Several studies have demonstrated the importance of cGAS and some of the mouse ALRs during
the innate immune response to viral and bacterial infections. cGAS is important for IFN-β production
in response to HSV-1 and Francisella novicidia infection [68,69]. The ALRs IFI204 in mouse cells and
IFI16 in human cells are required for detecting transfected HSV-1 and vaccinia virus DNA, and IFI204 is
required for production of type I IFNs and other cytokines during HSV-1, F. novicida, and Mycobacterium
bovis infections [64,68,70]. Moreover, the release of mitochondrial DNA into the cytoplasm during
infection by dengue virus, a flavivirus, leads to cGAS activation [71].

As reverse transcription occurs in the cytosol, these sensors also are important for innate immune
responses during retroviral infections. Prior to the identification of cGAS and ALRs as retroviral sensors,
it was demonstrated that sensing of reverse transcripts occurred because depletion of three prime repair
exonuclease 1 (TREX1), a cytosolic ssDNA exonuclease that binds and degrades DNA, led to enhanced
cytokine responses to HIV infection [72]. TREX1 degradation of reverse transcripts therefore dampens
potential immune responses to retroviruses. However, it does not apparently target DNA destined for
the PIC, since loss of TREX1 does not lead to increased proviral integration of HIV-1 in vitro or MLV
in vivo [73] (Aguilera and Ross, in preparation). It thus potentially functions to promote retrovirus
infection by degrading abortive reverse transcription products that would otherwise induce immune
responses without diminishing the dsDNA viral genome destined for chromosomal integration.

The nucleic acid sensor cGAS is essential for IFN-β and CXCL10 induction in the in vitro
response to MLV infection in TREX1-depleted L929 cells and murine embryonic fibroblasts (MEFs) [74].
This STING-dependent response was also observed during infection with non-murine retroviruses
such as HIV and demonstrated that cGAS is a common sensor of retroviral DNA. In addition to cGAS,
DDX41 and the ALR IFI203 were identified as STING-dependent sensors of TREX1-sensitive MLV
reverse transcripts in infected murine macrophages and DCs. IFI203 and DDX41 interacted with each
other and with MLV reverse transcripts in the cytosol [63]. Additional studies determined that DDX41
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binds the initial products of reverse transcription, MLV RNA:DNA hybrids, while cGAS binds dsDNA
generated at a later step, and that both functioned synergistically to induce type I IFNs via STING.
Both DDX41 and cGAS were required for sensing and control of MLV in vivo; this control required
DDX41 expression in DCs but not macrophages [14].

Recent studies have shown that ALRs such as IFI16 in humans and IFI204 in mice also function as
transcriptional repressors of virus gene expression. For example, IFI16 has been shown to decrease
HSV-1 and HIV-1 gene expression in the nucleus [75,76]. Similarly, the murine ALR IFI204 decreased
HIV-1 gene expression and shedding of RT-containing MLV virions when ectopically overexpressed in
human cells, and complete knockout of the entire ALR locus in mice led to increases in plasma viremia
and smaller, yet significant, increases in the numbers of infected cells during acute FV infection [76].
This is interesting, in light of a report that this same deletion of the ALR locus did not alter the response
to transfected DNA or human cytomegalovirus in primary cells derived from the same KO mice [77].

The ALRs AIM2 and IFI205 along with cGAS also play a role in sensing endogenous retroelement
DNA [61,78]. In TREX1 KO mice, DNA accumulates in tissues and is detected by sensors which signal
through the cGAS–STING pathway, activating immune cells and causing severe inflammatory tissue
damage, particularly in the heart [78,79]. Mutations in human TREX1 are linked to inflammatory
and autoimmune diseases such as Aicardi–Goutières syndrome [80]. In the absence of TREX1, IFI205
in mouse macrophages and cGAS in mouse cells or heart tissue can detect cytosolic retroelement or
self-DNA and stimulate type I IFNs and ISGs [61,78]. However, when AIM2 is expressed, IFI205
is blocked from interacting with STING and unable to activate immune responses to retroelement
DNA [61]. This, along with TREX1, likely helps to prevent overactivation of the innate immune
response and autoimmunity. IFI205 has also been shown to activate transcription of Asc, and IFI205
depletion results in decreased inflammasome activation in response to transfected dsDNA [81].
Whether endogenous retroviruses also increase ASC levels via IFI205 has not been tested. Interestingly,
Alr genes have been implicated in autoimmune diseases such as lupus in mice [82].

Another antiviral host factor that diminishes the host response to retroviruses is apolipoprotein
B editing, catalytic subunit 3 (APOBEC3). While the number of APOBEC3 genes varies among
mammalian species, mice encode a single Apobec3 gene (mA3) [83]. APOBEC3 proteins are cytidine
deaminases which are packaged into virions and induce G-to-A hypermutations in DNA. Human
APOBEC3 proteins act on minus-strand DNA during RT via this mechanism to restrict retrovirus
replication [84]. However, APOBEC3 proteins also inhibit reverse transcription, likely by binding to
RT [85] (Figure 2). Interestingly, mouse APOBEC3 largely blocks infection by murine retroviruses like
MMTV and MLV by this mechanism [86,87]. While this limits productive infection, it also has the
potential to reduce the level of ligands that can be detected by nucleic acid sensors. Indeed, APOBEC3
KO cells and mice have higher interferon and cytokine responses to MLV infection than WT mice [63].

ZAP, another cytosolic sensor, was identified because of its ability to deplete cytosolic M-MLV
mRNAs and inhibit retroviral gene expression in infected cells [22,88]. M-MLV also replicates to higher
levels in ZAP KO MEFs compared with WT MEFs [21]. When ZAP is ectopically expressed, it localizes
to RNA-containing stress granules [89]. It then recruits MLV RNA by binding to the U3 region via
its zinc-finger domains and to exosome components that degrade the MLV transcripts [21,88]. Thus,
rather than initiating a signaling cascade that signals to other cells to arm themselves against infection,
these data suggest that ZAP behaves as a cell-intrinsic antiviral sensor that causes the degradation of
retroviral cytosolic RNA destined for translation or packaging into virions.

5. Viral Proteins that Block Host Sensors

Different murine retroviruses use a variety of mechanisms to protect against host sensors.
For example, the capsids of MLV and other retroviruses act as protection against host nucleic acid
sensors. Reverse transcription requires disassembly or loosening of the virion structure. Mutations in
a gag-encoded protein found in Gammaretroviruses called glycoGag cause the capsid to fall apart more
easily, resulting in increased reverse transcription and more ready access by host nucleic acid sensors
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to viral nucleic acids [63,87,90]. In contrast, capsid-stabilizing mutations do not undergo reverse
transcription, and although this has not been tested, these viruses likely would not be detected by
host sensors [91]. MMTV RT, on the other hand, carries out very rapid reverse transcription compared
with other retroviral RTs [92]. This may limit the time that the different forms of nucleic acid are
accessible to host sensors. The MLV capsid also impedes access of APOBEC3 to the reverse transcription
complex, since glycoGag mutant viruses are more sensitive to APOBEC3-mediated inhibition of reverse
transcription than are WT viruses [63,87]. Furthermore, MLVs encode a protein called P50 made from
an alternatively spliced transcript, which interacts with APOBEC3 to block its packaging into new
virions and to block APOBEC3-dependent restriction of MLVs both in vitro and in vivo [93].

Capsid sequence or structure may also limit the ability of host protein sensors, such as Tripartite
motif (TRIM5α), to detect MLV capsids [94,95]. Although the retroviral capsid can protect against
APOBEC-mediated restriction of viral reverse transcripts, the capsid lattice structure can also act as a
PAMP and mediate innate immune signaling. TRIM5α protein, an E3 ubiquitin ligase, binds to the
capsids of HIV-1 and other retroviruses, including N-tropic MLV, whose CA sequence differs from
M-MLV, a B-tropic virus (N and B refer to the mouse strains susceptible to these viruses). After binding
capsid, TRIM5α autoubiquitinates and induces transcription of inflammatory genes via NF-κB and
MAPK signaling [96–98]. In addition to its role as a PRR, TRIM5α restricts HIV-1 and N-tropic MLV by
degrading or disassembling viral cores, thereby reducing both reverse transcription and integration
products [99]. Humans have a single TRIM5α gene, while mice have eight or more Trim5-like genes
due to expansion of the locus [100]. A recent study suggested that mouse TRIM12c is a homolog to
human TRIM5α. TRIM12c had ubiquitin-ligase activity, induced IFN-β and NF-κB promoter activity
when overexpressed, and restricted replication of mouse stem cell virus, a MLV-based retroviral vector;
however, whether this was due to capsid recognition was not determined [101].

6. Conclusions

Immune responses to retroviruses and ERVs are mediated by TLRs, ALRs, cGAS, and other
cytosolic sensors. This wide variety of receptors and the intricate signaling pathways which they activate
are necessary to facilitate targeted immune responses as endogenous and exogenous retroviruses
produce multiple ligands and replicate in many different cellular compartments, cells, and tissues.
These sensors and signaling pathways mediate B and T cell activity, activation of type I IFNs, cytokines,
and other antiviral genes, and stimulate antibody responses to effectively reduce viral loads and protect
the host. When appropriate, these PRRs also negatively regulate inflammatory responses to reactivated
ERVs to prevent autoimmunity and tumor formation. Although these highly tuned signaling pathways
have evolved to protect the host, retroviruses have also evolved to counteract or evade these protective
host responses, facilitating their persistence and pathogenesis.

The use of naturally infectious retroviruses in genetically modified mice lacking different PRRs,
nucleic acid sensors, and downstream effector molecules has provided much information about their
role in immune responses and control of infection. Yet to be determined are (1) how binding of
ALRs and DDX41 to STING activates it; (2) how endosomal PRRs recognize viral PAMPs during
natural infection; (3) why mice have an expanded ALR locus and whether pathogens like retroviruses,
or endogenous retroviruses contributed to this expansion; and (4) given the persistence of these
retroviruses in mice for millions of years, whether there are as-of-yet undiscovered viral proteins that
block sensor recognition?
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