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Abstract
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contrib-
ute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in
Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by
the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol
(Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from
A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated bio-
synthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae.
Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and
past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that
are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene
transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further
showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar
aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last
common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid part-
nership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid
functions.

Key words: Actinophryidae, plastid evolution, aminoacyl-tRNA synthase, gene transfer, phylogenomics, organellar
DNA.

Introduction
Photosynthetic plastids are responsible for the conversion
of solar energy to biochemical energy, ATP, and NADPH,
both of which are then utilized in biochemical reactions
such as carbon fixation and biosynthesis of amino acids,
fatty acids, and various prosthetic groups, for example,
heme (Plaxton 1996; Kleffmann et al. 2004). The first
photosynthetic eukaryote is suggested to have arisen
through endosymbiosis between a heterotrophic protistan
eukaryote and a cyanobacterium closely related to
Gloeomargarita lithophora (Ponce-Toledo et al. 2017;
Moore et al. 2019). That endosymbiotic event, called pri-
mary endosymbiosis, occurred at least 900 Ma in the com-
mon ancestor of Archaeplastida comprising land plants,
green algae, red algae, glaucophytes, Rhodelphidia, and

Picozoa (Gould et al. 2008; Parfrey et al. 2011; Shih and
Matzke 2013; Gawryluk et al. 2019; Sibbald and
Archibald 2020; Schön et al. 2021; Tice et al. 2021; Irisarri
et al. 2022). Subsequently, multiple heterotrophic
eukaryotes further acquired green alga-derived or red alga-
derived plastids through eukaryote–eukaryote endosym-
bioses, which have given rise to green alga-derived plastids
in chlorarachniophytes, euglenophytes, and green dinofla-
gellates, and red alga-derived plastids in dinoflagellates,
apicomplexans, colpodelids, cryptophytes, haptophytes,
and ochrophytes (Adl et al. 2019; Sibbald and Archibald
2020).

Ochrophyta is one of the most diverse groups of photo-
synthetic eukaryotes (Adl et al. 2019; Sibbald and
Archibald 2020), including nonphotosynthetic species
that have lost photosynthesis secondarily (Kamikawa
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et al. 2017; Dorrell et al. 2019; Kayama et al. 2020). The
best-known Ochrophyta lineages are the unicellular dia-
toms (Bacillariophyceae) whose primary production in
the ocean contributes almost 20% of the net global pri-
mary production (Field et al. 1998; Mann 1999) and the
multicellular brown algae (Phaeophyceae) such as giant
kelp, which support coastal ecosystems as habitats for
aquatic animals (Bringloe et al. 2020). Ochrophyte species
possess plastids derived from a red alga, obtained either
through secondary endosymbiosis or from a red alga-
derived plastid-bearing eukaryote by tertiary endosymbi-
osis, although the precise origin remains unclear (e.g.,
Burki et al., 2016; Strassert et al. 2021). Ochrophytes pos-
sess plastids bound by four membranes of which the
outermost membrane is fused with the endoplasmic re-
ticulum (ER) and the nuclear membrane (Andersen
2004). Despite the ecological and evolutionary importance
of Ochrophyta, early plastid evolution in the group is not
fully understood. A recently popularized hypothesis sug-
gests that the plastid was acquired after the divergence
of Ochrophyta from closely related lineages (Stiller et al.
2014; Burki et al., 2016; Dorrell et al. 2017; Strassert et al.
2021).

Ochrophyta is part of the Stramenopiles, a large eukary-
otic assemblage that unites them together with
Pseudofungi such as the pathogenic oomycetes
(Derevnina et al. 2016), Sagenista, and Opalozoa (e.g.,
Blastocystis spp. that inhabit human intestines
[Cavalier-Smith and Chao 2006; Tan 2008; Gentekaki
et al. 2017]). In many previously reported phylogenetic
trees, Ochrophyta is reconstructed as sister to
Pseudofungi (e.g., Cavalier-Smith and Chao 2006; Derelle
et al. 2016; Cenci et al. 2018). However, it remains unclear
whether Pseudofungi is actually the extant closest relative
to Ochrophyta, as phylogenetic positions of some lineages
of the Stramenopiles have not yet been confirmed by
genome- or transcriptome-based phylogenomic analyses.
The addition of more Stramenopiles taxa to phylogenomic
analyses would provide deeper insight into the closest liv-
ing relative of Ochrophyta and its in-depth analyses would
help us understand the early plastid evolution.

Actinophryidae includes enigmatic eukaryvorous, het-
erotrophic protists belonging to the Stramenopiles (Adl
et al. 2019). Their spherical cells lack cilia, but possess a
number of microtubule-supported, radiating axopodia
(Ockleford and Tucker 1973; Suzaki et al. 1980;
Sakaguchi et al. 1998; Mikrjukov and Patterson 2001;
Cavalier-Smith and Scoble 2013). Ultrastructural studies
have not detected any plastid or plastid-like structures.
The phylogenetic position of Actinophryidae remains un-
clear, despite its detailed morphological characterization
and molecular phylogenetic analyses based on genes for
18S rRNA and actin have been conducted (Ockleford
and Tucker 1973; Suzaki et al. 1980; Sakaguchi et al.
1998; Mikrjukov and Patterson 2001; Nikolaev et al 2004;
Cavalier-Smith and Scoble 2013).

In this study, we generated transcriptome data of
Actinophrys sol, the type species of the genus

Actinophrys, which unveiled previously unknown aspects
of its evolution and cell biology. Our phylogenomic ana-
lysis employing a 239 protein-dataset comprising 75 taxa
and 75,984 sites provides a well-resolved tree of the
Stramenopiles and reveals A. sol is closely related to
Ochrophyta, giving rise to the phylogenetic clade compris-
ing Ochrophyta and Actinophryidae. Genome sequencing
and transcriptome-based metabolic reconstruction pro-
vide no evidence of a current plastid, consistent with the
previous transmission electron microscopic observation.
Based on our finding that the nonphotosynthetic deep-
branching A. sol possesses mitochondrial
aminoacyl-tRNA synthase genes that share evolutionary
origins with plastid-localized counterparts of photosyn-
thetic Ochrophyta, we discuss the organellogenesis for
the plastid acquisition of Ochrophyta.

Results and Discussion
The Close Relationship Between Actinophryidae and
Ochrophyta
To obtain hundreds of conserved protein sequences of
A. sol for phylogenomic analysis, we performed Illumina-
based RNA sequencing of A. sol NIES-2497 cocultivated
with the prey green alga Chlorogonium capillatum
NIES-3374. From the total assembled contigs, those de-
rived from the prey alga were removed (Supplementary
fig. S1, Supplementary Material online). As a result, we ob-
tained 39,797 contigs highly likely derived from A. sol. The
quality of the transcriptome data was evaluated by BUSCO
v2 (Simão et al. 2015) and we detected 279 of 303 “core
eukaryotic genes.”

We constructed a phylogenomic dataset containing
A. sol and sampled Ochrophyta taxa more comprehensive-
ly than or comparable to previous studies (e.g., Derelle
et al. 2016; Noguchi et al. 2016; Thakur et al. 2019; Di
Franco et al. 2022). With the dataset comprised of 75
taxa and 75,984 amino acid sites, the maximum likelihood
(ML) analysis under the site heterogenous LG+G4+ F+
C60-PMSF (Wang et al. 2018) model provided a robust tree
of the Stramenopiles. The phylogenomic analysis recon-
structed four well-known clades of the Stramenopiles,
comprising Pseudofungi, Sagenista, Opalozoa, and
Ochrophyta (fig. 1). All the nodes in the Ochrophyta clade
were supported by high bootstrap values (97–100%).

Ochrophyta has been taxonomically divided into
two large groups—Diatomista and Chrysista:
Bolidophyceae, Bacillariophyceae, Dictyochophyceae,
Pinguiophyceae, and Pelagophyceae are subassemblages
of the former, and Chrysophyceae, Synchromophyceae,
Phaeophyceae, Xanthophyceae, Raphidophyceae, and
Eustigmatophyceae of the latter (Adl et al. 2019). The
current tree supports the above two large groups
with exception of the position of Pinguiophyceae
(Adl et al. 2019), which branches within Chrysista
with 97% bootstrap support (fig. 1). Chrysista is further
divided into two or more subgroups in our analysis.
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Together with Pinguiophyceae, Chrysophyceae and
Synchromophyceae were reconstructed as monophylet-
ic with 99% ML bootstrap support, and the other
lineages, that is, Eustigmatophyceae, Raphidophyceae,
Xanthophyceae, and Phaeophyceae, were also

monophyletic with 97% bootstrap support (fig. 1).
Note that some lineages such as
Phaeothamniophyceae are still not included in this
analysis and that phylogenetic positions of some of
the lineages in this tree, such as Eustigmatophyceae
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FIG. 1. Phylogenomic tree of the Stramenopiles. Tree reconstruction was conducted by ML analysis with a dataset comprised of 75 taxa and
75,984 amino acid sites under LG+G4+ F+C60-PMSF model. Species of Alveolata and Rhizaria are regarded as outgroup taxa. The numbers
on branches are the ML bootstrap values. If not shown, the nodes are fully supported.
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(fig. 1), are inconsistent with previously reported phy-
logenomic studies; Eustigmatophyceae was recon-
structed as more closely related to Chrysophyceae
and Synchromophyceae (Ševčíková et al. 2015; Di
Franco et al. 2022). Although the position of
Pinguiophyceae close to Chrysophyceae and
Synchromophyceae (fig. 1) is consistent with those of
Dorrell et al. (2021) and Strassert et al. (2021), this re-
lationship is not supported by the analysis in Di Franco
et al. (2022).

The tree also resolves deeper relationships in the
Stramenopiles (fig. 1). Opalozoa is the deepest branching
lineage, and Sagenista is the second deepest in the current
tree of the Stramenopiles (fig. 1), consistent with a previ-
ous study (Noguchi et al. 2016). Similarly, Pseudofungi is
more closely related to Ochrophyta (fig. 1), as seen in pre-
vious studies (Cavalier-Smith and Chao 2006; Riisberg et al.
2009). Most importantly, A. sol was not nested in the
above well-known clades of the Stramenopiles but
branched sister to the clade of the photosynthetic lineages,
Ochrophyta, with the full bootstrap support (fig. 1). Even
after stepwise removal of fast-evolving sites and heterota-
chious sites, the topology of the tree (fig. 1) including the
sister relationship between A. sol and Ochrophyta was sup-
ported by high ultrafast bootstrap values (Supplementary
fig. S2, Supplementary Material online). Our coalescence-
based phylogenomic analysis using ASTRAL-III (Zhang
et al. 2018) also recovered the close relationship between
A. sol and Ochrophyta with full support (100/1.0 astral
bootstrap/local posterior probability), although the sister
relationship of the two lineages is not well resolved (0.53/
0.80) (Supplementary fig. S3, Supplementary Material
online).

Although the sister relationship of Actinophryidae and
Ochrophyta might require more systematic evaluation,
the phagotrophic eukaryvorous lineage Actinophryidae is
key to understanding the origin and evolution of
Ochrophyta.

No Evidence for Plastid DNA in A. sol
As A. sol is a eukaryvorous nonphotosynthetic protist and
the closest relative of Ochrophyta, it might provide insight
into the early evolution of the ochrophyte plastid. To in-
vestigate whether A. sol possesses a nonphotosynthetic
plastid sharing the same origin with the ochrophyte plas-
tid, we first performed DNA sequencing of A. sol cultivated
with the prey green alga C. capillatum. We detected 58
contigs (247,952 bp in length in total) that showed nucleo-
tide sequence similarity to either of partial chloroplast
genome sequences of C. capillatum (GenBank
accession number: KT625085–KT625091) and one contig
(22,647 bp in length) with nucleotide sequence similarity
to a partial mitochondrial genome of the green alga
C. elongatum (GenBank accession number: Y13644). We
additionally detected a 53,041 bp-long circularly mapping
sequence, of which encoded protein sequences were hom-
ologous to those of mitochondrial genomes of the

Stramenopiles such as the oomycete Aphanomyces inva-
dans (GenBank accession number: KX405005), indicating
that the contig is of A. sol mitochondria (deposited in
DNA Data Bank of Japan under the accession number
LC650202). The coverage of the A. sol mitochondrial
DNA was ca. 11 (Supplementary table S1, Supplementary
Material online). Then, we compared read coverages of
mitochondrial DNAs and plastid DNAs of several
nonphotosynthetic plastid-bearing ochrophytes (see
Supplementary table S1, Supplementary Material online).
Since coverages of both genomes were comparable to
one another in each species, plastid DNA would be de-
tected in A. sol if present. As there are no other contigs
with sequence similarity to organellar DNAs, it is highly
likely that A. sol lacks a plastid genome.

To support this possibility, we further searched
plastid-targeted protein homologs responsible for organel-
lar DNA replication, transcription, and translation from
the A. sol transcriptome data (Supplementary dataset S1,
Supplementary Material online). We detected transcripts
for plant and protist organellar DNA polymerase, transla-
tion initiation factor, translation elongation factor, ribo-
nuclease HII, organellar single-subunit RNA polymerase,
50S and 30S ribosomal proteins, ribosome recycling factor,
peptide chain release factor, and aminoacyl-tRNA synthe-
tases (aaRSs) of A. sol. However, these transcripts are rather
homologous to mitochondrial-targeted proteins of other
eukaryotes (Supplementary dataset S1, Supplementary
Material online). Mitochondrial-targeting sequences were
predicted in 42 from 66 transcripts for organellar DNA rep-
lication, transcription, and translation, whereas 24 of them
are truncated or possess N-terminal extensions containing
no detectable targeting signals (Supplementary dataset S1,
Supplementary Material online). None of the detected se-
quences confidently possesses the N-terminal extensions
including a signal peptide followed by a transit peptide-like
region with phenylalanine, tyrosine, tryptophan, or leucine
at the first position, which are typical plastid-targeting se-
quences of complex plastids including the ochrophyte
plastid (Maier et al. 2015) (Supplementary dataset S1,
Supplementary Material online).

No Transcriptomic Evidence for Plastid-Type
Biosynthetic Pathways in A. sol
Plastids in photosynthetic and nonphotosynthetic
Ochrophyta play crucial roles for various metabolisms
such as glycolysis/gluconeogenesis, biosynthesis of fatty
acids, lipids, amino acids, heme, riboflavin, isoprenoids,
Fe–S clusters, and the pentose phosphate pathway
(Plaxton 1996; Kleffmann et al. 2004; Kamikawa et al.
2017; Dorrell et al. 2019; Kayama et al. 2020). Even in sec-
ondary heterotrophic ochrophytes that bear nonphoto-
synthetic plastids, transcriptomic analyses detect large
numbers of transcripts for plastid functions and biogenesis
(Kamikawa et al. 2017; Dorrell et al. 2019; Kayama et al.
2020). If A. sol possesses a metabolically active nonphoto-
synthetic plastid sharing the origin with plastids of
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Ochrophyta, at least some transcripts encoding proteins
involved in the plastid biosynthesis should be detected.
We surveyed homologs of 114 proteins that were involved
in the above metabolisms by homology-based search
(E-value, e−5) with photosynthetic diatom and land
plant sequences as queries. The procedure detected 60
transcripts of which encoded protein sequences were
homologous to the 38 query proteins. However, they
were rather homologous to cytosolic or mitochondrial
proteins of other eukaryotes (Supplementary dataset S2,
Supplementary Material online). Indeed, there were no
confidently recognizable plastid-targeting sequences at
the N-termini of the detected homologs (Supplementary
dataset S2, Supplementary Material online). Rather, some
have N-terminal mitochondrial transit peptides, others
possess only signal peptides or lack any N-terminal exten-
sion (Supplementary datasets S2, Supplementary Material
online). In addition, we also surveyed homologs of trans-
porters known to be localized in the plastid membranes.
In the A. sol transcriptome data, there are no plastid-
targeted homologs of translocators localized in the four
membranes of the Ochrophyta plastid: plastid triose phos-
phate transporters (Moog et al. 2015, 2020), the symbiont-
specific ER-associated degradation-like machinery, and
translocons at the innermost and the second innermost
envelope membrane of chloroplast (TOC/TIC) (Moog
et al. 2011; Stork et al. 2013; Maier et al. 2015)
(Supplementary dataset S3, Supplementary Material on-
line). Any plastids would utilize at least some components
of TIC/TOC to import nuclear-encoded plastid proteins
across membranes. Although we detected the Sec61 com-
plex protein sequences facilitating protein import across
the outermost membrane of the Ochrophyta plastids,
the detected transcripts do not necessarily indicate the
presence of a plastid as the Sec61 complex also localizes
in the ER membrane of plastid-lacking eukaryotes
(Osborne et al. 2005).

An alternative survey employing the presence or ab-
sence of N-terminal plastid-targeting sequences, using
ASAFind (Gruber et al. 2015), was also applied to the
A. sol transcriptome data (see Materials and Methods).
Although 48 A. sol deduced proteins with clear homology
to proteins found in other eukaryotes were predicted to
possess candidate N-terminal plastid-targeting sequences,
none of the functions assigned to these proteins is known
to be exclusively functional in any plastids (Supplementary
dataset S4, Supplementary Material online). Thus, we did
not consider the detected candidates as evidence of a plas-
tid in A. sol.

Lack of the molecular evidence for retained plastids in
A. sol due to insufficient transcriptome quality is unlikely
as we have detected many mitochondrial-targeted protein
homologs that are responsible for representative mito-
chondrial metabolisms. By homology-based survey, 132 se-
quences were detected as homologs to 97 of the 156 query
proteins for mitochondrial metabolism and translocons.
Of the 132 sequences, 15 sequences were of those encoded
in the A. solmitochondrial genome, and 83 sequences were

predicted to possess mitochondrial-targeting sequences at
the N-termini (Supplementary dataset S5, Supplementary
Material online). The detected mitochondrial sequences
could reconstruct the major mitochondrial metabolic
pathway of A. sol (fig. 2). Representative metabolisms in
the cytosolic and ER compartments were also recon-
structed by the transcriptome data of A. sol (fig. 2;
Supplementary datasets S2–S3, S5, Supplementary
Material online). These mitochondrial, cytosolic, and/or
ER metabolisms included the mevalonate (MVA) pathway
of isoprenoid biosynthesis, FASII fatty acid biosynthesis,
and lipid biosynthesis. However, no pathway was identified
in A. sol for the biosynthesis of heme and riboflavin, both
of which are major metabolites synthesized in plastids of
plastid-bearing organisms. In addition, homologs for the
biosynthesis of lysine, aromatic amino acids, and
branched-chain amino acids, usually localized in plastids
in photosynthetic eukaryotes, were not detected. It would
be worth noting that the A. sol transcriptome data contain
transcripts predicted as homologs for the biosynthesis of
methionine from cysteine and of proline from arginine,
all of which are highly likely localized in cytosol or mito-
chondria (Supplementary dataset S5, Supplementary
Material online). We did not detect homologs for the bio-
synthesis of arginine, asparagine, and histidine in our data.
Instead, we could detect transcripts for proteins involved
in heme maturation, and for heme attachment to cyto-
chrome c as well as cytochrome c-mediated mitochondrial
respiration complexes (Supplementary datasets S5 and S6,
Supplementary Material online), strongly suggesting heme
is required for A. sol. Similarly, we detected transcripts for
riboflavin conversion to flavin mononucleotide (FMN) and
flavin adenine dinucleotide (FAD) as well as FMN- and
FAD-dependent protein sequences (Supplementary
datasets S5 and S6, Supplementary Material online). A.
sol might be capable of effectively acquiring the metabo-
lites from the prey. Dependence on extracellular heme,
riboflavin, and particular amino acids is not uncommon
in eukaryotes, such as the free-living nematode (Rao
et al. 2005; Payne and Loomis 2006; Subramanian et al.
2011; Biswas et al. 2013).

As described above, A. sol possesses cytosolic, mito-
chondrial, and ER-localized pathways (fig. 2), homologous
to the cytosolic pathways for isoprenoids (MVA pathway),
cytosolic and mitochondrial glycolysis and pentose phos-
phate pathway, and the ER-localized lipid metabolisms,
that the ochrophytes possess together with the
plastid-localized pathways (e.g., Tanaka et al. 2015;
Kamikawa et al. 2017). We detected the FASII fatty acid
biosynthesis pathway transcripts for proteins, FabD,
FabB/F, FabG, and FabI, which highly likely localize in the
cytosol or mitochondria (fig. 2), in the A. sol transcriptome
data. Although the phylogenetic analysis shows the A. sol
FabD is grouped with plastid-targeted homologs of photo-
synthetic eukaryotes including Ochrophyta species, the
bootstrap support for the relationship is low. In contrast,
the other genes for fatty acid biosynthesis in A. sol, that
is, the FabB/F, FabG, and FabI, are not specifically related
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FIG. 3. Evolution and localization of organellar aminoacyl-tRNA synthases in A. sol. (A) ML tree of GluRS. The “plastid clade” comprising plastid-
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to plastid-targeted homologs from Ochrophyta and other
lineages with red alga-derived plastids (Supplementary figs.
S4–S7, Supplementary Material online). As the FASII fatty
acid biosynthesis in Ochrophyta has been replaced by
endosymbiont-derived plastid-localized pathway (e.g.,
Kamikawa et al. 2017), the phylogenetic analyses suggest
that the fatty acid biosynthesis in A. sol has never been re-
placed by the plastid counterpart.

Gene Transfers of Organellar Aminoacyl-tRNA
Synthase Genes
To further evaluate a past plastid in Actinophryidae, we re-
constructed single-protein trees for the 158 protein se-
quences detected in the A. sol transcriptome during the
survey of plastid proteins (see above). Although the phylo-
genetic positions of most of those sequences were placed
in clades of cytosolic or mitochondrial homologs of other
eukaryotes (e.g., see Supplementary figs. S8–S17,
Supplementary Material online) or remained unclear due
to low bootstrap supports, the seven trees show
monophyletic groups exclusively comprising A. sol,
Ochrophyta, and some other photosynthetic eukaryotes
(hereafter referred to as “PL-clades”) with modest to
high bootstrap supports (fig. 3; Supplementary figs. S18–
S24, Supplementary Material online). These are not likely
random gene transfers, but rather there appears to have
been a certain selective pressure for A. sol to have gained
and retained these genes, all of which code a single enzym-
atic group, organellar aaRSs such as AspRS, GluRS, GlyRS,
LeuRS, SerRS, ThrRS, and ValRS. The organellar aaRSs in

photosynthetic eukaryotes including those of
Ochrophyta are reported to be dually targeted to both,
plastids and mitochondria (Duchêne et al. 2005;
Rokov-Plavec et al. 2008; Hirakawa et al. 2012; Gile et al.
2015; Dorrell et al. 2017). As the PL-clades are comprised
of unrelated photosynthetic organisms and the eukaryvor-
ous A. sol, they have highly likely been shaped by lateral/
endosymbiotic gene transfers. Some of the PL-clades con-
tain Chloroplastida, Rhodophyta, lineages with plastid de-
rived from green alga, that is, chlorarachniophytes and
euglenophytes, and lineages possessing plastid derived
from red alga, although internal relationships in all the
PL-clades are not well resolved due to low bootstrap sup-
ports. Given the organellar aaRSs of PL-clades present in
the sister lineages, A. sol (Actinophryidae) and
Ochrophyta, the genes might have been present in their
last common ancestor, based on parsimony logic.

We then carefully checked the other trees for aaRSs. In
AsnRS, A. sol, Ochrophyta, and some other photosynthetic
eukaryotes were also reconstructed as monophyletic but
the bootstrap support was low (Supplementary fig. S25,
Supplementary Material online). Phylogenetic analyses of
six aaRS, namely ArgRS, IleRS, LysRS, MetRS, TrpRS, and
TyrRS, show that sequences from A. sol, Ochrophyta, some
other photosynthetic eukaryotes, and bacteria form a clade
with low to high bootstrap values (Supplementary figs. S26–
S31, Supplementary Material online). We did not detect
CysRS and PheRS members of PL-clades in the A. sol tran-
scriptome data, but instead, A. sol possesses the genuine
mitochondrial-targeted counterparts (Supplementary figs.
S32 and S33, Supplementary Material online), consistent
with the genuine FASII pathway genes (Supplementary
figs. S4–S7, SupplementaryMaterial online).Wedetected se-
cond copies of AlaRS and HisRS in addition to the cytosolic
homologs (Supplementary figs. S34 and S35, Supplementary
Material online), but their phylogenetic positions
remain unclear. Although we conducted in-depth survey
for the aaRS homologs of the PL-clades in the heterotrophic
lineages of the Stramenopiles including Pseudofungi,
no candidate was identified but only genuinemitochondrial
aaRSs distantly related to the “PL-clades” were detected
(Supplementary figs. S18–S35, Supplementary Material
online).We did detect one exception, the ProRS of the deep-
branching heterotrophic stramenopile Cafeteria roenbergen-
sis groups in the PL-clade (fig. 3C; Supplementary fig. S36,
Supplementary Material online).

In contrast to the dual-targeted organellar aaRSs of
Ochrophyta (Gile et al. 2015), A. sol homologs were pre-
dicted to possess N-terminally mitochondrial-targeting se-
quences unless truncated (table 1; Supplementary dataset
S1, Supplementary Material online); there is no detectable
plastid-targeting sequences in those protein sequences as
discussed above (fig. 3E; table 1; Supplementary dataset
S1, SupplementaryMaterial online). To examine their mito-
chondrial localization, the GFPs N-terminally tagged with
the N-terminal region of each for GluRS, ProRS, LeuRS,
and ThrRS were expressed in cells of the photosynthetic
diatom Phaeodactylum tricornutum. We observed GFP

Table 1. Summary of the aaRS Gene Distribution in Actinophrys sol
Detected from the Transcriptome Data.

aaRSs Cyt-clade Mt-clade Unknown type PL-clade Localizationa

Ala + ND + ND −
Arg + ND ND + Mt
Asn + ND ND + 5′ truncated
Asp + ND ND + 5′ truncated
Cys + + ND ND −
Gln + ND ND ND −
Glu + ND ND + Mt
Gly + ND ND + 5′ truncated
His + ND + ND −
Ile + ND ND + 5′ truncated
Leu + ND ND + Mt
Lys + ND ND + Mt
Met + ND ND + 5′ truncated
Phe (alpha) + + ND ND −
Phe (beta) + ND ND ND −
Pro + ND ND + Mt
Ser + ND ND + 5′ truncated
Thr + ND ND + Mt
Trp + ND ND + 5′ truncated
Tyr + ND ND + Mt
Val + ND ND + 5′ truncated

NOTE.—+, sequence included in the clade was detected;−, not analyzed; ND, not
detected; Mt, mitochondrial-targeted. Mt underlined indicates the localization
was experimentally confirmed.
aPredicted localization of the PL-clade sequences.
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fluorescence colocalized with the mitotracker signals out-
side the chlorophyll signals (figs 3E and F), strongly suggest-
ing that the A. sol organellar aminoacyl-tRNA synthases
have the potential to be exclusively targeted to
mitochondria.

Hypotheses of Early Plastid Evolution of Ochrophyta
Together, our findings suggest the following four evolu-
tionary scenarios for the establishment of Ochrophyta
plastid. A certain portion of genes related to plastid bio-
genesis such as aaRSs were acquired in the last common
ancestor of Actinophryidae and Ochrophyta. If
Actinophryidae is sister to Ochrophyta as indicated by
our phylogenomic analysis (fig. 1), the gene transfers might
have been derived from lateral gene transfers not asso-
ciated with endosymbiosis (fig. 4A) or by endosymbiotic
transfers from a photosynthetic endosymbiont (fig. 4B
and C). Even if a photosynthetic endosymbiont as a source
of genes such as genes for certain aaRSs (fig. 3) was present
inside the host cell of the last common ancestor of
Actinophryidae and Ochrophyta, it remains unclear
whether the endosymbiont was of the same origin as the

current Ochrophyta plastids (fig. 4B) or was replaced by
another one in the last common ancestor of Ochrophyta
(fig. 4C). The later scenario is consistent with previous re-
ports that many plastid-bearing eukaryotes possess
nuclear-encoded genes for plastid functions and biogen-
esis that do not share an origin with the current plastid
(Moustafa et al. 2009; Maruyama et al. 2011; Burki et al.
2012). This is rationalized by the “shopping bag hypoth-
esis” (Larkum et al. 2007; Howe et al. 2008) and/or the “red-
carpet hypothesis” (Ponce-Toledo et al. 2019), which pro-
pose that such genes have been transferred from the an-
cient endosymbiont discarded later or were results of
lateral gene transfers not associated with endosymbiosis.

Otherwise, the last common ancestor of
Actinophryidae and Ochrophyta might have possessed a
plastid followed by its loss in an ancestor of
Actinophryidae (fig. 4D). This could explain why many
mitochondrial aaRS genes of A. sol are of PL-type, and
not genuine mitochondrial ones. However, in addition to
the algal genes, we have detected the genuine host-derived
genes for FASII and some organellar aaRS in A. sol (figs. 2
and 3; Supplementary figs. S4–S7, S32, and S33,
Supplementary Material online), genes of which
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Ochrophyta homologs have been replaced by plastid-
targeted ones. This observation can be rationalized by
metabolic and genetic redundancy kept in the last com-
mon ancestor of Actinophryidae and Ochrophyta, redun-
dancy which has been eliminated in the current plastids of
Ochrophyta (Kroth et al. 2008; Prihoda et al. 2012).
A similar assumption was previously made for the plastid
evolution in Archaeplastida and Picozoa (Schön et al.
2021). Thus, if true, A. sol might be the second free-living
candidate that has lost a plastid, following Picozoa
(Schön et al. 2021), because all other eukaryotes that
have lost a plastid are parasitic (Abrahamsen et al. 2004;
Gornik et al. 2015; Janouškovec et al. 2019). It is worth not-
ing that the last scenario (fig. 4D) stands regardless of
whether Actinophryidae is sister to or is nested within
Ochrophyta. Our implication does not directly rule out
the possibility that some of the PL-type aaRS genes were
acquired even before divergence of Ochrophyta,
Actinophryidae, and Pseudofungi, given the ProRS of
PL-clade in the opalozoan C. roenbergensis. Besides, some
genes in Pseudofungi are phylogenetically related to
photosynthetic organisms (Tyler et al. 2006).
Nevertheless, it would be worth noting that the “algal
genes” in Pseudofungi are phylogenetically distantly re-
lated to those of Ochrophyta and not directly related to
the plastid functions (Stiller et al. 2009; Wang et al.
2017). Therefore, the gene transfers so far found in
Pseudofungi are not directly related to the acquisition of
the Ochrophyta plastids (Wang et al. 2017).

Our findings in this study of A. sol demonstrate that ac-
quisition of algal genes related to plastid biogenesis does not
necessarily result in establishment and/or retention of a
plastid. In addition toA. sol, plastid-lacking eukaryotes close-
ly related to other plastid-bearing lineages might have simi-
lar evolutionary backgrounds, for example, Picozoa and
Alveolata (Waller et al. 2016; Schön et al. 2021). There are
numerous eukaryotes that have not been studied genomi-
cally, including eukaryotes known only from environmental
DNA sequences. Gathering more transcriptomic and gen-
omic data from such eukaryotes would provide more infor-
mation regarding the principles of plastid organellogenesis
and expand our knowledge on plastid evolution that began
more than a billion years ago and has subsequently under-
pinned the global ecology of this planet.

Materials and Methods
Details of materials and methods are described in
supplementary materials, Supplementary Material online.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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