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Abstract

Objective: The heterogeneity of pediatric sepsis patients suggests the potential ben-

efits of clustering analytics to derive phenotypes with distinct host response pat-

terns that may help guide personalized therapeutics. We evaluate the relative perfor-

manceof latent class analysis (LCA) andK-means, 2 commonlyused clusteringmethods

toward the derivation of clinically useful pediatric sepsis phenotypes.

Methods: Data were extracted from anonymized medical records of 6446 pediatric

patients that presented to 1 of 6 emergency departments (EDs) between 2013 and

2018 and were thereafter admitted. Using International Classification of Diseases

(ICD)-9 and ICD-10 discharge codes, 151 patients were identifiedwith a sepsis contin-

uum diagnosis that included septicemia, sepsis, severe sepsis, and septic shock. Using

feature sets used in related clustering studies, LCA andK-means algorithmswere used

to derive 4 distinct phenotypic pediatric sepsis segmentations. Each segmentationwas

evaluated for phenotypic homogeneity, separation, and clinical use.

Results: Using the 2 feature sets, LCA clustering resulted in 2 similar segmentations

of 4 clinically distinct phenotypes, while K-means clustering resulted in segmentations

of 3 and 4 phenotypes. All 4 segmentations identified at least 1 high severity phe-

notype, but LCA-identified phenotypes reflected superior stratification, high entropy

approaching 1 (eg, 0.994) indicating excellent separation between estimated pheno-

types, and differential treatment/treatment response, and outcomes that were non-

randomly distributed across phenotypes (P< 0.001).

Conclusion: Compared to K-means, which is commonly used in clustering studies,

LCA appears to be a more robust, clinically useful statistical tool in analyzing a het-

erogeneous pediatric sepsis cohort toward informing targeted therapies. Additional

prospective studies are needed to validate clinical utility of predictive models that tar-

get derived pediatric sepsis phenotypes in emergency department settings.
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1 INTRODUCTION

1.1 Background

In the absence of routinely available biomarkers, recent large cohort

studies indicate that clustering routinely available patient electronic

health record (EHR) data can identify clinically useful phenotypes

toward personalized care.1 The most common clustering techniques

used inmedicine2 aremixturemodels exemplified by latent class analy-

sis (LCA)3 and latent profile analysis (LPA),4 and K-means.5 In domains

relevant to our study, LCA has been used to detect phenotypes in

septic shock6 and ARDS,7–9 LPA in adult sepsis,10 whereas K-means

has been used in critically ill pediatric patients,11 adult sepsis,12,13

and septicemia.14 In many of these studies, derived phenotypes were

considered useful as a basis for targeted therapies. A comparable

derivation of EHR data-based pediatric sepsis phenotypes has not

been reported. Unlike K-means that uses a distance metric to iden-

tify clusters, mixture model techniques estimate the probability that

a given patient belongs to each of the different latent classes and are

therefore considered more statistically robust, accurate methods of

clustering.15–17 The clinical impact of this reported difference in clus-

teringmethods has not been studied.

1.2 Importance

Finding clusters of similar patients whose cluster membership pro-

vides information likely pertinent to prognosis and response to ther-

apy is an important goal in sepsis management. Although compliance

with pediatric sepsis protocols or “bundles” has been associated with

improved outcomes,18–20 it has been hypothesized that sepsis het-

erogeneity may explain why most therapeutic interventions have not

improved overall sepsis survival.21 Homogenized treatment given to

a highly heterogeneous patient population that fall under the wide

syndromic umbrella of sepsis may offer a minimum standard of care

although at the potential cost of compromising outcomes in an individ-

ual patient.22 For example, although intravenous fluid boluses remain

a cornerstone of the resuscitation of children with septic shock, an

increasing number of publications have highlighted the increasedmor-

bidity and mortality associated with aggressive fluid administration23

and thebenefits of early vasopressors.24 Thebasic concept of precision

medicine is the early identification of specific phenotypes of patients

that will respond to phenotype-targeted personalized treatment (eg,

type/amount/timing of fluids, vasopressors), or other treatments.25

Tools to provide this guidance not used in the practice of pediatric sep-

sis, and consequently care across the highly heterogeneous pediatric

sepsis population, remains homogenized.22 This situation is exacer-

bated by recent quality improvement studies that redefined pediatric

sepsis to include not only those with infection-related organ dysfunc-

tion but also those with infections that were treated for sepsis with

organ dysfunction potentially averted.26

1.3 Goals of this investigation

Ideally, from a clinical perspective, clustering of the EHR data

associated with a heterogeneous population would identify well-

separated,17,27 biologically plausible, reproducible homogeneous sub-

groups with distinct severities (risk stratification) and treatment

responses that would prognostically inform effective treatment. Both

LCA and K-means have been used in clustering studies cited above

as if these techniques are equivalent. However, in a study compar-

ing the accuracy of LCA and K-means, clustering in correctly identi-

fying classes where true class-membership was known but concealed

during analyses found that misclassification rate was approximately

4 times higher using K-means clustering than LCA.28 We performed

this study to derive and compare the potential clinical use of phe-

notypes obtained by LCA and K-means in a cohort of pediatric sep-

sis patients. Given that a comparable pediatric sepsis phenotyping

effort has not been reported, we used 2 differing, yet relevant fea-

ture sets for our study: the 22 clinical Pediatric Risk of Mortality

(PRISM)-based29 features used by Williams et al11 to derive 10 phe-

notypes of critically ill pediatric patients in intensive care, and the

29 clinical features (age-adjusted for our study) used by Seymour

et al12 to derive 4 phenotypes of sepsis patients meeting the most

recent adult sepsis definitions. Our goal was to compare the robust-

ness of LCA and K-means to varying feature sets of physiological vari-

ables, the separation quality of identified phenotypes considering both

distance and entropy metrics, and most importantly, the clinical use

of derived phenotypes toward informed outcomes and personalized

therapies.

2 METHODS

2.1 Study design and setting

This is an institutional review board-approved observational descrip-

tive retrospective30 study of the EHRs of 6446 non-neonatal pedi-

atric patients presenting to 1 of 6 tertiary adult/pediatric care admit-

ting facilities operated by a single institution that occurred from2013–

2018. The primary data source was the MedStar Washington Hospital

Center, a large academic medical center inWashington, DC, with addi-

tional data extracted from 5 additional MedStar hospitals located in

the DC-Baltimore metropolitan area. MedStar has the second-largest

pediatric liver transplant program in the United States.
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2.2 Selection of participants

In this cohort of 6446 hospitalized patients, 151 were identified

that met Improving Pediatric Sepsis Outcomes (IPSO) sepsis crite-

ria defined by EHR evidence of suspected infection and sepsis treat-

ment or organ dysfunction. Identification included hospitalized pedi-

atric patients with International Classification of Diseases (ICD)-9 and

ICD-10 discharge codes as listed in Supporting Information Table S1

representing a broad sepsis continuum diagnosis that included severe

infections, septicemia, sepsis, severe sepsis, and septic shock. Unlike

supervised machine-learning that relies on accurate positive/negative

case labeling, unsupervised clustering algorithms seeking subclasses of

a condition are trained using training data associated with only posi-

tive cases. Although sepsis is routinely under-recognized31 and under-

reported resulting in poor sensitivity, sepsis ICD diagnostic codes have

been shown to have high specificity32 and infection codes (eg, sep-

ticemia) effective in detecting patients with infections associated with

pediatric sepsis.33

2.3 Interventions

Participating institution extracted demographic and physiological data

of admitted pediatric patients from the common EHR system (Cerner)

used at the participating hospitals of pediatric patients that were

admitted over the 5-year period at any 1 of their 6 hospitals and iden-

tified those with a sepsis diagnosis. The institution transferred de-

identified data to a central data warehouse for analysis.

2.3.1 EHR features used in clustering analysis

TheEMRrecorded clinical observational data of the151 identified sep-

sis patients used to derive features used in LCA and K-means model-

ing (independent variables) did not contain information about diagno-

sis, treatments, or outcomes (dependent variables). We studied 2 dis-

tinctive sets of independent variables used to derive pediatric sepsis

phenotype-defining features:

1. Twenty-two variables based on PRISM score34 used byWilliams et

al11 to cluster pediatric patients receiving critical care. The vari-

ables used by Williams et al11 included inflammatory (tempera-

ture, white blood cell count [WBC]), pulmonary (respiratory rate

[RR], oxygen saturation [SpO2], partial pressure of oxygen [PaO2],

partial pressure of carbon dioxide [PaCO2], fraction of inspired

oxygen [FiO2]), renal (creatinine [Cr]), hepatic (total bilirubin), car-

diac/hemodynamic (heart rate [HR], bicarbonate, mean arterial

pressure [MAP]), hematologic (platelets, partial thromboplastin

time [PTT], red blood cell count [RBC]), central nervous system

(CNS), Glasgow Coma Scale (GCS), and acid-base and electrolytes

(pH, potassium, sodium, calcium, chloride).

2. Twenty-nine variables used by Seymour et al35 based on their

association with sepsis onset or outcome, their incorporation in

The Bottom Line

Applying statistical clustering methods, such as latent class

analysis (LCA) and K-means, can help to derive clinically rel-

evant models for pediatric sepsis phenotypes to aid in diag-

nostic and therapeutic approaches in the emergency depart-

ment (ED). Using data from nearly 6500 pediatric patients in

6 EDs over 5 years, LCA appears to be a more robust, clini-

cally useful tool in analyzing a heterogenous pediatric sepsis

cohort toward informing targeted therapies.

conceptual models of sepsis pathophysiology and host tolerance,

and their availability in the electronic health record at hospi-

tal presentation to cluster adult patients meeting Sepsis-3 cri-

teria. The variables used by Seymour et al35 were age-adjusted

as appropriate11 and included: age, Elixhauser comorbidity index,

inflammatory (temperature, WBC, bands, erythrocyte sedimen-

tation rate [ESR], and C-reactive protein [CRP]), pulmonary (RR,

SaO2, PaO2,), renal (blood urea nitrogen [BUN], Cr), hepatic (aspar-

tate transaminase [AST], alanine transaminase [ALT], total biliru-

bin), cardiac/hemodynamic (HR, bicarbonate, systolic blood pres-

sure [SBP], lactate, troponin), hematologic (platelets, international

normalized ratio [INR], hemoglobin [Hgb]), CNS (GCS), and serum

levels of glucose, sodium, chloride, and albumin.

EMR data is typically noisy and may include erroneous data, redun-

dancies, and semantically equivalent or similar observations measured

by more than 1 technique (eg, invasive vs non-invasive blood pressure,

skin vs core temperature, etc).We removed clearly erroneous data (eg,

non-numeric or physiologically impossible outliers), semantically har-

monized similar measurements and, based on established associations

between lab values and organ dysfunction criteria,36 used the most

abnormal minimum or maximum value of each variable over the entire

period of hospital stay for the LCA and K-means analysis as shown in

Supporting Information Tables S2 and S3.

In both Williams et al11 and Seymour et al35 features, significant

“missingness” was observed. This was expected given the diversity of

sepsis severity (eg, from disseminated infections treated in wards to

those with MODS treated in PICUs) By manual chart review, we val-

idated that specific “missing values” (eg, arterial blood gasses, miss-

ing metabolic panel labs in certain patients) were not “at random” and

were primarily associated with tests not indicated for the sepsis type

and severity (eg, those treated for infectionwith no organ dysfunction).

Consequently, missing observations in these patients were replaced

with age-adjusted normal values.11

For age-dependent features including heart rate, respiratory rate,

blood pressure, and creatinine, we used predetermined age cohorts:

0–1, 2–5, 6–8, 9–12, and 13–18 years (age at admission) and z nor-

malized using the data to define age group means and standard devi-

ations and transformed back to the measurements of the 13–18 year

age cohort, to facilitate clinical interpretation of the results. Data were
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pre-processed with Box-Cox transformation (for model-based cluster-

ing) and then z normalization before clustering analysis.

2.4 LCA model derivation

For LCA, to select a model fitting the data best, a series of probabilistic

Gaussian mixture models37 using clinical features with different num-

ber of components are fitted,38 and the Bayesian Information Crite-

ria (BIC) is used for model selection.39 Latent class model estimation

is based on full-informationmaximum likelihoodmethods. LCAmodels

were developed using the R package “mclust 5.”39

2.5 K-means model derivation

Consensus K-means clustering is based on calculated Gower distance

matrix,40 which takes mixed continuous variables and categorical vari-

ables into consideration. Proportion of ambiguous clustering (PAC),

defined as the fraction of sample pairs with consensus index values

falling in the intermediate sub-interval, is used for identifying optimal

number of clusters.41 Once optimal number of clusters is determined,

the final cluster is obtained based on 100 resamples.41 K-means mod-

els were developed using “ConsensusClusterPlus,” a class discovery R

package.42

The 4 derived phenotypic models: LCA/Williams, LCA/Seymour, K-

means/Williams and K-means/Seymour were evaluated for sample

size adequacy, clustering internal validity (distance-based compact-

ness, connectedness, and separation), entropy as a measure of LCA

class separation, robustness to features, phenotype homogeneity, clin-

ical use (distinct diagnosis, host-response to treatment, length-of-stay,

andmortality).

2.6 Statistics/evaluating adequacy of sample size

Given the relatively small number of sepsis cases in this study popu-

lation (N = 151) Monte Carlo simulations were used to examine the

adequacy of power in this sample size to detect the “true” number of

latent classes and consensus clusters.17,43 Based on estimated mean

and covariance structures from Williams and Seymour features, data

withdifferent sample sizes are generatedbasedonmultivariate normal

distribution. LCA and Consensus Clustering analysis are then applied

on simulated data. The objective of the simulation study is to exam-

ine the relationship between sample sizes and the power to detect the

“true” number of latent classes. Power is calculated as the proportion

of the number of simulations which identifies correct number of com-

ponents out of 1000 simulations.

2.7 Statistics/evaluating clustering internal
validity

Clustering validity was evaluated using internal distance-based mea-

sures that reflect the compactness, connectedness, and separation of

the cluster partitions.44 Connectedness relates to what extent obser-

vations are placed in the same cluster as their nearest neighbors in the

data space, and is heremeasured by the connectivity metric, which has

a value between zero and ∞ and should be minimized.45 Compactness

assesses cluster homogeneity, usually by looking at the intra-cluster

variance,while separation quantifies the degree of separation between

clusters (usually bymeasuring the distance between cluster centroids).

Because compactness and separation demonstrate opposing trends,

these measures are commonly combined into single scores: the Dunn

index46 and silhouette width,47 representing non-linear combinations

of the compactness and separation measures. The Dunn index is the

ratio of the smallest distance between observations not in the same

cluster to the largest intra-cluster distance, has a value between zero

and∞, and should bemaximized.45 The silhouette width is the average

of each observation’s silhouette value. The silhouette value measures

the degree of confidence in the clustering assignment of an observa-

tion, with well-clustered observations having values near 1 and poorly

clusteredobservations having values near−1. The silhouettewidth has

values in the interval [−1, 1], and should be maximized.45 The 3 inter-

nal measures connectivity, Dunn index, and silhouette width were cal-

culated using the R package “clValid”.45

2.8 Statistics/evaluating LCA class separation

To evaluate how well the latent classes are identified,17 entropy was

calculated.We used the formula provided by Asparouhov27:

E = 1 +
1

N log(k)

(
N∑
i=1

K∑
k=1

P(C = k|Ui) log(p(C = k|Ui))

)
,

where C is the latent variable, K is the number of classes, N is the sam-

ple size, Ui is the vector of all latent class indicator variables, and the

probabilities P(C= k|Ui) are computed from the estimatedmodel.

The larger the entropy is, the clearer the latent class identification is.

The entropy value is between0 and1. Entropywith values approaching

1 indicate clear separation of the classes.

3 RESULTS

3.1 LCA-based phenotypes

3.2 LCA phenotypes using Williams features:
LCA/Williams

The Williams features (Supporting Information Table S2) were used

to derive a series of Gaussian models with different numbers of par-

titions. As shown in Supporting Information Figure S1, the Bayesian

information criterion (BIC) suggests that a 4-component VEI clus-

tering model (ie, varying volume, equal shape, and axis parallel

orientation48) fits the data best. Simple statistics of the partitioned

phenotype-defining independent features and dependent/outcome



KOUTROULIS ET AL. 5 of 12

TABLE 1 LCA/Williams phenotype clinical characteristics

Phenotype Phenotype 1 critical severity Phenotype 2 low severity

Phenotype 3moderate

severity Phenotype 4 high severity

Key clinical

characteristics

MODS: neurological dysfunction,

renal dysfunction,

thrombocytopenia, tachycardia,

tachypnea and severe hypoxia

NoOD: no abnormalities in

labs/vitals other than

fever and elevatedWBC

(SIRS)

No life-threateningOD:

mild tachypnea,

elevated LFTs

OD: overt liver dysfunction

with hypoxia, mild

hyponatremia

Clinician diagnosed

severity

Critical: most number of sepsis/shock

diagnoses (86%)

Least severe: (adjusting for

a carry forward shock

code), no patients had a

severe sepsis or shock

diagnosis

Moderate severity:

includes patients

clinically diagnosed

with severe

sepsis/septic shock

(11%)

High severity: includes

significant number of

severe sepsis/shock cases

(22%)

Treatment

implications

Patients in this type will likely require

critical care: vasopressors, MV and

develop hyperchloremicmetabolic

acidosis. Prolonged LOS.Mortality

Patients in this type will

likely not require critical

care, vasopressors orMV.

Short LOS.

Patients in this type will

likely require critical

care, will not require

vasopressors orMV.

Short LOS.

Patients in this type will

likely require critical

care, vasopressors,

non-invasiveMV.

Prolonged LOS.

Abbreviation: GCS, GlasgowComa Scale; LCA, latent class analysis; LFT, liver function test; LOS, length of stay;MODS,multiple organ dysfunction syndrome;

MV, mechanical ventilation; OD, organ dysfunction; SIRS, systemic inflammatory response syndrome;WBC, while blood cell count.

variables across the 4 LCA/Williams phenotypes shown in Support-

ing Information Table S4. As shown in this table, the numbers of

patients assigned into risk-stratified phenotypes are 23 in phenotype

1 (best described as the “critical severity” phenotype), 40 in pheno-

type 2 (the “low severity” phenotype), 38 in phenotype 3 (the “mod-

erate severity” phenotype), and 50 in phenotype 4 (the “high severity”

phenotype).

The key clinical features, risk stratification, and treatment implica-

tions associated with these 4 phenotypes are summarized in Table 1,

and boxplots of the distribution of Williams clinical features across

phenotypes are shown in Figure 1. As shown in this boxplot, in phe-

notype 1 there was multi-organ dysfunction. More specifically, the

pH, PaO2, SpO2 and bicarbonate were low and respiratory rates high,

indicating respiratory failure and the need for mechanical ventilation.

Additionally, MAP and GCS medians suggested cardiac and CNS dys-

function.

In general, LCA/Williams phenotype 1 is characterized as MODS

with the highest proportion of patients using vasopressors, requiring

invasive mechanical ventilation (MV), and developing hyperchloremic

metabolic acidosis. LCA/Williams phenotype 4 patients had the high-

est average of total bilirubin, indicating liver dysfunction, with mild

hyponatremia.Notably, 2phenotypes representing approximately50%

of this population did not have life-threatening OD but received

sepsis treatment and a sepsis diagnosis (consistent with IPSO sep-

sis criteria26). LCA/Williams phenotype 2 characterized as infection-

induced SIRS that would respond to fluids/antibiotics and phenotype

3 characterized as moderate severity OD that included infected high

risk immunocompromised (liver transplant) patients requiring critical

care that were, in some cases given a severe sepsis/septic shock diag-

nosis despite lack of overt critical OD requiring vasopressors or MV

(exemplifying the discord between consensus criteria and physician

diagnoses). It was noted (Supporting Information Table S4) that among

the traditional sepsis biomarkers,49 lactate and bands were signifi-

cantly distributed across phenotypes compared to CRP and ESR. The

high ALT/AST biomarkers in phenotype I were consistent with the fact

that the cases were obtained by a major pediatric transplant center

and many of the septic patients were susceptible to liver damage. The

pH, PaO2, SPO2, and bicarbonate were lower and respiratory rates

higher in phenotype 1. This explains the higher proportion of acido-

sis and respiratory failure with the need for MV. Similarly MAP and

GCSmedianswere lower in phenotype1 compared to the other pheno-

types, suggesting that there were many patients with cardiac and CNS

dysfunction.

3.2.1 LCA phenotypes using Seymour features:
LCA/Seymour

As above, the Seymour features were used to derive a series of Gaus-

sianmodels with different numbers of partitions. As shown in Support-

ing Information Figure S2, BIC criteria also resulted in a 4-phenotype

model (Supporting Information Table S5).

LCA/Seymour phenotype 1 patients were characterized by tachy-

cardia, tachypnea, and hypoxia. This phenotype is also defined by ban-

demia, electrolyte abnormalities such as hyperchloremia and hypona-

tremia, hypoalbuminemia, and the need for vasopressors. Multiple

patients in this phenotype were given severe sepsis/shock diagnoses.

From a risk stratification perspective, this LCA Seymour type 1 was

best matched with the LCA/Williams phenotype 4 cluster (high sever-

ity). LCA/Seymour phenotype 2 patients showed no major abnormal-

ities in laboratory or physiologic findings other than fever and mildly

elevated WBC, indicating SIRS but included some severe sepsis/shock

cases, andwere bestmatchedwith LCA/Williams phenotype 3 (moder-

ate severity), whereas LCA/Seymour phenotype 3 was observed hav-

ing almost no abnormal values, best matched with LCA/Williams phe-

notype 2 (low severity). Phenotype 4 was comprised of the sickest
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F IGURE 1 Distribution ofWilliams features across phenotypes. Red, phenotype 1 (critical severity); green, phenotype 2 (least severe); blue,
phenotype 3 (moderate severity) and purple, phenotype 4 (high severity)

TABLE 2 Metrics betweenWilliams and Seymour segmentations

Metrica Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4

Sensitivity 0.591 0.842 0.750 0.493

Specificity 0.922 0.929 0.843 0.798

PPV 0.565 0.800 0.474 0.660

NPV 0.930 0.946 0.947 0.663

Balanced accuracy 0.757 0.886 0.796 0.645

Overall kappa 0.497

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.
aMetrics are calculatedwith themethod of 1 versus all other phenotypes.

patients in the cohort bests matched with LCA/Williams phenotype

1 (critical severity). Table 2 shows class-specific performance metrics

when considering using 1 phenotyping result to predict another. The κ
coefficient of overall agreement is 0.497 with P value < 0.001, indicat-

ingmoderate reproducibility.

It is worth mentioning the distribution of race across LCA/Williams

phenotypes was statistically significant (P= 0.02 as shown in Support-

ing Information Table S4with distribution detailed in Supporting Infor-

mation Table S4A) revealing that patients belonging to non-Hispanic

Black or other non-Caucasian race were more likely to be assigned to
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higher severity phenotypes (phenotypes 1 and 4). Our LCA/Seymour

analysis did not yield similar statistically significant results (P= 0.25 as

shown in Supporting Information Table S5).

3.3 K-means-based phenotypes

3.3.1 K-means/Williams

Our K-means/Williams clustering analysis is presented in Supporting

InformationFigure S3,which resulted in a3-phenotypemodelwith fea-

tures anddependent variables distributed across phenotypes as shown

in Supporting Information Table S6. Among the 3 K-means/Williams

phenotypes, phenotype 3 patients were the sickest, whereas pheno-

types 1 and 2were similar in severity and did not seem to have distinct

characteristics that wouldmake them clinically useful.

3.3.2 K-means/Seymour

The comparable K-means analysis using Seymour features, as shown

in Supporting Information Figure S4, resulted in a 4-phenotype model

(Supporting Information Table S7). Phenotype 2 patients were charac-

terizedbyMODS,with vital sign changes andelectrolyte and liver func-

tion test abnormalities. These were the sickest patients of the cohort,

with hyperglycemia, a bleeding diathesis, anemia, lactic acidosis, and

bandemia. We were not able to identify distinguishing characteristics

in patients of phenotypes 1, 3, and 4, but they included patients with a

lowerdisease severity compared tophenotype2.Althoughphenotypes

1 and 3 had very analogous results and vital signs with patients that

had amilder disease thanphenotype2, they still had somepatients that

required vasopressors, whichmeans that intravenous (IV) fluid boluses

were not able to improve the observed hypotension. Phenotype 1 also

included a significant number of patients in septic shock (21.2%), which

was similar to phenotype 2, indicating that this model was not able to

separate potentially sick patients from those that would have a milder

course.

3.4 Validation

3.4.1 Adequacy of sample size

When N < 300, standard power calculations should be performed

to determine the sample size needed to detect significant interclass

differences.17 Figures 2 and 3 show the relationship between sample

size and power to detect correct number of components in simulated

data. They indicate that both LCA and consensus clustering analysis

achieves at least 80% power with the sample size of 150.

Clustering internal validity

To compare clustering internal validity of LCA and K-means methods

independent of feature sets used, validity measures were evaluated

TABLE 3 Calculated internal validity distance-basedmetrics

LCA K-means

Measure Williams Seymour Williams Seymour

Connectivity 197.8 159.3 134.5 75.7

Dunn 0.003 0.003 0.014 0.081

Silhouette −0.075 −0.048 0.146 0.191

Abbreviation: LCA, latent class analysis.

on the union of Williams and Seymour features and shown in Table 3.

Using these measures, compared to LCA, consensus K-means cluster-

ing on Seymour features shows minimized values in connectivity and

maximum value in silhouette width indicating for this heterogeneous

pediatric dataset, K-means demonstrates superior internal validity

metrics. This result is not surprising given that internal distance-

based measures such as compactness, connectedness, and separa-

tion are all based on distance measures optimized by the K-means

algorithm.

3.5 Entropy index of class separation

Beyond distance-based cluster validation, we calculated entropy, a

measure of class separation,17 that can be informative of how well

the clusters differentiate by measuring how distinctly each patient’s

estimated phenotype is. Entropy ranges from 0 to 1 with values

close to 1 indicating a high probability of patients being in just 1

class. Given the fundamental differences in posterior probabilities-

based (LCA) versus distance-metric-based (K-means) clustering, a

comparative entropy metric across these 2 clustering techniques

was not available.50 However, for the LCA methods, we found that

LCA/William’s entropy = 0.994 and LCA/Seymour’s entropy = 0.997,

indicating both LCAmodels exhibited good phenotypic separation.

3.6 Limitations

3.6.1 Features and missingness

We did not attempt to optimize features to the specific 151-case IPSO

sepsis population used in this study and instead chose features already

validated in the literature to derive consensus-criteria defined sepsis

phenotypes. Although the features used demonstrated statistically sig-

nificant (P < 0.001) clinical distinctions across LCA versus K-means

derived phenotypes, our results may have been biased by high lev-

els of missingness. Additionally our features did not reflect clinician

gestalt, known to be especially effective in the management of low

and high risk cases,51 as additional evidence beyond recorded thera-

pies and diagnostic tests. Finally, although restricting the features used

for phenotyping modeling to those available in routine clinical prac-

tice is reasonable, studies indicate that additional evidence such as

advanced biomarkers driven by genomics may contribute in pediatric
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F IGURE 2 Relationship between power and sample size for LCA

F IGURE 3 Relationship between power and sample size for K-means



KOUTROULIS ET AL. 9 of 12

sepsis phenotyping.52,53 A more optimized pediatric set of features

should be pursued in future studies.

3.6.2 Generalizability

Given the strong institution specific bias in population characteristics

used to derive clusters (eg, a significant number of liver transplant

cases in our studied population), our derived phenotypes are not likely

“generalizable” and applicable to other institutions serving distinctly

different populations. There is a growing recognition that the narrow

focus on generalizability of machine learning-based models should be

replaced with the derivation and routine maintenance of institution-

specific (ie, continuously learning) models that are useful at bedside.54

In this article,wecompared the2different clusteringmethods toexam-

ine whethermore commonly used K-means would perform similarly to

LCA. Our study highlights the superiority of LCA that, despite the need

for higher computing power, can be the basis for personalizedmedicine

in other population studied.

3.6.3 Clinical use

Our study was based on phenotypes derived using a hospitalized pop-

ulation. Although the use of hospitalized children allowed us to include

patients with sepsis of different severity that in the end will help iden-

tify patients early on and, whereas in the ED, the use of EHR-data

derived phenotypes in clinical settings, such as EDs,will require deriva-

tionofpredictivemodels usingearlydata captured in theEDthat target

phenotypemembership of presenting patients and prospective studies

demonstrating use in guiding personalized treatment.

4 DISCUSSION

Although homogenizing treatment given to a highly heterogeneous

patient population that fall under thewide syndromic umbrella of pedi-

atric sepsis may offer a minimum standard of care, it is unlikely to

offer optimal care to an individual patient, potentially compromising

outcomes.22,55 This is one of the first studies to report on routine EHR-

data driven phenotypes associated with seriously infected hospital-

ized children that, despite recognized heterogeneity, currently typi-

cally receive protocolized treatment.56

There is no consensus on the best distance function, clustering

method, or feature selection to be used with EHR data to detect sub-

groups of a heterogeneous patient population that can inform person-

alized treatment.44 From a feature selection perspective, when com-

paring LCA phenotypes described in Supporting Information Tables S4

and S5, we find that theWilliams features are somewhat better in risk

stratification with the potential of enhancing personalized treatment.

For example, associating new patients with LCA/Williams phenotype

1 patients that did not respond to IV fluids and will require vasopres-

sors, as well as those that will require MVmay inform early aggressive

interventions and potentially improved clinical outcomes.57–61 More-

over, the Williams criteria allowed for the use of race in risk stratifica-

tion, with results indicating that non-Caucasian patients have a higher

probability of being assigned to a high-severity phenotype compared

to Caucasian patients.When the Seymour parameters were used, such

separation was not observed.

On the other hand, the K-means/Seymour phenotypes (Support-

ing Information Table S7) showed some discriminating ability for the

less severe cases which can be helpful in a screening process for the

clinicians when deciding disposition. However, this model did not per-

form as well in risk stratification and the phenotypes obtained were

not very distinct in terms of disease severity and specific organ dys-

function. Moreover, although minimizing number of subgroups is opti-

mized with K-means compared to LCA, the variability from 3 to 4 com-

ponents using K-means (Supporting Information Table S6) versus LCA

suggested diminished reproducibility of K-means across varying fea-

ture sets. A drawback of LCA compared to K-means is that LCA is com-

putationally demanding.62 This can be a limitation on the number of

cases and features used to derive clusters using LCA. Currently, the

upper limit on how big the data can be for LCA modeling is unknown

and depends on the available processing power.17

The lackof ahigher degreeof agreement in phenotypesbetween the

2 sets of LCA segmentations (Williams vs Seymour criteria) is mainly

due to the difference in the focus of specific organ dysfunction. The

Seymour criteria include inflammatory markers such as ESR and CRP

but also more specific cardiac and liver biomarkers, because they are

targeted to the adult population. On the other hand, the Williams cri-

teria has more parameters for lung function, which is relevant in pedi-

atric sepsis, which tends to present with more prominent respiratory

symptoms. ESR and CRP are non-specific inflammatory markers that

are not as important in pediatric sepsis and have largely been replaced

by other better performing biomarkers such as procalcitonin. Another

interesting finding is that when transaminases are added as parame-

ters, it seems that phenotype 4 in Seymour, which represents the sick-

est patients, is more closely related to phenotype 4 of the Williams

analysis, despite the fact that the latter includes patients that are less

ill than phenotype 1. This discrepancy is caused by the varying baseline

levels of hepatic dysfunction and can be explained by the fact that our

pediatric population includedmany patients with history of liver trans-

plantation that underlines the importance of potentially incorporating

baseline values into the analysis.

4.1 Provider-guided sepsis diagnosis and
treatment align with the phenotypic analysis

Discrepancies between severe sepsis/shock diagnoses and treat-

ments within phenotypes were observed, likely due to the ambigu-

ous/evolving pediatric sepsis consensus diagnostic criteria and reflect-

ing early sepsis patients who received sepsis treatment in efforts to

avert organ dysfunction. It is therefore important to note that many

of the septic patients with varying degrees of organ dysfunction might

not technically meet the sepsis criteria determined by consensus but
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are still at an increased risk for sequelae and were correctly clustered

by our LCAmodel.Wewere also able to identify patients thatwere jus-

tifiably deemed to have severe sepsis by the clinicians because of their

underlying complex medical or surgical conditions and the presence of

a severe infection but without meeting the standard criteria of organ

dysfunction.

4.2 Moving toward personalized therapeutics

These findings suggest that clustering of highly heterogeneous clinical

pediatric sepsis observations to find subgroupings of patients, analo-

gous to diagnostic categories, may provide useful prognostic informa-

tion. Furthermore, phenotype membership can be informative of the

therapies that are likely to be given to similar patients, which suggests

that this type of analysis, if prospectively validated, may help eluci-

date potential individual therapies. It is interesting to note that unlike

bandemia that statistically differed phenotypes and was associated

with severity,63 traditional inflammatory biomarkers such as CRP and

ESRwere not statistically different among phenotypes. More effective

markers such as procalcitonin are slowly leading to the replacement of

CRP and ESR in pediatric sepsis diagnostics.64

Although more studies are needed in the pediatric population, the

ability to phenotype patients early in the course of their disease and

predict a more severe clinical course may present an opportunity

for personalized therapeutics to alleviate disease sequelae. Given the

ongoing concerns regarding the use of aggressive fluid management in

some patients,23,65 we believe the identification of these phenotypes

may help triage pediatric sepsis patients that respond differently to

aggressive fluids treatment,13,66 predict individualized responses to

certain medications or interventions (eg, normal saline vs Ringer’s lac-

tate fluids), and help identify those who will need vasopressors, poten-

tially avoiding circulatory collapse andmortality.

The findings of this study that derived clinically useful phenotypic

separation of septic children is also significant since complex pediatric

patients that are appropriate targets for early management are identi-

fied despite not yet exhibiting life-threatening organ dysfunctions.

In summary, clustering techniques using routinely available EHR

data can lead to clinically useful phenotyping identification in the pedi-

atric sepsis-severe sepsis continuum. In this dataset of children with

highly mixed forms of sepsis, as compared to K-means, LCA resulted

in superior partitions of sepsis severity, treatments, and outcomes

that were non-randomly distributed across phenotypes. These exper-

iments suggest that LCA combined with predictive modeling may be

useful in real-time analysis of EHR data collected in the ED setting

toward identification of pediatric sepsis phenotypes to inform per-

sonalized care. Pilot studies are needed to validate the clinical use

of EHR data clustering toward personalized therapies that improve

outcomes.
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