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Abstract

Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-

wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for 

animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics 

to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI 

is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the 

SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we 

developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This 

detector boosts the tSNR of MRI images, showing a 2–3-fold sensitivity gain over conventional 

coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted 

brain interface, this setup offers a unique advantage to study brain circuit connectivity with 

optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.
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1. Introduction

The combination of fMRI with optogenetics presents a promising tool for mechanistic 

studies of neuromodulation with cellular and circuit specificity from meso- to macro-scales 

(Lee et al., 2010; Liang et al., 2015; Ferenczi et al., 2016; Ryali et al., 2016; Yu et al., 2016; 

Albers et al., 2018a; Iordanova et al., 2018; Chen et al., 2019; Jung et al., 2021). However, 

given indirect measurements of neuronal activity with fMRI (Ogawa et al., 1992; Logothetis 

et al., 2001; Logothetis 2008), it remains ambiguous to represent the circuit-specific brain 

activation based on global hemodynamic patterns, e.g., the blood-oxygen-level-dependent 

(BOLD) functional maps (Logothetis 2010). Besides brain-wide functional imaging, high-

resolution fMRI of focal brain regions has emerged to map laminar-specific BOLD signal 

across cortical layers (Silva and Koretsky 2002; Goense and Logothetis 2006; Chen et al., 

2013; Yu et al., 2014; Huber et al., 2017; Albers et al., 2018a; Kashyap et al., 2018a; Finn 

et al., 2019; Sharoh et al., 2019; Yu et al., 2019; Han et al., 2021). This unique mapping 

scheme improves the spatial specificity of fMRI when mapping neuronal projection patterns 

in different cortices and the olfactory bulb (Yu et al., 2014; Poplawsky et al., 2015; Huber 

et al., 2017; Nunes et al., 2019; Poplawsky et al., 2019; Sharoh et al., 2019; Han et al., 

2021). Recently, there has been an increasing trend to apply laminar fMRI for human brain 

mapping with either top-down or bottom-up tasks (Huber et al., 2017; Kashyap et al., 2018; 

Finn et al., 2019; Sharoh et al., 2019; Yu et al., 2019). In contrast to human laminar fMRI, 

animal laminar fMRI combined with optogenetics has demonstrated a unique platform 

to elucidate the circuit-specific regulatory mechanism underlying varied BOLD responses 

across different layers (Albers et al., 2018a; Jung et al., 2021).

An ongoing challenge of laminar fMRI is the limited signal-to-noise ratio (SNR) when 

sampling the layer-specific BOLD signal with high resolution. Using high field (>11.7 

Tesla) MR scanners, researchers have developed a line-scanning fMRI method to extract 

BOLD signals with sufficient SNR across cortical layers (Yu et al., 2014; Sangcheon 

Choi 2021). Albers et al. have applied the line-scanning fMRI to detect the layer-specific 

BOLD responses driven by optogenetic stimulation in rodent brains (Albers et al., 2018a). 

However, given the implantation of optical fiber, it remains challenging to apply the 

advanced cryoprobe (Darrasse and Ginefri 2003; Baltes et al., 2009; Takata et al., 2015; 

Schlegel et al., 2018) or multi-array radio frequency (RF) coils (Roemer et al., 1990; Gareis 

et al., 2007) for focal signal enhancement. Although several studies have accommodated 

cryoprobes with optical fiber implantation, the fiber has to be inserted horizontally along the 

posterior-anterior axis of the rat brain (Takata et al., 2015; Schlegel et al., 2018), creating 

much tissue damage. Also, even with the surface coil designed to accommodate optical fiber 

implantation (Yu et al., 2016; Chen et al., 2019a; Pais-Roldan et al., 2020), the adhesive 

surgical material used to fix the fiber at the skull creates a considerable distance between the 

surface coil and brain regions, further restricting the acquisition of laminar fMRI signal with 

sufficient SNR.
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To reduce hardware complexity and to boost sensitivity, several groups have applied 

inductively coupled detectors (ICD) to relay locally detected MR signals with an external 

surface RF coil wirelessly (Schnall et al., 1986; Wirth et al., 1993; Volland et al., 2010; 

Ginefri et al., 2012; Mett et al., 2016). Specifically, the ICD-mediated mapping scheme has 

been used for animal MRI. For example, Volland et al. developed an inductively coupled 

MR coil system for imaging and spectroscopic analysis of an implantable bioartificial 

construct in mice peritoneal cavity at 11.1 T (Volland et al., 2010). And, Ginefri et al. 

fabricated an inductively-coupled coil fitted to the interhemispheric cleft and improved 

anatomical image SNR of rat brains at 7 T (Ginefri et al., 2012). All these studies 

demonstrated sensitivity enhancement in very close proximity to the targeted ROI with ICD. 

Despite the promising prospects of animal MR studies, ICDs have not been well utilized in 

the multi-modal platform to solve the abovementioned challenging issues.

Hence, as a proof-of-concept demonstration, to improve MR detection sensitivity for 

cross-scale brain mapping, we presented an optimized multimodal fMRI platform with 

ICDs. Whole-brain echo-planar imaging (EPI) and line-scanning fMRI were performed in 

anesthetized rat brains to verify the SNR improvement with ICDs. Moreover, as an in vivo 
benchmark application of ICD in contrast to conventional surface coils, we have embedded 

the ICD with optical fiber implantation to show a near 3-fold enhancement of SNR in 

optogenetically-driven laminar BOLD fMRI experiments.

2. Material and methods

2.1. Flexible implanted inductive coil design and fabrication

Based on the wireless inductive coupling theorem, we used the inductive coil design with 

a smaller-dimension circuit to maintain detection sensitivity (Fig. 1a). The inductive coil 

was tuned to 599.58 MHz by the formula:f = 1
2π LC , matching the resonance frequency 

delivered by a transceiver coil in a 14.1 T scanner. Hence, the value of inductance (L) 

determines the dimension of the conductor, and the tuning capacitance was adjusted to 

maintain constant resonance frequency. The fabrication process is described as below: first, 

we print the conductor with copper material on a printed circuit board (PCB, by Electronics 

Workshop of Max Planck Institute for Biological Cybernetics, Tübingen, Germany), in a 

circle with a dimension of 1 mm strip width, 6 mm outer diameter; then, we mount the 

capacitor, which is an unbiased diode (BBY5302VH6327XTSA1, Infineon Technologies, 

Germany); solder and assemble the designed circuit (Fig. 1b). For the expression of the 

on-bench performance of inductive coil, its frequency response profile was color mapped 

under different distance separations from 0 mm to 25 mm with a step size of 1 mm, using 

imagesc function of MATLAB (Fig. 1c).

2.2. Animals

The study was performed in accordance with the German Animal Welfare Act (TierSchG) 

and Animal Welfare Laboratory Animal Ordinance (TierSchVersV), in full compliance 

with the guidelines of the EU Directive on the protection of animals used for scientific 

purposes (2010/63/EU). The study was reviewed by the ethics commission (§15 TierSchG) 

and approved by the state authority (Regierungspräsidium, Tübingen, Baden-Württemberg, 
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Germany). A 12–12 h on/off lighting cycle was maintained to assure undisturbed circadian 

rhythm. Food and water were available ad libitum. This study used a total of 6 male 

Sprague–Dawley rats acquired from Charles River.

2.3. Viral injection and immunohistochemistry

As reported previously (Yu et al., 2016; Chen et al., 2019a; Chen et al., 2019b), 

AAV5.CaMKII.hChR2 (H134R)-mCherry (100 μL at titer ≥ 1 × 1013 vg/mL) from Addgene 

was injected in 4-week-old rats intracerebrally in the right somatosensory forepaw region. 

Rats were anesthetized with 1.5–2% isoflurane via a nose cone and placed on a stereotaxic 

frame. An incision was made on the scalp to expose the skull. Craniotomies were performed 

with a pneumatic drill to introduce minimal damage to cortical tissue. A volume of 0.6–0.9 

μL was injected using a 10-μL syringe and 33-gage needle to the stereotaxic coordinates: 

0 mm posterior to Bregma, 3.8–4.0 mm lateral to the midline, 0.8–1.4 mm below the 

cortical surface. After injection, the needle was left in place for approximately 5 min before 

being slowly withdrawn. The craniotomies were sealed with bone wax, and the skin around 

the wound was sutured. Rats were injected with antibiotics and painkillers (Ketoprofen 

fluids) subcutaneously for three consecutive days to prevent bacterial infections and relieve 

postoperative pain.

Immunostaining was performed to verify the ChR2 expression and implanted fiber 

localization in the brain. Perfused rat brains were fixed overnight in 4% paraformaldehyde 

and then equilibrated in 15% and 30% sucrose with 0.1 M PBS at 4 °C. We used cryotome 

(CM3050S, Leica, Germany) to Section 30 μm brain slice. Free-floating brain slices were 

washed in PBS, mounted on microscope slides, and incubated with DAPI (VectaShield, 

Vector Laboratories, USA) for 30 mins at room temperature. We acquired wide-field 

fluorescent images (Zeiss, Germany) to examine ChR2 expression in the FP-S1. Digital 

images were minimally processed using ImageJ to enhance brightness and contrast for 

visualization purposes.

2.4. Animal preparation, inductive coil/fiber optic implantation for fMRI

Animals were anesthetized with 5% isoflurane in a chamber and maintained with 2% 

isoflurane during surgeries. Throughout the experiment, the anesthetized rat was intubated 

using a tracheal tube and ventilated by a mechanical ventilator (SAR-830, CWE, USA). 

Femoral arterial and venous were catheterized using polyethylene tubes for blood sampling, 

drug administration, and constant blood pressure measurements. After the surgery, a bolus 

of the alpha-chloralose (80 mg/kg) was injected intravenously through the femoral vein. A 

mixture of alpha-chloralose (26.5 mg/kg/h) and pancuronium (2 mg/kg/h) was constantly 

infused to keep the animal anesthetized and reduce respiration-induced motion artifacts 

during MR scanning.

Before transferring the animal into the MRI scanner, we placed it on a stereotaxic frame. For 

electrical stimulation as shown in Fig. 2, the 6 mm single loop inductive coil was directly 

positioned on the skull above the right FP-S1 region, which was fixed on the skull with 

adhesive gel (Loctite 454, Henkel, Germany) beneath the 22 mm surface coil (Fig. 2a, b). 

The distance between the surface coil and the ICDs was approximately 2.5 mm (the PCB 
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thickness of the surface coil plus that of the ICD). For the optogenetic experiment in Fig. 3, 

we drilled a ~1.5 mm diameter burr hole on the skull and carefully removed the dura. An 

optical fiber with a 200-μm core diameter (FT200EMT, Thorlabs, Germany) was inserted 

into the FP-S1 through the hole of a 6-mm inductive coil, at coordinates of 0 mm posterior 

to Bregma, 4 mm lateral to the midline and 1.2–1.4 mm below the cortical surface. We 

used an adhesive gel (Loctite 454, Henkel, Germany) to secure the fiber to the skull with 

the inductive coil detector. Then we closed the scalp by glue with the head post setup. At 

the same time, we placed the other 6-mm inductive coil on the projected FP-S1 in the left 

hemisphere. Black tapes were used to cover the rat eyes to prevent stimulation of the visual 

system during optogenetic stimulation.

2.5. MRI acquisition

All images were acquired with a 14.1 T/26 cm horizontal bore magnet interfaced to an 

AVANCE III console and equipped with a 12 cm gradient set capable of providing 100 G/cm 

over a time of 150 μs. We used a transceiver single-loop surface coil and inductive coils as 

described above to acquire MRI images.

The FLASH images in Fig. 1d for phantoms were acquired with the following parameters: 

TR/TE 100/5 ms, excitation pulse angle 30°, slice thickness 0.2 mm, FOV 4 cm × 4 cm, and 

matrix 256 × 256. Functional images in Fig. 2d, e were acquired with a 3D gradient-echo 

EPI sequence with the following parameters: TE, 11.5 ms, TR, 1.5 s, FOV 1.92 × 1.92 × 

1.92 cm, matrix size 48 × 48 × 48, spatial resolution 0.4 × 0.4 × 0.4 mm. We applied a 

2D RARE sequence to acquire 48 coronal slices with the same geometry as fMRI images. 

The FLASH-based bilateral line-scanning fMRI was performed with two saturation slices 

to dampen the MR signal outside the regions of interest (Fig. 2e) with the following 

parameters: TR/TE 100/5 ms, excitation pulse angle 30°, slice thickness 1 mm, FOV 6.4 × 

3.2 mm and matrix 64 × 32. The phase-encoding gradient was turned off. Given the small 

size of the transceiver, the RF power calibration (i.e., calculating an appropriate flip angle to 

be assigned for a given case) was based on the slice covering brain regions. Here, we set the 

slice center at the middle cortical layer when calibrating the power of the RF pulse. Thus, 

the excitation pulse angle is typically optimized at the middle layer of the cortex.

We performed electrical stimulation on the left forepaw (3 Hz, 4 s, 300 μs width, 2 mA) 

and optogenetic stimulation on the right FP-S1 (2 Hz, 6 s, light pulse width 10 ms, 30 mW) 

to activate the neurons expressing ChR2 (Fig. 3a). The block design paradigm included 1 s 

pre-stimulation, 4 s stimulation on (6 s for optogenetic stimulation), and 15 s intervals (13 

s for optogenetic stimulation), i.e., 20 s for each epoch and 32 epochs for a full trial (10 m 

40 s). We tested the light pulse (2 Hz) optogenetic stimulation with the power level from 0.6 

to 40 mW (Chen et al., 2020). 30 mW light pulse stimulation was used to induce positive 

BOLD responses in the contralateral cortical regions. Given the short stimulation duration, 

we did not observe the heat-induced negative BOLD signal with the whole-brain 3D-EPI 

fMRI experiment, as shown in Fig. S6.
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2.6. Data analysis

All signal processing and analyses were implemented in MATLAB software (Mathworks, 

Natick, MA) and Functional NeuroImages software (AFNI, NIH, USA). For evoked fMRI 

analysis of Fig. 2d, e, Fig. S2, and S6, to generate BOLD functional maps, we applied pre-

processing steps including motion correction, image registration, time course normalization 

and averaged fMRI datasets from multiple trials for each animal. The regression analysis 

of hemodynamic response function (HRF) was based on the BLOCK function of the linear 

program 3dDeconvolve in AFNI. BLOCK (d, 1) computes a convolution of a square wave of 

duration d and makes a peak amplitude of block response = 1.

HRF t = int g t − s , s = 0..min t, d

where g(t) = tqe−t/[qqe−q], where q = 4, d = duation of a square wave. Each beta weight 

represents the peak height of the corresponding BLOCK function.

For layer-specific fMRI analysis, the boundaries of cortices were defined based on the 

reference position of both cortical surface and corpus callosum. The cortical surface was 

determined at half the maximum signal intensity of the 1d profile along with the cortical 

depth (Yu et al., 2014). As a function of time, fMRI percentage dynamics were calculated 

based on the following equation: SIpercetage = (SIi − SIbaseline)/SIbaseline, where SIi denotes 

signal intensity at the ith time point, i = 0:0.1:20 s for each epoch, and SIbaseline indicates 

the mean value of signal intensity at pre-stimulation duration (1 s). Such time series of 

activation were presented and color-coded after averaging voxel-wise dynamics of the entire 

cortex (Fig. 2f top right, and Fig. 3b top) through whole scan duration (Fig. 2f top left, Fig. 

3a top left and right). Likewise, laminar-specific activation features were averaged within 

each layer, respectively (Fig. 3c). For epoch-wise spatiotemporal activations, time series 

were averaged for each voxel and were color-mapped (imagesc function in MATLAB), 

where the signal intensity was expressed in percentages (Fig. 2f bottom right and Fig. 3b 

bottom). Due to the contribution of large draining veins on the cortical surface, higher values 

of BOLD changes exist in voxels close to the cortical surface.

For resting-state fluctuation of hemodynamics, z-normalized time series (zscore function 

in MATLAB) of a single trial were demeaned to present overall cortical fluctuation (Fig. 

2g top). As to the spatiotemporal map with whole scan duration, we applied the bandpass 

filter of 0.01–0.1 Hz through zero-phase digital filtering (filtfilt function in MATLAB) and 

standardized intensity values between 0 and 1 per voxel of the cortex (Fig. 2f lower left, Fig. 

3a lower left and right).

Fig. 2c, Fig. 1d, and Fig. S1b illustrate the comparison of SNR by a bar plot containing the 

enhanced region and the normal one encircled by identical geometries. SNR was calculated 

by:

SNRj =
SIj

σbackground
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where SIj stands for the mean of signal intensity in the regions of interest labeled by j, 

indicating enhanced or uncovered region, and σbackground stands for the standard deviation 

of signal intensity in a sample of background. The console of the BRUKER system adjusted 

the RF pulse attenuation automatically. Black dots in the figures mentioned above indicate 

SNR values of individual animals, and error bars indicate standard deviation (s.d.) for all the 

animals.

Fig. 2g (right) and Fig. 3d compared temporal Signal-to-Noise-Ratio (tSNR) between before 

and after inductive coupling enhancement, tSNR was calculated as:

tSNRk =
SIk
σk

Where SIk stands for the averaged amplitude of signal time series during the scan of the 

corresponding animal, and σk for the standard deviation of the corresponding time series, 

both variants were made after averaging the signal intensity over the entire cortical depth.

A paired-sample t-test for both sets of data (ttest2 function in MATLAB) calculates the 

statistical significance, where the shading region covers a range of paired voxels with 

distinct levels of statistical significance (Fig. 2g right and Fig. 3d), i.e., **P < 0.01. 

Likewise, bar markers of significance level were calculated after averaging tSNR value 

of animals in each group, with error bars expressing s.d. of individual trials.

3. Results

3.1. Design, characterization, and ex vivo evaluation of the inductive coil detector (ICD)

We fabricated a 6-mm single-ring ICD whose performance with sample loading conditions 

was evaluated on-bench and inside a 14.1 T scanner. Fig. 1a demonstrated the proposed 

single-ring ICD and a conceptual diagram for bench measurements. The proposed setup 

consists of a single-ring ICD, and a conventional transceiver surface coil, while NMR 

signals from the insulated ICD can be transmitted to the external coil through mutual 

inductive coupling (Fig. 1b). The single-loop ICD was placed on top of a 1% agarose 

gel phantom while the conventional surface coil placed above the phantom with a specific 

distance separation would provide RF excitation pulse and receive amplified signals from 

ICD (Fig. 1a–b). No modifications to the scanner interface were required. As shown in Fig. 

1c, the strong coupling effect between the ICD and surface coil could be maintained for 

a distance as large as 12 mm. A representative image for the gel phantom was shown in 

Fig. 1d (left), and the relative SNR from the focal region below the ICD is shown in Fig. 

1d (right). The excitation pulse transiently detuned the ICD during RF excitation, so the 

sample was excited directly by the external surface coil. As we gradually moved the external 

RF coil away from the sample surface (Fig. 1d), more power was required on the surface 

coil to excite nuclei spins, leading to smaller “RF pulse attenuation”. During MR signal 

reception, because the ICD always detected MR signals before being inductively coupled to 

the external RF coil, superior local sensitivity can be maintained within a specific distance 

separation, as long as inductive coupling remains larger than circuit loss (Fig. 1d right). In 
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vitro test results detected the effective distance (<12 mm) between the ICD and the surface 

coil for inductive coupling.

3.2. In vivo evaluation of ICD with layer-specific BOLD fMRI mapping in rat brains

Next, ICD was evaluated in vivo to measure enhanced fMRI signal in the right forepaw 

somatosensory cortex (FP-S1) with unilateral electrical forepaw stimulation and during 

resting state in anesthetized rats (Fig. 2). A 6-mm single loop inductive coil was embedded 

beneath the 22 mm surface coil at the right FP-S1 (Fig. 2a). By relaying locally detected 

MR signals to the external surface coil, the focal intensity enhancement by this ICD with 

a 6 mm diameter was detected throughout the 2 mm cortex from anatomical FLASH MR 

images (Fig. 2b). The focal signal intensity in ROI 1 below the ICD in the right FP-S1 

was significantly higher than that of ROI 2 in the left hemisphere without ICD (Fig. 2b, 

c). Furthermore, the signal intensity was comparable to that acquired using a conventional 

10-mm surface coil attached on the rat brain, indicating that ICD can well compensate 

the B1 sensitivity-related signal loss due to the extra space introduced between the cortex 

and the surface coil (Fig. S1). As shown in Fig. 2d (Fig. S2 for another two rats), the 

anatomical image with superimposed BOLD functional maps demonstrated that the ICD-

enhanced region was well overlapped with the most activated FP-S1. Besides the EPI-based 

BOLD, we acquired laminar-specific BOLD responses with 100 ms temporal resolution 

and 100-μm spatial resolution using line-scanning fMRI (Fig. 2e). The time courses and 

line profile-based 2D fMRI maps across cortical layers were presented in stimulation (Fig. 

2f) and resting-state conditions (Fig. 2g). The tSNR for resting-state brain fluctuation in 

the cortex illustrated that the ICD was up to 2-fold more sensitive than the surface coil 

only condition when implantation introduced extra space to reduce the B1 sensitivity of 

the surface coils (Fig. S3 and Fig. 2g, paired-sample t-test, ***P < 0.001), with negligible 

contamination from motion and respiration noise and vascular pulsation (Fig. S4 and Fig. 

S5).

3.3. Evaluation of ICD at multimodal fMRI platform with optogenetic-driven layer-specific 
BOLD mapping

Combining optical fiber-based optogenetic stimulation and bilateral line-scanning fMRI 

(Sangcheon Choi 2021) verified the high sensitivity of ICD. We embedded two ICDs 

to cover the FP-S1 of both hemispheres with optical fiber implanted to target the right 

FP-S1 expressing channelrhodopsin-2 (ChR2) (Fig. 3a, middle). Fig. S6a showed the images 

acquired with two inductive coils. Upon optogenetic stimulation, robust BOLD responses 

were detected in the right FP-S1 region (Fig. 3a, right) and evoked BOLD signal in the left 

FP-S1 region (Fig. 3a, left). The whole-brain BOLD fMRI mapping was shown in Fig. S6b. 

Moreover, the averaged line profile-based 2D fMRI maps (Fig. 3b) and time courses (Fig. 

3c) were displayed to represent the layer-specific hemodynamic responses. Interestingly, the 

evoked BOLD signals in the left FP-S1 contralateral to the optogenetic stimulation showed 

salient post-stimulus undershoots in L2/3 and L5, indicating a transcallosal projection-

mediated interhemispheric inhibition (Karayannis et al., 2007; Palmer et al., 2012; Chen 

et al., 2020). Also, the laminar-specific tSNR with ICD showed up to a 3-fold SNR increase 

over the bilateral line-scanning fMRI signals detected only with the surface coil (Fig. 3d, 

blue and red line, respectively, paired-sample t-test, ***P < 0.001). This result demonstrated 
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the unique advantage of boosting the SNR with ICD-based optogenetic laminar-fMRI. 

Moreover, the ICD-based mapping scheme with high SNR could enable single-vessel fMRI 

mapping (Fig. S7) (Yu et al., 2016; He et al., 2018; Chen et al., 2019a), which will be 

further combined with optical fiber-mediated optogenetics or genetically encoded biosensor 

recordings. These results demonstrated the broader application of the ICD-based mapping 

scheme to acquire sufficient SNR in high-resolution fMRI images.

4. Discussion

This study presents a multimodal platform by combining optogenetics and line-scanning 

fMRI in animals with implanted ICD (Inductively Coupled Detector) to increase the SNR 

of fMRI images. Conventional surface coils have been used for focal signal enhancement 

when attaching miniaturized coils to cortical regions (Ackerman et al., 1980; Chen et 

al., 2019a). In particular, surface coils can accommodate the optogenetic setup with fiber 

bundles passing through the open area of the coil. It should also be noted that implanting 

optical fiber to the target brain region will introduce a considerable distance separation 

between the RF coil and cortical regions, leading to significantly reduced B1 sensitivity 

for focal brain signal detection. We developed the ICD to overcome this limitation through 

implantation close to the cortical region, which can be wirelessly coupled to an external 

surface coil over a distance (Wirth et al., 1993; Volland et al., 2010; Ginefri et al., 2012; 

Mett et al., 2016).

The ICD design shows several advantages in comparison to cryoprobe design for multi-

modal functional mapping with implanted optical fibers in animals. Given the insulated 

ceramic holder design required for cryoprobe to maintain its superconducting feature 

inside cryogen (Styles et al.,1989), it is impossible to penetrate an optical fiber through 

the cryoprobe. In several studies, the optical fiber has been inserted along the posterior-to-

anterior axis of the brain to target cortex or subcortical regions, allowing the application 

of cryoprobe for multi-modal fMRI imaging (Takata et al., 2015; Schlegel et al., 2018). 

Although the SNR can be significantly increased with cryoprobe, the horizontal orientation 

required for optical fiber insertion makes it less practical for precise targeting of brain 

nuclei, producing relatively large collateral damage through the cerebellum. In addition, the 

optical fiber has to be secured on the skull with minimal space for fixation material to ensure 

the sufficient B1 sensitivity of the cryoprobe. In contrast, our ICD design can be directly 

attached to the skull during optical fiber implantation and transmit the RF signal through the 

pickup coil. This wireless ICD design can be extended to target different brain regions using 

multiple ICD components, producing 2–3-fold sensitivity gain over conventional surface 

coils (Fig. 2g and Fig. 3d). Although the ICD-based SNR gain is comparable to cryoprobe, 

it simplifies experimental setup and free more open space inside the scanner for other 

complementary imaging modalities, e.g., fluorescent calcium recording (Schulz et al., 2012; 

Liang et al., 2017; Albers et al., 2018b; Wang et al., 2018; Lake et al., 2020), pupillometry 

(Pais-Roldan et al., 2020) and optogenetics in awake rodents (Desai et al., 2011; Liang et al., 

2015; Ferenczi et al., 2016; Gao et al., 2017).

To validate the unique advantage of ICD-based focal signal enhancement, we implemented 

ICD for the bilateral line-scanning fMRI with optogenetics. The line-scanning fMRI method 
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has been developed to extract the layer-specific BOLD signal from focal brain regions with 

a high spatial resolution, facilitating the emerging laminar fMRI studies from animal to 

human brains (Silva and Koretsky 2002; Goense and Logothetis 2006; Chen et al., 2013; 

Yu et al., 2014; Huber et al., 2017; Albers et al., 2018a; Kashyap et al., 2018a; Finn et 

al., 2019; Sharoh et al., 2019; Yu et al., 2019; Raimondo et al., 2021). The high resolution 

laminar-specific mapping scheme provides a unique strategy to map the circuit-specific 

neuronal connectivity through a large spatial scale. To date, the spatiotemporal dynamic 

patterns of evoked fMRI signals through transcallosal projections have not been thoroughly 

investigated. Here, two ICDs were used to map the interhemispheric laminar fMRI signals 

with sufficient SNR following optogenetic stimulation in the FP-S1 of one hemisphere. 

The salient post-stimulus undershoots detected in Layer 2/3 and 5 (Fig. 3) present 

the unique coupling feature of hemodynamic responses related to the interhemispheric 

excitatory/inhibitory balance (Chen et al., 2020). Brain slice electrophysiological recording 

has revealed that callosal circuit-mediated glutamatergic excitatory postsynaptic potentials 

are followed by elongated GABA-mediated inhibitory postsynaptic potentials (Kawaguchi 

1992; Kumar and Huguenard 2001; Karayannis et al., 2007; Palmer et al., 2012). 

The optogenetically driven callosal activity has been used to disentangle circuit-specific 

interhemispheric inhibitory effects, e.g., in the auditory cortex (Rock and Apicella 2015), 

prefrontal cortex (Lee et al., 2014), and hindlimb somatosensory cortex (Palmer et al., 2012). 

Interestingly, Iordanova et al. revealed transcallosal-mediated hemodynamic responses into 

three major categories: negative, biphasic, and no-response, with hemoglobin-based optical 

intrinsic signal imaging following optogenetic stimulation (Iordanova et al., 2018). Also, 

Hoffmeyer and colleagues reported the nonlinear neurovascular coupling in rat sensory 

cortex upon direct electrical stimulation of transcallosal pathways (Hoffmeyer et al., 2007). 

It will be interesting to further elucidate the controversial positive/negative BOLD signals 

contributed from excitatory/inhibitory neuronal activity using optogenetics (Iordanova et al., 

2018; Vazquez et al., 2018; Moon et al., 2021), especially for the diverse neurovascular 

coupling features along the interhemispheric circuits with layer-specificity. Our work 

provides the possibility to deepen the mechanistic understanding of laminar-connectivity 

either through corticocortical or subcortical connections with ICD-based multi-slice line 

scanning fMRI (Yu et al., 2014; Albers et al., 2018a; Jung et al., 2021). It should also 

be noted that although the ICD increased the tSNR of laminar fMRI signals, the BOLD 

responses driven by callosal projections still have low contrast-to-noise ratio as shown in 

Fig 3b. To compare the bilateral BOLD temporal dynamics, a massive averaging scheme 

remains necessary in future studies.

Several limitations about the usage of ICD in the multi-modal fMRI platform should be 

considered when interpreting the results of this work and for future optimization of the 

ICD for high field animal fMRI. First, although the ICD has a 2–3-fold sensitivity gain 

over the external surface coil, it is coupling with the external surface coil passively, thus 

limiting its effective distance separation from the external surface coil. Also, the signal gain 

reported in our study is based on the comparison with the large surface coil (~20 mm). We 

did not compare the ICD with the small diameter surface RF coil (e.g., 6–10 mm) because 

the B1 sensitivity is attenuated by the increased distance separation between the detector 

and the cortical regions of interests. Significant signal loss will occur if the surface coil 
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is positioned above the implanted rat brain with large distance separations. On the other 

hand, it is well established that wirelessly amplified NMR detector (WAND) can efficiently 

amplify MRI signals, leading to an additional >3-fold sensitivity gain over passive coupling 

(Qian et al., 2013; Qian et al., 2020), especially for larger distance separations. Therefore, it 

will be helpful to utilize the WAND to improve the effective operation range of implantable 

detectors. Secondly, even for passive coupling, there is still room for further improvement. 

For example, the angle between the external surface coil and the inductive coil should 

be as parallel as possible, ensuring a higher coupling coefficient between the two coils. 

Typically, the parallel arrangement can be implemented readily in phantoms. However, for 

in vivo experiments, the inductive coil is implanted on top of the curved skull, making 

parallel arrangement harder. This procedure explains the 6–7 fold sensitivity gain for 

in vitro experiments (Fig. 1d) in comparison to the only 2–3 fold enhancement for in 
vivo experiments (Fig. 2g and Fig. 3d). Moreover, through increasing the averaged tSNR, 

the SEM (Standard Error of the Mean) with ICD has larger variance across the cortical 

layers than the SEM without ICD (Fig. 2g and Fig. 3d), because of the different coupling 

coefficient for each in vivo experiment. Also, the tSNR across different cortical layers did 

not show expected monotonic decay with increased distance from the coil (Fig. 2g, Fig. 3d, 

and Fig. S3) because of the transceiver-based slice excitation scheme (See Method section). 

Thirdly, although we only discussed focal signal enhancement with ICD, it is also possible 

to develop the wireless, implantable array of ICDs to enhance the detection sensitivity of 

the entire brain (Bulumulla et al., 2015). In contrast to the conventional RF coil array 

requiring multiple detection channels, multiple ICDs can be combined for multiple channel 

RF sensing of MR signals through different bandwidths using one channel. Different from 

the two ICD component position as shown in Fig. 3 and Fig. S6, adjacent ICDs can be 

partially overlapped to decouple their signal interference. Moreover, resonant decoupler can 

be utilized to remove signal interference from non-adjacent ICDs for the ICD-based wireless 

array design (Alipour et al., 2020).

5. Conclusions

In summary, we have implemented ICDs in the multimodal imaging platform to yield high-

resolution structural and functional images of the rat brain with high SNR. The ICD-based 

mapping scheme facilitates optogenetic-driven brain connectivity studies with a simplified 

environmental setup.
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Glossary

fMRI functional Magnetic Resonance Imaging

BOLD Blood oxygen level dependent

SNR signal-to-noise ratio

ICD Inductively Coupled Detectors

EPI echo-planar imaging
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Fig. 1. 
Evaluation of inductive coil under different distance separations. (a) Photograph of ICD 

(upper) and schematic drawing of the phantom test arrangement with the ICD placed on 

the surface of a 1% agarose gel. (b) Diagrams of ICD implemented as a single resonant 

circuit coupled inductively to the external RF surface coil. (c) Coupling performance varies 

with the increased distant separations between the inductive loop and the transceiver coil. (d) 

The intensity of the FLASH 2D image acquired from the gel phantom shows a significantly 

higher SNR inside the enhanced region (ROI 1) than the unenhanced region (ROI 3). The 

noise was measured from the ROI outside the object (ROI 2). The ICD was placed on the 

gel while the surface coil was separated from the gel surface by 3 mm. Left: phantom image 

with regions of interest for performance comparison. Right upper, spatial SNR comparison 

between regions with increased distance separation between the two coils. Bottom, the 

required attenuation of RF pulse power changes as a function of distance separation.
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Fig. 2. 
BOLD responses were detected using a unilateral line-scanning method in the enhanced 

region. (a) The inductive coil covers the FP-S1 region on the right hemisphere, with 

a surface coil covering the whole rat brain. (b) A representative anatomic image shows 

enhanced focal intensity in the right FP-S1 region (ROI 1). The noise was measured from 

the ROI outside the object (ROI 3). (c) Significantly higher SNR in ROI 1 with inductive 

coil (right) than in ROI 2 (left) (Paired-sample t-test, ***P = 7 × 10−4, n = 5 rats, mean 

± SD). (d) Superimposed color-coded BOLD activation map with left forepaw electrical 

stimulation (3 Hz, 4 s, 2 mA) on the anatomical images (FLASH). (e) The procedure to set 

up the unilateral line-scanning method. (f) Averaged BOLD percentage change from all 20 

voxels in the cortex for 32 epochs (top left) and each epoch along with the cortical depth 

(top right, 20 voxels, 2 mm). Normalized spatiotemporal map (bottom left) along cortical 

depth for the trial (bottom left) and the epoch (bottom right) (n = 3 rats, 17 trials, 32 epochs, 

10 min 40 s per trial). (g) Averaged time course (top left) extracted from the right cortex 

shows the hemodynamic fluctuation in the absence of stimulation and its voxel-specific 

normalized spatiotemporal map (bottom left) throughout the cortex (20 voxels, 2 mm). 

Right, the tSNR with the inductive coil (blue) is significantly higher than our previous 

results acquired with the surface coil (red). It is noteworthy that SNR close to the corpus 

callosum is compatible (paired-sample t-test, ***P < 0.001, **P < 0.01 for the gray shadow, 

0–1.6 mm, n = 3 rats, mean ± SD).
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Fig. 3. 
Optogenetically evoked BOLD responses in bilateral enhanced FP-S1. (a) Averaged time 

course (top) and normalized spatiotemporal map (bottom) of bilateral BOLD responses in 

FP-S1 regions induced directly by optogenetic stimulation in the right hemisphere (right) 

and projected left hemisphere (left, n = 3 rats, 49 trials, 32 epochs, 2 Hz, 6 s, 10 ms 

light pulse, 30 mW). The middle upper is a schematic drawing of two inductive coils 

stuck adjacent to bilateral hemispheres, with optical fiber (blue) inserted to the right FP-

S1 region. Middle lower, a representative wide-field fluorescence image illustrates robust 

ChR2-mCherry expression in the right FP-S1. (b) fMRI percentage-change time courses 

(top) and maps (bottom) for epoch in each voxel along cortical depth on both hemispheres 

(n = 3 rats, 49 trials). gray lines indicate light stimulation. (c) Averaged epoch-wise time 

courses show the different laminar-specific responses of both hemispheres (n = 3 rats). 

gray lines indicate light stimulation. (d) The comparison between both hemispheres shows 

significantly higher tSNR in images acquired with (blue) implanted inductive coils over 

images acquired without (red) implanted inductive coils (paired-sample t-test, ***P < 0.001, 

**P < 0.01 for the gray shadow, upper panel 0–0.8 mm, lower panel 0–1.1 mm, n = 3 rats, 

mean ± SD). The asterisks on the right side indicate a 3-fold sensitivity gain.
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