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The recent H5N1 and H1N1 scares demonstrate that politi-

cal, bureaucratic, and to a large extent scientific, thinking

about how to ward off potentially large fatalities is cur-

rently restricted to stockpiling antivirals and generating

new vaccines. Nevertheless, as David Fedson pointed out

with undeniable logic in last month’s issue of this journal

(3: 129–142), an influenza research community that contin-

ues to confine its efforts to these approaches will fall far

short, in any severe pandemic, in its brief to prevent world-

wide high mortality.

Central to Fedson’s answer to this challenge is for us to

examine more closely the argument that a fatal outcome in

influenza is largely a manifestation of excessive release of

inflammatory cytokines, as embodied in the cytokine con-

cept of disease. Given reasonable acceptance of this, he

argues, we should then put more effort into testing the

potential for treating influenza illness with cheap and read-

ily available agents that are already, on other rationales, in

therapeutic use for other purposes, and also known to sup-

press production of disease-inducing cytokines.

What is the cytokine concept of disease, and how wide is

its relevance across the infectious diseases? The idea began

nearly 30 years ago when a newly described endogenous

anti-tumour agent1 was used to rationalise the nature of

malaria and systemic bacterial infections.2 As reviewed,3

when rTNF was later being tested as an anti-tumour agent

in patients, the toxicity that prevented its widespread use

so strikingly mimicked influenza that tumour researchers

referred, in print, to it generating influenza-like side

effects.4 Symptoms, which included fatigue, fever, anorexia,

chills, headache, pulmonary oedema, immunosuppression,

myalgia, nausea, vomiting and diarrhoea5,6 were worse with

higher doses. Parenteral interleukin-2, by inducing TNF,

also produces a very similar clinical picture.7

Together with influenza being the standard misdiagnosis

of imported malaria in temperate countries, the experiences

of these tumour researchers made it plausible that this dis-

ease model would explain the pathology of viral diseases,

including influenza, as well as that of malaria and bacterial

sepsis.8 The concept of cytokine excess has also been adopted

to rationalise the diseases caused by Mycobacterium spp.,9

Salmonella typhi,10 Leishmania spp.,11 Toxoplasma gondii,12

Coxiella brunetii,13 and Listeria monocytogenes.14 It domi-

nates the literature on the pathophysiological consequences

of trauma, haemorrhagic shock, and burns because these,

too, originate from cytokine excess.15,16 Different triggers

(gram-negative lipopolysaccharide, gram positive toxins,

fungal or malarial toxins, or modulation of RIG-1 gene

expression) and sites of production can be expected to gener-

ate different local patterns, so we must expect some clinical

and pathological dissimilarities between systemic diseases

that share this common fundamental origin.

TNF generation and circulating levels are increased in

influenza,17 particularly so for influenza caused by the more

pathogenic strains. The evidence linking the excess cytokine

concept with influenza disease will be well-known by most

readers. In brief, influenza A virus stimulates the release of

TNF from macrophages,18 and the recent avian strain

induces production of more TNF from human macrophages

than do a range of less virulent strains of human influ-

enza.19 Likewise, this H5N1 influenza virus induces an

inflammatory cytokine response in primary cultures of

human alveolar and bronchial epithelial cells.20 H5N1 ⁄ 97

upregulates TNF mRNA levels and TNF-related apoptosis-

inducing ligand (TRAIL) in human monocyte-derived mac-

rophages,21 and higher levels of inflammatory cytokines and

chemokines are associated with a fatal outcome.22 More-

over, a reconstructed version of the strain of influenza virus

responsible for massive human mortality in 1918–1919, but

not non-virulent constructs or strains, induces a strong and

prolonged pro-inflammatory cytokine response during the

fatal infections it causes in mice 23 and macaque monkeys.24

The literature’s emphasis on TNF may be artificial, but it is

now accepted as the progenitor of a cytokine superfamily,

and is demonstrated to be a master regulator of the network

of mediators it induces and interacts with.25

Thus Fedson’s proposal – that any agent known to reduce

inflammatory cytokine production and to ameliorate any

one of the diseases or conditions mentioned earlier warrants

testing in the others – is logical and compelling. Examples

are two peroxisome proliferator-activated receptor (PPAR)

agonists: gemfibrozil, a fibrate (PPAR-a agonist), reported
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by our group to reduce mortality in mouse infection with a

H2N2 strain of influenza A26 and rosiglitazone, a glitazone

(PPAR-c agonist) that does the same in a mouse model for

malaria.27 Both classes of agents reduce inflammatory cyto-

kine production, largely through antagonising the signal

transducer, nuclear factor-kappaB (NFjB).28

The immunosuppression that can accompany influenza29

is in fact characteristic of systemic inflammatory disease in

general. It is much studied, in terms of cytokine imbalance,

in conditions such as sepsis,30 malaria,31 trypanosomiasis,32

and trauma.33 In malaria, for example, its mechanism has

been shown to depend on nitric oxide,34 a downstream

mediator of TNF, which inhibits the function of dendritic

cells in malaria, thus limiting antigen presentation.35 Thus,

apart from its clinical relevance as the cause of the second-

ary bacterial pneumonia often seen in severe influenza, as

Fedson discusses, this immunosuppression is a reliable,

though indirect, indicator that influenza belongs to the

family of conditions caused by excess cytokine production.

Likewise, the rarity of pulmonary oedema in childhood

compared with adult influenza,36 malaria,37 and trauma,38

also casts influenza into the same cytokine-mediated mould

as malaria and sepsis. Already observed differences in the

anti-inflammatory versus pro-inflammatory cytokine ratios

between paediatric and adult macrophages stimulated with

LPS39 can plausibly be attributed to differences in PPAR

function, as its activation is prolonged in young mice com-

pared with older mice.40 These insights can only be appreci-

ated if influenza scientists seek, as Fedson urges, the expertise

of researchers outside of their immediate discipline.

Others have suggested that any treatment directed

against the inflammatory cytokines that cause illness will

also inhibit the protective innate response against the virus.

This is a valid possibility, as TNF has been reported to

exert an in vitro effect against influenza virus in human

epithelial cells.41 But what happens in vivo is what matters,

and others have found that anti-TNF antibody improves

experimental influenza disease without influencing virus

clearance.17,42 With close to a million patients having

received long-term TNF-neutralising drugs for rheumatoid

arthritis or Crohn’s disease by 2004,43 and a call being

made in that year for alertness to the possibility of hepatitis

or HIV exacerbation,44 so far as we are aware there are as

yet no reports of enhancement of viral disease, including

influenza. Likewise, we are not aware of any reports of viral

enhancement in patients taking fibrates, glitzones or statins

for other reasons. While not as powerful as anti-TNF ther-

apy, these less specific agents are advantageous when the

target cytokines are not yet fully defined, as they inhibit a

range of them.

Certainly, the simplicity and logic embodied in Fedson’s

approach to the practical treatment of severe influenza

should capture the attention and imagination of researchers

interested in intractable infectious disease.
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