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Human pluripotent stem cells as a translational
toolkit in psychedelic research in vitro
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SUMMARY

Psychedelics, recognized for their impact on perception, are resurging as promising treatmentswith rapid
onset for mood and substance use disorders. Despite increasing evidence from clinical trials, questions
persist about the cellular and molecular mechanisms and their precise correlation with treatment out-
comes. Murine neurons and immortalized non-neural cell lines harboring overexpressed constructs have
shed light on neuroplastic changesmediated by the serotonin 2A receptor (5-HT2AR) as the primarymech-
anism. However, limitations exist in capturing human- and disease-specific traits. Here, we discuss current
accomplishments and prospects for incorporating human pluripotent stem cells (PSCs) to complement
these models. PSCs can differentiate into various brain cell types, mirroring endogenous expression pat-
terns and cell identities to recreate disease phenotypes. Brain organoids derived from PSCs resemble cell
diversity and patterning, while region-specific organoids simulate circuit-level phenotypes. PSC-based
models hold significant promise to illuminate the cellular andmolecular substrates of psychedelic-induced
phenotypic recovery in neuropsychiatric disorders.

INTRODUCTION

Medical promises of psychedelics revisited

Psychedelics are compounds that affect perception,mood, consciousness, and cognition.1 For centuries, they have been used as entheogens

in ceremonial settings.1 It is not clear when the scientific interest in these substances began, but the discovery of the psychoactive properties

of the lysergic acid diethylamide (LSD) by the Swiss chemist Albert Hofmann in 1943 is recognized as the birth of the psychedelic era in the

modern sciences.2 This discovery was followed by a surge in psychedelic research aimed at understanding how LSD and other related com-

pounds with mind-altering effects could be applied to treat psychiatric conditions. Social stigma and other constraints impaired progress in

the field, but in the late 1990s, a renewed interest in their therapeutic potential re-emerged.3 Since then, psychedelics have been shownprom-

ising in treating mood and substance use disorders (SUDs).4

Psychedelics, also known as serotoninergic hallucinogens, consist of a wide range of structurally diverse compounds, including sim-

ple indolamine tryptamines, ergotamine tryptamines, and phenylalkylamines. Despite their chemical diversity, these substances collec-

tively act as partial or full agonists that target the 5-HT2A subclass of serotonin receptors (5-HT2AR).1 Simple tryptamines feature an

indole ring coupled with an amine group, resembling the endogenous tryptamine neurotransmitter serotonin (5-hydroxytryptamine;

5-HT). Psilocybin and its primary active metabolite, psilocin, occur naturally in Psilocybe sp. mushrooms.1 Other tryptamines, such as

N,N-dimethyltryptamine (N,N-DMT), and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are primarily recognized as the psychoac-

tive compounds in ayahuasca brew and the venom of Bufo alvarius toads, respectively.1 These agents function as agonists of several

5-HT receptors (5-HTRs) and generally demonstrate lower affinity for the 5-HT2AR compared to the hallucinogenic phenylalkylamines

discussed later.

The ergotamine tryptamines are ergoline alkaloids that resemble tryptamines but possess more rigid molecular structures, featuring an

indole system and a tetracyclic ring.5 LSD, a synthetic derivative, serves as the archetype of this class of psychedelics. Despite being the most

potent psychedelic agent in humans, LSD binds relatively nonselectively to various 5-HTRs alongside some dopamine and adrenaline recep-

tors.5 In contrast, phenylalkylamine hallucinogens like 2,5-dimethoxy-4-iodoamphetamine (DOI) and the naturally occurring mescaline found

within severalCactaceae species exhibit considerably higher selectivity, binding to the orthosteric sites of fewer 5-HTRs, mostly 5-HT2Rs, with

moderate to high affinity.5
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Other psychoactive compounds such as dissociative anesthetics (e.g., ketamine), opioids (e.g., salvinorin A), cannabinoids (e.g.,D(9)-tetra-

hydrocannabinol), and entactogen stimulants (e.g., 3,4-methylenedioxymethamphetamine), while possessing hallucinogenic-like properties,

operate primarily through other mechanisms and are not referred to as psychedelics hereafter.

In this review, we discuss the methods most frequently employed to study psychedelics at the cellular level and show how human plurip-

otent stem cells (PSCs) and derived three-dimensional (3D) cellular aggregates can be used as powerful translational toolkits in psychedelic

in vitro research. In our review, both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are referred to

as PSCs.

5-HT2AR as the primary target for psychedelic-induced synaptic plasticity

In a pioneering clinical study, Vollenweider et al. showed that when administered together with the 5-HT2Rs’ antagonist ketanserin, psilocy-

bin’s psychoactive effects were prevented.6 Although ketanserin is not an exclusive 5-HT2AR blocker, 5-HT2AR knockout mice and additional

clinical studies further confirmed the pivotal role of 5-HT2AR in mediating psychedelic behavioral effects.7,8 The high level of correlation

among the subjective experience, psilocin blood levels, and 5-HT2AR occupancy at cortical sites after psilocybin intake supports the role

of 5-HT2AR as the primary receptor underlying psychedelic pharmacological action.9 It has been shown that the 5-HT2AR is also essential

for synaptic formation, increased dendritic complexity, and boosted functional connectivity that follow exposure to psychedelic compounds

in murine neurons.10

Cortical neuron dendrite atrophy and loss of dendritic spines are implicated in neuropsychiatric disorders, such as mood disorders, which

psychedelics target. Psychedelic-induced neuroplastic changes at cellular and circuit levels likely drive the rapid antidepressant effects

observed clinically. Furthermore, neural plasticity extends beyond synaptic modifications, encompassing adaptive responses to stimuli like

hypoxia. This suggests psychedelics as promising pharmacological interventions aiding recovery from dysfunctions extending beyond the

synaptic level.

5-HT2AR, a member of the G-protein-coupled receptor (GPCR) superfamily that classically signals through the Gq subunit, triggers the

phospholipase C (PLC) b-mediated downstream cascade upon its activation on the plasma membrane. Psychedelics have also been shown

to cross the plasma membrane and bind to intracellular 5-HT2ARs, particularly within the Golgi apparatus, to induce plasticity.11

Psychedelics are biased agonists at 5-HT2AR, as they engage with specific structural domains and trigger certain downstream pathways

over others.12,13 For instance, crystal structure analysis of bound 5-HT2AR has shown that psychedelics are more likely to recruit b-arrestin-2

than the Gq subunit.
14 In cortical sections from rats, it has been observed that b-arrestin-2 binds with 5-HT2AR within the intracellular vesicles

of pyramidal neurons.12 Following 5-HT2AR activation, b-arrestin-2 is required for the phosphorylation of the extracellular regulated kinase

(ERK), also contributing to the behavioral effects observed in rodents exposed to LSD but not to DOI or 5-MeO-DMT.12,15,16 Lastly, the tran-

scriptional changes result from the phosphorylation of cyclic AMP (cAMP) response element-binding protein (CREB) via the mitogen-acti-

vated protein kinase and calcium/calmodulin-dependent kinase II pathways.17 The identities of the signaling pathways responsible for psy-

chedelics’ hallucinogenic and therapeutic properties and whether these are distinct or overlapping pathways are some of the questions still

under debate.

TheGq or b-arrestin-2 recruitment paradigm represents a glimpse into the extensive network of pathways regulated by 5-HT2AR activation

via psychedelics. For example, distinct psychedelics activate phospholipase A2 and phospholipase D via ADP-ribosylation factor 1.18–20 The

activation of 5-HT2AR, triggered by various agonists including DOI and LSD, can lead to the heterodimerization of the receptor with metab-

otropic glutamate receptor 2 and dopamine D2 receptor, both of which are Gi-coupled receptors.21,22 This transactivation blocks the cAMP’s

synthesis by adenylate cyclase and prompts heterotrimeric Gi/o proteins to trigger Src-mediated downstream events.

A burst of glutamate also follows psychedelic administration, mainly in the cortical layer V of the neocortex, which is a 5-HT2AR-enriched

area.8,23 High glutamate levels activate the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), boosting the secretion

of brain-derived neurotrophic factor (BDNF), which in turn signals through the tyrosine receptor kinase B (TrkB) and mammalian target of ra-

pamycin (mTOR) pathways, sustaining both the AMPAR activation and BDNF secretion in a positive feedback loop of neural plasticity.10,24

Furthermore, the hallucinogenic properties of different psychedelics are also proposed to be influenced by other 5-HTRs, and not all

5-HT2AR agonists have hallucinogenic properties.25 For instance, human studies also provide evidence supporting the involvement of the

5-HT1AR in the effects of psilocybin.26 Competition binding studies on rodent brains and primary cells revealed a lack of pronounced selec-

tivity of psilocin for 5-HT2AR over 5-HT1AR.27 Nevertheless, the role of the 5-HT2AR remains the subject of more extensive study and inves-

tigation. Ketanserin, a selective antagonist of the 5-HT2Rs, effectively eliminates head-twitch behavioral responses in mice; however, it does

not attenuate psilocybin-induced structural modifications in the prefrontal cortex.28 As a result, uncertainties remain about whether and how

the neuroplastic effects on rescuing disease phenotypes relate to behavioral responses, especially in humans. Moreover, human studies

investigating the molecular mechanisms of psychedelic-induced plasticity rely on global parameters such as peripheral BDNF levels, which

may not correlate with the molecular mechanisms occurring in brain cells.29 For in-depth cellular and molecular insights into the role of

5-HT2AR, in vitro investigations are required.

Shortcomings of the current models used to probe psychedelic-induced cellular plasticity in human cells

Pharmacological approaches to studying psychedelics in vitro commonly employ commercially available cell lines stably transfected to ex-

press the human 5-HT2AR.30 On the other hand, the psychoplastogenic properties can be probed in vitro using primary cortical cultures

from rodents, which are consistent with in vivo findings and ex vivo slice recordings.10,28 Typical morphological outcomes of drug-induced
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plasticity are monitored by imaging dendrite markers to measure their length and the number of crossings and synaptic density markers to

assay spine morphology by super-resolution microscopy.10,11,31 Both the target- and phenotype-based approaches can be combined, as

fluorescent biosensors of 5-HT2AR conformational states are also available and have already been successfully applied to distinguish psyche-

delics from non-hallucinogenic psychoplastogens in live murine neurons.32 Predominantly, phenotypic screening is constrained to non-hu-

man cells, potentially overlooking interspecies differences, whilemechanistic investigations heavily lean on immortalized non-neural cell lines.

Although primary neural cells from rodents have been vital in investigating the impact of psychedelics on cellular plasticity, there are

known differences between the amino acid sequences of human and rodent 5-HT2ARs.33 These differences, albeit minor, are sufficient to

slow down the human 5-HT2AR recycling rate compared to its rodent counterpart.33 Rodent cells demonstrate disparate sensitivity compared

to human neurons toward psychoactive substances like the ketamine analog methoxetamine.34 Similar differences become evident in assays

evaluating drug-induced suppression of neurite outgrowth, which is particularly relevant for phenotype-based psychedelic studies.35

As for target-based pharmacological studies of psychedelics, a detailed examination of the assays employed is reviewed elsewhere.30,36

Briefly, the functional assays to measure 5-HT2AR activity in these systems usually take advantage of inositol phosphates’ (IP) accumulation,

Ca2+ levels, cAMP production, or reporter gene expression. Resonance energy transfer-based assays that measure protein-protein interac-

tions are also frequently employed to monitor Gq or b-arrestin-2 recruitment to the 5-HT2AR site.37 Transfected human embryonic kidney

cells, known as HEK293 cells, are highly transfectable and endogenously express multiple GPCRs and b-arrestins, making them an attractive

in vitro model for studying GPCR signaling, including psychedelic studies featuring overexpressed constructs of human 5-HT2AR. Although

overexpressing a single target remains of great value as a pharmacological tool to avoid confounding effects between targets and off-targets,

quantitatively manipulating one target can impact its downstream functional selectivity and may modify some phenotypic responses to

psychedelics.

GPCR quantitative variations, or variations in b-arrestins andG-protein-coupled receptor kinases, shift receptors’ functional selectivity pat-

terns in overexpressed systems.38 For instance, it has been shown that the amount of GPCR angiotensin II type 1A receptors affects their

desensitization dynamics and triggers alternative and atypical PLC activation.39 Differences in agonist activities and potencies were also

shown to be influenced by the expression levels of GPCR A1 adenosine receptor (A1Rs) in two distinct Chinese hamster ovary (CHO-K1)

cell lines.40 These cells were stably transfected to express recombinant human A1Rs, with expression levels that differed by over 15-fold.40

This substantial variation in receptor expression per unit of protein in the cell membrane directly impacted cAMP production or IPs’ accumu-

lation following agonistic stimulation.40

In fact, not only 5-HT2AR and its direct downstream transducers account for a biomimetic model to recreate the brain’s molecular envi-

ronment reliably. Following exposure to psychedelics or several other compounds with antidepressant properties across different classes,

such as selective 5-HT reuptake inhibitors (SSRIs) and ketamine, BDNF is upregulated and, thus, the TrkB signaling pathway is activated.10,31,41

Recent research has revealed that psychedelics can directly bind to TrkB, allosterically enhancing the BDNF signaling pathway.31 Failing to

preserve the general native expression patterns in single target investigations, usually limited to 5-HT2AR overexpression, might overlook

important features for phenotype-based analyses. The model choice in these cases should also be careful since some neuroblastoma cell

lines may already naturally express elevated levels of alternative targets, such as TrkB,42 which would still limit the translational validity de-

pending on the experimental question despite exhibiting a neuronal phenotype.

The transfected systems are typically built immortalizing non-neural cell lines, which hampers simultaneous phenotypic examinations of

tissue-specific events relevant to psychedelic medical use, such as neuronal atrophy recovery. GPCR ligands, including psychedelics, may

display varying patterns of functional selectivity depending on the tissue and cell type. In C6 glioma cells, a truncated b-arrestin-2 mutation

enhances 5-HT2AR desensitization by affecting internalization dynamics, a process intricately linked to agonist-induced phosphorylation and

certain transcriptional changes.43 However, the popular HEK293 cells carrying this same b-arrestin-2 mutation do not exhibit changes in the

internalization dynamics of 5-HT2AR.33

Lastly, immortalized cell linesmight fail to capture the potential contribution of receptor genetic variants and sex- or tissue-specific pheno-

typic traits.43,44 This is because these immortalized cell lines have a limited capacity tomimic genetic diversity and phenotypic variability since

they are produced from a single cell type with a homogenous genetic background. Genetic factors, including variations in the 5-HT2AR cod-

ing region, shape the response to SSRIs in substance-related and mood disorders targeted in psychedelic clinical trials.45–47 Recent research

has demonstrated that single-nucleotide polymorphisms (SNPs) in the 5HT2AR gene sequence can impact psychedelic potency in recruiting

Gq or b-arrestin-2.48

WHAT DO PSC-DERIVED BRAIN CELLS BRING TO PSYCHEDELIC STUDIES?

Neural cells from PSCs for probing psychedelic modulation of plasticity

Modeling drug-induced transcriptional changes

Psychedelic-induced phenotypic changes result from a wave of transcriptional activation of elements downstream of the receptor. In the mu-

rine somatosensory cortex, psychedelics selectively stimulate immediate-early genes (IEGs) such as early growth response (egr)-1, egr-2, and

period-1, thereby providing clues into the distinct events triggered solely by psychedelics but not all 5-HT2AR agonists.7 This selective regu-

lation may elucidate whether perceivable experiences are inherent to the neurobiological mechanisms alleviating disease symptoms. How-

ever, in humans exposed to LSD, this differential regulation of the same IEGs was not observed in whole-blood samples, suggesting that it

might be specific to certain tissues, particular species, or both.49 In light of these variables, PSC-derived neurons may offer a valuable oppor-

tunity for early validation of findings across mixed species model systems of brain cells.
iScience 27, 109631, May 17, 2024 3
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Figure 1. Disease models and patient-derived PSCs for phenotypic interrogation of psychedelics

(A) Excitatory 5-HT2AR-expressing neurons. PSCs may be developed into functional 5-HT2AR-expressing neurons and show a fast, temporary rise in the

immediate-early gene (IEG) expression profile following stimulation, mirroring adult human brain patterns. These neurons allow for high-throughput dendritic

spine shape and neurite outgrowth monitoring with consistent dose-response curve measurements. Furthermore, in microelectrode array (MEA) setups, PSC-

derived excitatory neurons display Ca2+-dependent vesicular glutamate release and voltage-gated channels with human-specific electrophysiological

characteristics. MEA setups enable the evaluation of spontaneous and induced spike-like activity as functional plasticity measures while overcoming species bias.

(B) PSC-derived neuronal subtypes. PSC-derived serotoninergic neurons express specific markers and have firing patterns aligned with baseline tonic and burst-

firing synaptic neurotransmission. Disease-related characteristics, replicated in depressed patient-derived neurons, shed light on the molecular mechanisms

controlling serotonin production, reuptake, and presynaptic release. Similarly, dopaminergic neurons derived from patient-derived PSCs show action

potentials and spontaneous synaptic activity and replicate substance use disorder-specific transcriptional regulation, demonstrating increased postsynaptic

activity after exposure to addictive drugs such as alcohol, nicotine, and opioids. VMAT, vesicular monoamine transporter; MAO, monoamine oxidase; SERT,

5-HT transporter; SUD, substance use disorder.

(C) PSC-derived glial cells. When co-cultured with neurons on MEAs, PSC-derived astrocytes generate synchronous network bursts and enhanced postsynaptic

currents. PSC-derived astrocytes show spontaneous calcium spikes, indicating intercellular communication, as well as reactive gliosis responses to tumor

necrosis factor-a (TNF-a). PSC-derived microglia behave similarly to adult human microglia, responding to extracellular stimuli by migration, calcium influx,

and cytokine production. These glial cells enable the study of polarized responsive profiles that might be induced or suppressed by psychedelics. Created

with BioRender.com.
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Pruunsild et al. conducted a study that generated synaptically connected neurons from PSCs characterized by spontaneous postsynaptic

currents.50 Comparisons were made with mouse primary hippocampal neurons cultured under identical conditions, focusing on classifying

genes based on temporal expression patterns.50 Their findings revealed a generic synaptic activity-responsive IEG program, yet distinct be-

tween mouse and human models, as the latter includes genes lacking orthologs in the murine genome. Notably, several human IEGs ex-

hibited faster transient upregulation than their mouse counterparts.50 Human neurons from PSC exhibit a rapid and transient increase of

cellular oncogene Fos (c-Fos) and activity-regulated cytoskeleton-associated protein mRNA levels upon stimulation, which is apparent

only in fully mature neurons but not in their isogenic PSC source (Figure 1A).51

Prior research has successfully used PSC-derived neurons to study TrkB-mediated plasticity and provided new insights into the mech-

anism underlying the effectiveness of neurotrophins at limited concentrations.52 By working with PSC-derived midbrain dopaminergic and

cortical neurons cultured on a multielectrode array (MEA), Bang and colleagues investigated the dependence of long-lasting network
4 iScience 27, 109631, May 17, 2024
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Table 1. In vitro testing of psychedelics on PSC-based neural models

Compound Source for PSC generation PSC differentiation Analyzed parameters Publication

N,N-DMT Peripheral blood mononuclear

cells from healthy donors

Neurons Hypoxic cell viability;

gene expression

Szabo et al., 201671

DOI Urine cells and skin fibroblasts

from healthy donors

Neurons Inhibitory postsynaptic currents Wang et al., 2016183

5-MeO-DMT Human embryonic stem cell lineage Forebrain organoids Mass spectrometry-based

proteomic changes

Dakic et al., 2017160

LSD Skin fibroblasts from healthy donor Forebrain organoids Mass spectrometry-based

proteomic changes

Ornelas et al., 2022159
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potentiation on BDNF/TrkB signaling.53 They could proxy CREB phosphorylation and human-specific IEG expression patterns.53 TrkB and

downstream signaling transducers’ expression levels are comparable between PSC-derived organoids and the adult human cortex.54

These findings support the use of PSC-derived neurons in studies aimed at recapitulating endogenous modulators of psychedelic efficacy

for plasticity.

Noteworthy, neurons from PSCs have somatic and dendritic Golgi structures and replicate the intrinsic Golgi dynamics within the dendritic

compartments55 and thuswould provide an adequate environment formodeling intracellular 5-HT2ARs involved in psychedelic-inducedplas-

ticity.11 Moreover, genome editing for endogenously regulated tagging is a promising approach that does not compromise PSCs’ pluripo-

tency or differentiation potential, in which 5-HT2AR could be tagged and trackedwithin the neuronal progeny.56 Fluorescent tags into endog-

enous neuron-specific genes have been previously employed in PSC-derived neurons and enable the detection of the signaling underlying

survival and morphological changes.57

In summary, evidence indicates that neurons derived from PSC are suitable for studying how psychedelics affect gene expression. These

models also hold promise for inclusion in target-oriented investigations, considering the recently identified location bias behind psychedelic-

induced plasticity. However, utilizing PSCs presents certain obstacles, notably the complexity of achieving a sufficiently mature phenotype

depending on the protocol employed, a matter later discussed. Also, the examination of psychedelics’ effects on PSC-derived neural models

remains limited, as delineated in Table 1.

Modeling structural and functional plasticity events

The delayed phenotypic responses triggered by IEGs vastly diverge among cell types. For example, IEG-induced actin remodeling underlies

spinemorphogenesis in neuronal cells, whereas in cancer cell lines, it relates to migration and invasiveness. PSC-derived neurons offer tissue-

specific insights by allowing the monitoring of changes in membrane ruffling and actin reorganization.50 Dendritic spine morphology and

neurite outgrowth, the most employed readouts used to investigate psychoplastogens in vitro, are feasible with PSC products in high-

throughput setups and provide consistent dose-response curves for other neuropsychiatric drugs while overcoming any potential species

bias regarding sensitivity to dendritic outgrowth modulators35,58 (Figure 1A).

The lack of standardized protocols poses a notable constraint in PSC-derived cells, often resulting in inadequate phenotypic maturity of

the derived neurons.59 It is imperative to acknowledge that such investigations require experimental setups featuring synaptically connected

human neurons. Upon achieving these critical functional attributes, PSC-derived neurons can reveal human-specific electrophysiological sig-

natures (Figure 1A).34

Improved protocols make it feasible to generate excitatory neurons from PSC that release glutamate in a Ca2+-dependent vesicular

manner and express voltage-gated channels with membrane capacitances, resistances, and potentials similar to those observed in native

neurons.60,61 Published protocols utilizing both H9 hESCs and hiPSCs have demonstrated the expression and functionality of N-methyl-D-

aspartate receptors (NMDARs) and AMPAR subunits.62,63 These cells exhibit glutamate-induced Ca2+ influx, intracellular Ca2+ responses

to N-methyl-D-aspartate (NMDA), and NMDAR-mediated postsynaptic currents, as confirmed by calcium imaging and whole-cell voltage-

clamp recordings.62,63 Therefore, spontaneous and evoked spike-like activity can be assessed as functional plasticity parameters, as shown

for other therapeutically related compounds such as ketamine.

Ketamine has been catalyzing research into fast-acting antidepressants and paving the way for the clinical application of consciousness-

altering compounds.64 Both psychedelics and ketamine promotemTOR activation, BDNF synthesis, and dendritic spine growth, with psyche-

delics primarily acting as 5-HT2AR agonists and ketamine viaNMDAR antagonism.23 Ketaminewas testedon PSC-deriveddopaminergic neu-

rons that reproduced AMPAR-mediated BDNF and mTOR signaling activation alongside increased dendritic arborization.65 PSC-derived

neurons proved also reliable to show that ketamine boosts the expression levels of the AMPAR subunits GluR-1 and GluR-2.66

Furthermore, PSC-derived neurons can help exploremechanisms unrelated to 5-HT2AR and provide insights onwhether designed ligands

can induce other plasticity events underlying the clinical benefits seen for psychedelics.N,N-DMT, for instance, has amoderate affinity for the

non-opioid sigma 1 receptor (Sig-1R). At high concentrations,N,N-DMT positively affects the plasticity of primary murine neurons structurally

and functionally.10 Based on a thorough examination of the dose-response curves, it can be inferred that the effect of this particular psyche-

delic is probably due to the activation of supplementary receptors, which differentiates it from either LSD or psilocin.10 Polymorphisms at the
iScience 27, 109631, May 17, 2024 5



Table 2. Selected publications featuring disease models and patient-derived PSCs for phenotypic interrogation of psychedelics

Disorder Source for PSC generation PSC differentiation Analyzed parameters Publication

Depression Skin fibroblasts from patients diagnosed with

treatment-resistant depression

Ventral hindbrain

serotoninergic neurons

Neurite branches and

neural complexity;

5-HT biosynthesis and

release; gene expression

Vadodaria et al., 201997

SUD Human primary lymphocytes from patients

carrying a genetic variant linked to

susceptibility to opioid addiction

GABAergic inhibitory

interneurons

Inhibitory postsynaptic

currents; synaptic density;

gene expression; evoked

action potentials

Halikere et al., 2020103

Depression Skin fibroblasts from patients diagnosed with

depression

Astrocytes Transcriptome Heard et al., 2021184

PTSD Peripheral blood mononuclear cells or skin

fibroblasts from combat veterans diagnosed

with PTSD

Glutamatergic neurons Gene expression Seah et al., 202276

Depression Skin fibroblasts from patients diagnosed with

depression

Neurons ATP content;

oxygen consumption;

mitochondrial membrane

potential; spontaneous

action potentials

Triebelhorn et al., 202278

SUD Postmortem fibroblasts from patients

deceased with opioid overdose death

Neurons Gene expression Mendez et al., 202377

Depression Peripheral blood mononuclear cells from

patients diagnosed with major depressive

disorder and exhibiting suicidal behavior

GABAergic inhibitory

interneurons

Neurite branches and

neural complexity;

calcium signaling;

evoked action potentials;

transcriptome

Lu et al., 202391

Depression Peripheral blood mononuclear cells from

patients diagnosed with major depressive

disorder and exhibiting suicidal behavior

Ventral forebrain

organoids

Calcium signaling;

transcriptome

Lu et al., 202391
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Sig-1R locus have been linked to depression, and the approved antidepressant fluvoxamine binds to Sig-1R, indicating that Sig-1R might be

involved in the antidepressant mechanism of other compounds.67,68

Sig-1Rs participate in the stress signaling pathway by chaperoning inositol-requiring enzyme 1 from the endoplasmic reticulum to the nu-

cleus. Thus, Sig-1R agonists may mediate an adaptive neuroprotection mechanism under stress conditions as an alternative neuroplastic

event distinct, albeit synergic, from those described at the synaptic level. This hypothesis has been raised in clinical trials of a Sig-1R agonist

for the treatment of stroke.69 Accordingly, it has been shown that N,N-DMT mitigates spreading depolarization during ischemic conditions,

thereby reducing infarct size, and enhancing functional recovery, primarily through its interaction with Sig-1Rs, rather than 5-HT2ARs.70

Employing PSC-derived human neurons as a model system to assess the efficacy ofN,N-DMT in mitigating hypoxic stress, a notable resil-

ience to severe hypoxia (0.5% O2) uponN,N-DMT treatment is observed. The dynamic expression profile of Sig-1R during the differentiation

process of PSCs into cortical neurons illustrates the suitability of these neurons for elucidating molecular intricacies of N,N-DMT-mediated

neuroprotection that may not rely on 5-HT2AR.71 N,N-DMT prevented the upregulation of the a subunit of hypoxia-inducible factor-1 and

attenuated hypoxia-induced cell death, whereas Sig-1R antagonists abolished these effects. Subsequent Sig-1R knockdown experiments

further confirmed the pivotal role of this receptor in mediating N,N-DMT’s modulatory effects on these human neurons.71

Disease models and patient-derived PSCs for phenotypic interrogation of psychedelics

The translation of drug efficacy from animalmodels to human therapeutics often encounters challenges, as illustrated by instances such as the

lack of effectiveness of NXY-059 in ischemic stroke andminocycline in amyotrophic lateral sclerosis (ALS), despite their initial success in rodent

models.72,73 Late-stage clinical trials of drug candidates identified solely on mouse models for Rett syndrome have also faced setbacks. Pa-

tient-derived PSCsmight have improved the translational validity of an insulin-like growth factor-1 analog, whichwas shown to rescue disease-

linked neuronal phenotypes74 and reveal the underlying molecular mechanisms75 in these cells and is now progressing in clinical trials with

promising results (NCT04181723 and NCT04279314).

At least partially motivated also by regulatory pressures to reduce animal experimentation by exploring in vitro alternatives, the scope of

diseasesmodeledwith PSCs has expanded to include psychedelic-targeted disorders such as post-traumatic stress disorder (PTSD),76 SUD,77

and depression78 (Table 2). Despite the increasing popularity of these studies, which have predominantly emerged in the past decade, clinical
6 iScience 27, 109631, May 17, 2024
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trials of compounds identified or repurposed via PSC-basedmodels remain constrained and in their nascent stages. A notable example is the

small molecule ezogabine initially identified through extensive drug screening using human PSCs, subsequently undergoing clinical trials for

ALS treatment (NCT02450552).79

The pioneering reprogramming techniques to induce pluripotency in somatic cells utilized retroviral or lentiviral vectors to transiently ex-

press the Yamanaka factors OCT4, KLF4, SOX2, and C-MYC.80 Currently, non-integrative methods have been developed to avoid undesired

genomic insertions while maintaining high efficiency, such as Sendai virus, adenovirus, episomal plasmids, or synthetic mRNAs.81 PSCs

derived from healthy donors can have disease-associated mutations inserted into relevant genetic loci, providing a reliable model for study-

ing specific transducers’ impact on resulting phenotypic responses.82

Alternatively, adult somatic cells from patients with known genetic mutations can be reprogrammed into PSCs that are differentiated

into functional 5-HT2AR-expressing neurons, generating repetitive action potentials and inward currents in response to a 5-HT2AR

agonist.83 PSC lines derived from donors carrying a human-specific non-synonymous SNP in the BDNF gene, which is believed to be asso-

ciated with heightened susceptibility to depression, have also been documented.84 Furthermore, genome-wide significant variants asso-

ciated with the risk factors or symptomatic features of psychiatric disorders such as depression, SUDs, and PTSD are continually being

identified, offering unprecedented insights for identifying novel therapeutic targets, repurposing existing drugs, and establishing

target-based systems that also model relevant phenotype rescues.85–87 Analyzing editing revertants in PSCs from donors with disease-

linked variations allows for scrutinizing their genotype-phenotype relationship, whose functional implications are still unknown and could

influence the clinical response to psychedelics.

Initially, PSC research focused on obvious genetic determinants, such as models of familial and monogenic traits. Now, there are signif-

icant endeavors to generate PSC lines from clinically diagnosed patients, spanning diverse profiles like recurrent depression, treatment-resis-

tant depression, and depression with suicidal behavior (Table 2).88–90 Notably, the differentiation of PSCs from a cohort of depression with

suicidal behavior into GABAergic interneurons and ventral forebrain organoids has revealed defective expression of 5-HT2CR at both RNA

and protein levels.91 Treatment with the antidepressant trazodone rescues this phenotype, similarly to lentivirus-mediated gene insertion, to

reinstate calcium signaling peaks in thesemodels.91 In a study assessing the effects of morphine treatment as a proxy for chronic opioid expo-

sure, the expression patterns of neuron-related genes such as egr-1 were found to be similar between PSC-derived neurons and the dorso-

lateral prefrontal cortex of individuals deceasedwith opioid use disorder.77 Also, direct neuronal transdifferentiation has emerged as ameans

to bypass intermediate embryonic-like pluripotent stages, which may erase or modify disease-associated epigenetic traits.

The suitability of PSC-derived cells to replicate drug response variations that align with common haplotypes within the population has also

been reported.92 Screening for psychiatric drugs in these cells has proven helpful to assay phenotype-based responses that relate to the phar-

macological response of patients. To mention some, PSCs from individuals with schizophrenia have allowed the identification of cholesterol

biosynthesis as a trait linked to the clozapine response.93 The properties of lithium as a mood stabilizer have also been investigated using

neurons from reprogrammed cells from responders and non-responders diagnosed with bipolar disorder.94 These cells replicated circadian

electrophysiological changes, which are known to be complex traits associated with drug response.94

PSC-derived serotoninergic neurons to study presynaptic targets in mood disorders

In the human brain, presynaptic serotoninergic terminals expressing 5-HT1AR project to cortical layers of pyramidal neurons enriched with

5-HT2AR, which can co-express postsynaptic 5-HT1ARs.95 In these postsynaptic neurons, 5-HT2AR activation significantly attenuates the

inhibitory effect of 5-HT1AR on NMDAR currents and microtubule depolymerization.16 However, the role that 5-HT1AR plays in psychedelic

efficacy remains underexplored in preclinical research. Intriguingly, a 5-HT1AR antagonist reversed the drop in body temperature observed in

mice after administration of psilocybin, whereas an agonist inhibited some psilocybin-induced effects in humans.26,96 It is crucial to accurately

differentiate between pre- and postsynaptic receptors, particularly 5-HT1AR, to capture the cellular and molecular mechanisms governing

their efficacy in alleviating disease-related phenotypes associated with presynaptic 5-HT synthesis, reuptake, and release or post-synaptic

structural plasticity changes related to the disease.

Neurons derived from PSC from patients diagnosed with major depressive disorder have revealed 5-HT-induced hyperactivity when

compared with cells from healthy counterparts. It has been shown that a 5-HT2AR/5-HT7R antagonist may partially alleviate this phenome-

non.97 Other disease-linked phenotypes, such as impaired neurite growth and abnormal morphology, have been replicated in PSC-derived

neurons, which were also helpful in identifying changes in protocadherin-a gene expression as the underlyingmechanism associated with the

observed phenotypes.97

A chemically defined protocol that guides PSCs through a stepwise ventral hindbrain differentiation process has developed, resulting in a

robust 5-HT fate specification (Figure 1B).98 These serotoninergic neurons express tryptophan hydroxylase 2 and other characteristic markers,

includingmonoamineoxidase, 5-HT transporter, and vesicularmonoamine transporter, with electrophysiological firing patterns consistent with

basal tonic activity and burst-firing synaptic neurotransmission.98 Accordingly, these neurons spontaneously release 5-HT and respond to

SSRIs.98 Future preclinical investigations concerning psychedelics as potential antidepressants should consider using these neurons to ascer-

tain 5-HT1AR expression and to monitor their impact on 5-HT dynamics, which may influence their therapeutic efficacy in the clinical setting.

PSC-derived dopaminergic neurons to model SUDs

SUDs are characterized by presynaptic inhibition of gamma-aminobutyric acid (GABA) release and the resulting potentiation of cortical excit-

atory afferents to dopaminergic neurons in the midbrain ventral tegmental area (VTA). This activation stimulates the nucleus accumbens,
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initiating the reward response. On the other hand, it has been shown in rats that at high doses, LSD suppresses VTA dopamine firing by bind-

ing to 5-HT1AR, D2R, and trace amine-associated receptor 1.99 Preclinical models lacking phenotypic specialization of neuronal subtypes, or

which are based on a cortical-centered background due to 5-HT2AR-enrichment, may not elucidate psychedelics’ fundamental neurobiolog-

ical mechanisms potentially useful for the treatment of SUD.

Maladaptive plasticity induced by chronic exposure to addictive drugs, such as alcohol, interferes with long-term potentiation/long-term

depression (LTD) and BDNF signaling. Although psychedelics regulate the same molecular processes, they are not addictive.100 In fact, psy-

chedelics have been proposed for treating SUDs as their 5-HT2AR-mediated psychoplastogenic properties are believed to ameliorate the

cognitive deficits often associated with addiction.

PSC-derived dopaminergic neurons can generate action potentials, display spontaneous synaptic activity, and express functional GABAA

receptor (GABAAR), AMPAR, and NMDAR. Following chronic alcohol exposure, patient-derived cells display a SUD-specific transcriptional

upregulation of NMDAR and downregulation of GABAAR subunit-encoding genes (Figure 1B).101,102 Notably, the expression of the NMDAR

subunitGRIN1 in neurons from PSC remains significantly elevated after drug withdrawal.102 In contrast, no changes in expression levels were

noted in cells derived from non-alcohol-dependent subjects after seven days of alcohol exposure.101 As for nicotine addiction, PSC-derived

dopaminergic neurons from individuals carrying specific SNPs in the cholinergic receptor nicotinic a 5 subunit gene replicated the increased

postsynaptic activity in response to nicotine and differentially expressed genes associated with ligand-receptor interaction and synaptic

function.103

PSC-derived astrocytes to study neuron-glia crosstalk and psychedelics

The idea that glial cells are involved in psychedelic response was proposed 20 years ago, but empirical research on this topic is still scarce

despite the recognition that glial cells are promising targets for mood disorder interventions.104 Astrocytes are one of the most abundant cell

populations in the brain and play supportive roles in functions spanning from synapse development and plasticity to metabolic homeostasis

and neuroinflammation.105 A body of evidence has progressively implicated structural and functional dysfunctions in astrocytes as funda-

mental mechanisms underlying neuropsychiatric disorders.105 Also, the expression of various receptors and transporters, including

5-HTRs, renders astrocytes promising targets for both traditional antidepressants and psychedelic compounds.106 Remarkably, following

DOI exposure, astrocytes are stimulated to a degree comparable to excitatory 5-HT2AR-expressing neurons in the mice cortex.107

The contact of neurons with astroglial cells within synapse compartments, where psychedelics induce significant cellular changes, might

contribute to the enhancement of neuronal transmission observed following psychedelic exposure. Astrocyte-secreted synapse-modifying

factors, such as glypicans that recruit additional AMPARs, are also expected to play a role in this process.108 Examples from both murine

and human PSCs successfully enabled co-culture models where the astrocyte genotype determined the neuronal phenotypes, including sur-

vival and action potential firing (Figure 1C).109,110 Here, we outline some of the protocol achievements of astrocytes derived from human PSCs

and their potential for similar contributions to elucidating biological mechanisms underlying the therapeutic effects of psychedelics.

PSC-derived astrocytes havemorphological traits and expressmarkers of functionalmaturity that provide an appropriate in vitromodel for

investigating psychedelics in these cells.111 OnMEAs, co-cultures of astrocytes and neurons from PSC generate intense synchronous network

bursts and an increased frequency of postsynaptic currents compared to neuronal monocultures and mixed-species co-cultures.112 Overall,

co-cultures, whether mixed-species or fully human, have been shown to exhibit sustained network burst frequency and complex oscillatory

bursting, with activity increasing gradually across all frequencies over time. However, the PSC-derived co-cultures displayed greater magni-

tudes of change in response to an NMDA antagonist, resulting in reduced bursting at delta and theta frequencies compared to the mixed-

species cultures.113

Human astrocytes are also distinguished by a broader functional repertoire than their murine counterparts.114 Comparative analysis of

gene enrichment highlights significant differences in molecular profiles between human and mouse astrocytes, with the former displaying

enrichment in genes related to inflammatory responses while the latter exhibiting metabolic enrichment.114

Human PSC-derived astrocytes display spontaneous calcium spikes, suggesting the occurrence of intercellular signaling among intercon-

nected cells. Adding glutamate or ATP results in calcium wave responses, glucose uptake, and lactate shuttling.115–117 The excitatory signa-

ture and the corresponding increased oxygenated blood supply left by psychedelics in some areas of the human cortex118,119 probably stim-

ulate astrocytes to uptake excessive glutamate through high-affinity transporters and then have it converted into glutamine by glutamine

synthetase.120 Astroglial scavenging prevents neuronal excitotoxicity caused by excess glutamate, a function that is impaired in depressed

patients’ cortical regions and amygdala.121 Astrocytes are also expected to release glutathione to protect neurons from the oxidative stress of

glutamatergic stimulation.122

Interestingly, mitochondrial function has been postulated as an astrocyte-specific mechanism underlying the potential efficacy of a novel

candidate for a faster-onset antidepressant, hypidone hydrochloride (YL-0919).123 Notably, distinct variations in mitochondrial physiology

further differentiate human and mouse astrocytes.124 Human astrocytes are more vulnerable to oxidative stress and, therefore, should be

the first choice when studying themolecular underpinnings of thesemetabolic changes in humans at the cellular level. Zandonadi et al. inves-

tigated human primary astrocytes subjected to ayahuasca preparations with differentN,N-DMT-based concentrations.125 Untargetedmetab-

olomics revealed notable and distinct changes in both intracellular and secreted metabolites associated with depression.125

In summary, the unique set of functions, molecular characteristics, and vulnerability to oxidative stress shown in human astrocytes highlight

the utility of PSC-based cultures as a valuable resource to uncover the impact of psychedelics on cellular phenotypes that are important for

therapeutic outcomes but extend beyond neuronal cells.
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PSC-derived brain cells to assay psychedelics immunomodulatory events

A few clinical investigations have explored inflammatory biomarkers after exposure to psychedelic substances through the analysis of periph-

eral fluids, yielding heterogeneous findings.126–130 To date, there is not enough clinical evidence to support the intrinsic role of psychedelics

as anti-inflammatory agents. By contrast, animalmodels of inflammatory diseases and cultured rat aortic smoothmuscle cells have shown that

tumor necrosis factor-a (TNF-a)-induced secretion of pro-inflammatory cytokines, adhesion molecules, and the nuclear translocation of the

nuclear factor kB (NF-kB) are all prevented by 5-HT2AR activation following DOI exposure.131,132 Another study using human primary mono-

cyte-derived dendritic cells suggests that N,N-DMT and 5-MeO-DMT prevent pro-inflammatory cytokine release while increasing the secre-

tion of the anti-inflammatory interleukin (IL)-10 after inflammatory challenges, but by Sig-1R activation, rather than 5-HT2AR.133

In addition to the limited strength of evidence regarding psychedelics’ effects on immune cells, investigating these anti-inflammatory

changes in local reactive brain cells, particularly astrocytes and microglia, is still an emerging topic.134,135

The simultaneous involvement of microglia and astrocytes in synaptic activity and immune response in the brain has been recognized.

Notably, individuals with depression often exhibit elevated levels of inflammationmarkers, which have been shown to impair astrocytic gluta-

mate uptake.136 Since the late 1990s, research has shown that 5-HT2AR is upregulated in reactive astrocytes,137 suggesting that these inflam-

mation-primed cells might be particularly affected by drugs that target these receptors. Fluoxetine, a first-line SSRI antidepressant, inhibits

pro-inflammatory reactivity in astrocytes via 5-HT2BR and b-arrestin-2 signaling.138 This functional selectivity has also been observedwith LSD

and its precursor ergotamine at human 5-HT2BR.139

Astrocytes respond to insults by synthesizing pro-inflammatory and anti-inflammatory cytokines, such as IL-1b and TNF-a. N,N-DMT has

been shown to mitigate the pro-inflammatory effects of intracerebroventricular injection of Ab1–42 on astrocyte reactivity and TNF-a produc-

tion in mice’s subgranular zone.134 Astrocytes can amplify complex neuroinflammatory cascades or trigger repair processes depending on

neurotransmitter and ion regulation, gap junction function, and phagocytic activity. Species-specific differencesmay also play a role, as shown

in a study comparing mouse and human astrocytes.124 We have previously demonstrated that human PSC-derived astrocytes exhibit reactive

gliosis in response to TNF-a, mirroring the nuclear translocation of NF-kB, cytokine release, morphological changes, and impaired uptake by

glutamate high-affinity transporters.140

While technical challenges to isolate microglia from humans exist, PSC-derived microglia are similar to cultured adult human micro-

glia.141,142 Also, working with PSC-derived microglia allows high-throughput assessments, mainly recapitulating the basal transcriptional

profile of ex vivo microglia.142 Quantitative data show that PSC-derived microglia engulf human synaptosomes as expected, revealing the

underlying regulatory molecular pathway involved.141 PSC-derived microglia sense extracellular stimuli, migrate, exhibit calcium influx,

and secrete various cytokines in response to insults.141

Exposing PSC-derived microglia to brain-related substrates recapitulates the transcriptional states identified in the human brain.143 PSC-

derived microglia exhibit intrinsically distinct transcriptional states in vitro, even without stimulation. Importantly, these states do not

converge to a single transcriptional signature upon stimulation.143 This behavior is like the one observed in vivo, in whichmicroglia may adopt

distinct transcriptional states depending on the location. These findings suggest that the heterogeneous response to substrates typical in

microglia can be replicated in PSC-derived cells. Therefore, studies exploring the potential properties of psychedelics or related compounds

for preventing neuroinflammation can benefit from these scalable and translational in vitro options.
Studying the effects of psychedelics on neurogenesis with brain organoids

PSCs can also be used to re-create cell diversity, thus allowingmulticellular phenotypic changes to be assayed. PSC-derived neural stem cells

can be cultured as cell aggregates under non-adherent conditions and guided to develop in neurospheres containing neurons and glia in a

3D environment (Figure 2A).144 Cell-cell interactions are possible in this environment, resulting in greater network complexity than in mono-

layered neural cells. We have previously reported that neurosphere’s maturation occurs by downregulating proliferation and upregulating

axonal guidance pathways, which correlates with the neurite outgrowth phenotype.144 Brain organoids represent a significant advancement

in modeling tissue complexity and heterogeneity beyond neurospheres. Both neurospheres and organoids hold value depending on the

experimental question at hand. Serving as more ‘‘sophisticated’’ constructs, brain organoids crafted from PSC are adept at recapitulating

the developmental trajectory, cell diversity, and spatial morphology of the human brain.145 However, their inherent variability and heteroge-

neity present substantial challenges to the field, particularly for their application in quantitative drug screening assays.

Animal studies have produced mixed results on the potential benefit of psychedelics on neurogenesis by activating 5-HT2AR. Some

studies in rats have shown that LSD and DOI do not affect hippocampal neurogenesis, whereas others performed in mice have shown

that psilocybin negatively regulates it.146–148 In contrast, N,N-DMT and 5-MeO-DMT at relatively high doses enhanced cell proliferation in

the murine hippocampus by activating Sig-1Rs.149,150 However, the influence of N,N-DMT on neurogenesis is still controversial since others

have found thatN,N-DMT-treated animals significantly lower the densities of progenitors andmature neurons in the subgranular zone neuro-

genic niche, possibly due toN,N-DMT’s higher affinity for 5-HTRs.134 The question of whether specific or all psychedelics trigger neurogenic

plasticity in human cells and the extent to which these discoveries hold any translational significance for the adult human brain is still an open

question.

These potential effects lack comprehensive exploration in the cellular milieu of human brain cells. The neurogenic niche in humans has

notably expanded, driven by primate-specific outer zone progenitors,151 which may impart distinctions of drug-induced neurogenesis in hu-

man cellular contexts. Single-cell RNA sequencing identified significant differences in proportions of cell types, laminar distributions, gene

expression, and morphology between human and murine cortex, notably in serotonin receptor genes such as 5-HT2AR, ranking among the
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Figure 2. Studying the effects of psychedelics on PSC-derived three-dimensional systems

(A) Neurospheres or neural spheroids. Neural stem cells originating from PSCs can be grown in 3D clusters called neurospheres. These clusters can be further

developed to produce neurons and glia, enabling cell-cell interaction and increasing network complexity. This technique is useful for examining phenotypic

changes, including neurite outgrowth, and can provide valuable insights into phenotypes that require diverse cells.

(B) Brain organoids as a model for neurogenesis. Brain organoids are self-assembled structures that give a detailed in vitro representation of human brain cells,

their diversity, developmental progress, and receptor expression. These organoids contain most brain cell types and have similar transcriptomic profiles to those

found in the developing human brain. By mimicking the formation of ventricles, the migration of neurons, and the layering of the cortex, they can model tissue

complexity and heterogeneity to assay whether psychedelics can induce neurogenesis as an alternative neuroplastic mechanism.

(C) Brain organoids as a model for cerebral cortical analysis and neural circuitry. Brain organoids from PSC can be cultured for an extended period to generate

various specialized cell types when they shift spontaneous neural activity to network bursting. These organoids are suitable for screening the effects of

psychedelics on a transcriptomic and proteomic level with physiological relevance to the human adult brain. Additionally, organoids resembling specific

brain regions can be physically integrated to allow axonal projections across regions and synaptic assembly, recreating circuitry-level features in vitro.

Created with BioRender.com.
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most divergent gene families between the two species.152 Brain organoids provide a nuanced portrayal of human brain cell diversity, devel-

opmental trajectories, and receptor expression, where PSCs self-assemble into cellular aggregates that mimic crucial aspects of brain tissue

organization, including ventricle-like structures and cortical layering (Figure 2B).153 As brain organoids contain most brain cell types with

similar transcriptomic profiles to those in the developing humanbrain,151,153 they provide a highly attractive and feasible alternative for testing

findings where animal models are inconclusive among different drugs, aiding in compound selection for enhanced translational validity of

neurogenesis as an additional level of psychedelic-induced plasticity.

Indeed, PSC-derived organoids have previouslymodeled polygenic neurodevelopmental features that are specific to humans, which were

otherwise inaccessible due to idiopathic genetic backgrounds affecting brain development.154,155 Hence, they are poised to elucidate

whether neurogenesis is triggered selectively by certain psychedelics or universally by all, in addition to promoting synaptic plasticity in

the existing neurons.
Studying the effect of psychedelics on neural networks with brain organoids and assembloids

Although developmental aspects of the brain have been more intensely studied in organoids, research on neural circuits and functional net-

works in these models has just recently begun. Organoids can be cultured long-term for further maturation, enabling the detection of circuit-

level phenotypes in patient-derived cells (Figure 2C).156 In these cases, they exhibit more pronounced gliogenesis and gradually formmature

network bursting.54,156 Accordingly, they exhibit synchronized neural activity and oscillatory networks that resemble human preterm electro-

encephalography patterns.157 Their utility extends beyond developmental processes as they activate essential synaptic biochemical
10 iScience 27, 109631, May 17, 2024
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machinery to generate self-organized activity patterns. This capability may effectively replicate critical aspects of how psychedelics influence

neuronal phenotypes, rendering them also a suitable biomimetic model of the adult human brain in vitro at both molecular and functional

levels. We have recently shown that these organoids recapitulate proteomic signatures found in postmortem tissues from patients.158

In PSC-derived cerebral organoids, the expression levels of molecular transducers of the psychedelic signaling pathway, such as ERK and

c-Fos, egr-1, and egr-2 IEGs, are comparable to those observed in the adult human brain cortex.54

Using liquid-chromatography mass spectrometry, our group analyzed the proteome of PSC-derived forebrain organoids exposed to psy-

chedelics.159,160 We found that LSD upregulates mTOR and other plasticity-related pathways, such as DNA replication, LTD, axon guidance,

and synaptic vesicle cycle.159 The detection of differentially expressed synaptic proteins, particularly the synaptic vesicle glycoprotein 2A

(SV2A), in brain organoids post-LSD exposure underscores its potential translational relevance. SV2A reduction has been documented in

the brains of depressed patients,161 and studies in pigs have demonstrated an increase in SV2A levels following psilocybin administration,162

an effect later also shown in humans following the fast antidepressant ketamine.163 The unbiased approach used for proteomics analysis on

organoids also provided evidence of the inflammatory NF-kB pathway downregulated by 5-MeO-DMT in human brain tissue.160 Given that

suchmodulation was not seen after LSD exposure and considering the resemblance between brain organoids and adult human brain expres-

sion patterns, organoids could aid in distinguishing pharmacological applications among psychedelic compounds.

As brain organoid cells aggregate, mature, and establish networks among cell clusters, they activate key signaling pathways like TrkB and

develop more robust electrical properties. Retinal circuits have been modeled with guided organoids, and output projection tracts from

others have been shown to evoke muscle contraction.164,165 The electrophysiological correlates of the oscillatory power during the psyche-

delic state in humans can be studied on a microscale with brain organoids that demonstrate synchronous and stereotypical nested oscillatory

network events, which develop as cell diversity becomesmore complex, especially due to the emergence of inhibitory neuronal and glial pop-

ulations.166,167 Also, a significant debate persists in the field regarding whether the behavior effects induced by psychedelics are essential for

their therapeutic benefits. Nonetheless, modeling these phenomena in vitro has been poorly explored, since it requires even more tailored

models due to their strong reliance on interconnected brain regions.

Prominent models like the cortico-striatal thalamocortical loop (CSTC) and the relaxed beliefs under psychedelics (REBUS) suggest that

psychedelics induce alterations in whole-network dynamics, extending beyond the well-examined 5-HT2AR-enriched cortical regions. CSTC

proposes heightened thalamic hyperconnectivity, facilitating increased sensory information flow within cortical-subcortical circuits.

Conversely, REBUS suggests that psychedelics attenuate higher level cortical network control, which is consistent with heightened cortical

entropy and increased bottom-up processing. The recent advancements that have introduced region-specific human brain organoids can

now be employed to model subcortical regions impacted by psychedelics in terms of both behavioral responses and plasticity outcomes,

such as the thalamus.23

These regionalized organoids can be used to study the functions of striatal and thalamic regions of the brain and later combined with

cortical organoids to create complex ‘‘assembloids,’’162 which allow for modeling in vitro the activity within and between the cortical and

subcortical cells during circuit building.168,169 Striatal organoids resemble the developing human striatum and include electrically active me-

dium spiny neurons from distinct striatal cell lineages.169 These neurons mature electrophysiologically following the assembly of the organo-

ids and display calcium activity after optogenetic stimulation.169 Next, specific imaging techniques for epifluorescence can monitor the for-

mation of cortico-striatal and cortico-thalamic axonal projections and synaptic connections.

Revah et al. achieved a significantmilestone by transplanting PSC-derived cortical organoids into early-postnatal rat somatosensory areas,

demonstrating robust axonal projections, network formation, andmaturation of human cortical neurons.170 Remarkably, their study also high-

lighted integration with host thalamic connections with impact on host behavior.170 Significant strides are still necessary before establishing

connections between the electrical patterns, circuit architecture, and gene expression alterations observed in microscale organoid physi-

ology and the biological correlates of altered consciousness states in humans, primarily due to our limited understanding of whether such

correlates exist.

Bioengineering is rapidly evolving to supplement brain organoids with cerebrospinal fluid production, blood vessels, blood-brain barrier,

andmicroglial cells, further improving themodel for testing drug interventions that better reflect adult humanbrains.171–174 These innovations

are expected to be incorporated into a single system in the following years. Future studies focusing on these approaches hold great potential

to uncover the impact of psychedelic mind-altering properties on the biological correlates of disease-linked phenotype recovery.
LIMITATIONS AND FUTURE PERSPECTIVES ON THE USE OF PSC-DERIVED CELLS AND ORGANOIDS IN

PSYCHEDELIC RESEARCH

It is essential to acknowledge that PSCs do not aim to replace conventional models but rather complement them. PSC-derived models offer

unique insights into cellular behavior and drug responses by mirroring human tissue, but cells expressing all receptors of the brain fail to

discern target fromoff-target effects accurately. Thus, integrating both approaches promises comprehensive target identification andpheno-

typic validation, with initial screening in single receptor-overexpressing cells followedby phenotypic investigations using PSC-derivedmodels

to elucidate complex cellular interactions and responses. Integrative approaches will counterbalance the major caveats of PSC-based

models, such as reproducibility, incomplete reprogramming, and insufficient maturation.

Variations in donor characteristics, genetic integrity, and experimental factors contribute to the diversity observed in PSC models, influ-

encing their differentiation potential, cellular composition, morphological features, and levels of transcripts and proteins. Reminiscent epige-

netic features from source cells and incomplete reprogramming are potential shortcomings to be addressed when using PSC-derived cells in
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diseasemodeling and psychedelic drug testing. Genetic or epigenetic variations may influence the ease of differentiation of certain PSC lines

into specific cell types. Stringent protocols and assessment of whether gene expression patterns are neuron specific and thus not found in

either their isogenic PSC counterparts or cancer cell lines are good practices that may help to circumvent this shortcoming and ensure

the quality of PSC products.56,57

Depending on the adopted protocol for guided differentiation, certain PSC-derived cells may remain immature. Most available charac-

terization of PSC-derived cultures is compared to fetal expression patterns. Protocols adopting aging-inducing cocktails and prolonged cul-

ture periods have successfully simulatedmature and age-related cellular features while fading away residual epigenetic signatures.175 Taking

Alzheimer’s disease research as an example, PSC-derived neurons from patients recapitulate the elevated Ab production and tau hyperphos-

phorylation without manipulating expression levels, indicating that given the proper conditions, these models can achieve sufficient maturity

to recreate late cellular hallmarks.176

The use of 3D culture models has been also recognized as a strategy to improve the maturity of products from PSCs. However, discrep-

ancies in PSC genetic backgrounds and culturing methods lead to morphology variations and batch inconsistencies, raising concerns about

the comparability of developmental trajectories and cell identities acrossmethodologies. Standardizing brain organoid culture protocols has

become a critical endeavor for advancing the utility and reliability of these models in neuroscientific research. It should be noted that under

stringent protocols, the variation observed among individual forebrain organoids is comparable to the natural variability seen in human ce-

rebral structures.177,178

With the increasing popularity of genome editing tools, isogenic PSC lines submitted to gene editing—instead of those derived from fam-

ily- and gender-matched healthy control subjects—may minimize PSC product variation and provide appropriate controls for neuropsychi-

atric diseasemodeling andpsychedelic drug testing.179 Genomeediting tools can be applied to editing amutation site in a wild-type PSC line

or to correct disease-linked mutations in patient-derived cells for phenotype confirmation.

It is well accepted that the possibility of pairing an in vitromodel with an individual exposed to the same psychedelics is one of the upsides

of patient-derived PSCs over other systems. However, PSCs are still expensive and labor intensive to be maintained for large cohorts. Similar

to what has happened with other technologies, such as DNA sequencing, more cost-effective methods are already being introduced to

enhance the yield of PSCs.180 As an alternative, there is a growing trend of establishingbiobanks and repositories that contain disease-specific

PSC lines, including cells from underrepresented populations.181,182 This development is anticipated to enhance the accessibility and popu-

larity of PSC technology.
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S., Wäldchen, S., Vitale, M.R., Svirin, E.,
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