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A one‑dimensional parameter‑free 
model for carcinogenesis in gene 
expression space
Roberto Herrero1, Dario A. Leon2,3* & Augusto Gonzalez2

A small portion of a tissue defines a microstate in gene expression space. Mutations, epigenetic 
events or external factors cause microstate displacements which are modeled by combining small 
independent gene expression variations and large Levy jumps, resulting from the collective variations 
of a set of genes. The risk of cancer in a tissue is estimated as the microstate probability to transit from 
the normal to the tumor region in gene expression space. The formula coming from the contribution 
of large Levy jumps seems to provide a qualitatively correct description of the lifetime risk of cancer in 
8 tissues, and reveals an interesting connection between the risk and the way the tissue is protected 
against infections.

Cancer is a complex multifactorial phenomenon, the understanding of which is still a challenge. The current 
knowledge of carcinogenesis emphasizes on a sequence of special (driver) mutations leading to a progression 
to the tumor state. Epigenetic changes, microenvironment effects and other factors are also recognized to play 
important  roles1. There is also a plausible hypothesis that cancer is a remnant of an ancient multicellular state 
encoded in our  genes2.

Existing theories face difficulties and should make additional assumptions. Let us examine, for example, the 
prototype of multistep theory: Vogelstein’s idea of progression in colon  cancer3. In order to implement it in an 
algorithm, we should introduce as additional parameters the number of intermediate steps and their transition 
rates.

In the present paper, we advance a model of tumorigenesis in which parameters are either calculated from 
processed gene expression data or taken from compilations of experimental results. In other words, it is a 
parameter-free model. The starting point is a gene expression (GE)  description4, where small portions of a tissue 
define microstates in GE space. In this picture, the normal (homeostatic) and tumor states are seen as distant 
regions (attractors)5,6. On the other hand, the high dimensionality of the GE space, coming from the large number 
of differentially expressed genes, can be reduced by means of principal component  analysis7–9. This procedure 
has been recently applied in Refs.10,11 to the analysis of gene expression data for 15 types of cancer from The 
Cancer Genome Atlas  portal12, showing very interesting results. In particular, the first principal component axis 
measures progression to cancer. Based on the results from Refs.10,11, especially the case of colon adenocarcinoma 
(COAD) which is discussed in detail in this paper as a prototype, we aim at building a simplified parameter-free 
one-variable model for the cancer risk.

A one‑dimensional model for tumorigenesis
As mentioned above, we want to develop a parameter-free one-dimensioinal model for carcinogenesis, which is 
tested against experimental data from 8 tissues corresponding to the cancer types marked in bold in Table 1. In 
order to describe in detail the model, we use as example the adenocarcinoma in colon (COAD).

We plot in Fig. 1 top panel the results of the principal component analysis  methodology10,11 applied to GE 
data for colon adenocarcinoma (COAD). Each point in this figure comes from a biopsy, small samples are taken 
off from different patients and processed in order to obtain expression values for 60483 genes. For each gene, we 
define a reference value, eref  , by geometric averaging over the normal (healthy) samples. Then, new variables are 
defined: ê = log2(e/eref )

10,11. The origin of coordinates in this figure is precisely the center of the cloud of normal 
samples, ê = 0 . A covariance matrix is defined and diagonalized. The first eigenvectors are used to define new 
coordinate axes: PC1, PC2, etc. Details may be found in Ref.11. We shall only stress that the first axis, PC1, which 
accounts for 51 % of the total data variance, is the cancer axis, which allows the discrimination between normal 
and tumor states. The position along PC1 is then the variable to be used in our model.
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Let v1 be the eigenvector of the covariance matrix along PC1, and ê the expression vector corresponding 
to a given sample. Then, x1 = ê · v1 is the position along PC1 of the sample. Normal samples define a region 
around the origin with r.m.s. radius Rn = 11.71 . On the other hand, the cloud of tumor samples is centered at 
x̄1 = 155.89 , and its r.m.s. radius is Rt = 28.5310.

Table 1.  TCGA abbreviations for the studied cancer types.

Abbreviation Cancer type

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

COAD Colon adenocarcinoma

ESCA Esophageal carcinoma

HNSC Head and and neck squamous cell carcinoma

KIRC Kidney clear cell carcinoma

KIRP Kidney papillary cell carcinoma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

STAD Stomach adenocarcinoma

THCA Thyroid carcinoma

UCEC Uterine corpus endometrial carcinoma

Figure 1.  (a) PC analysis of the GE data for adenocarcinoma of the colon. Normal (blue circles) and tumor 
samples (red circles) are shown. Ellipses illustrating the centers and r.m.s. radii of both clouds of points are 
drawn. (b) Schematics of the fitness landscape. The fitness is normalized to the homeostatic value. The tumor 
region exhibits the deepest well (highest fitness).
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Recall the interpretation of points in Fig. 1 top panel. Each point comes from a small sample, the GE data 
obtained from it contains the contribution of many cells and the complex signaling system regulating their 
interactions. One may speak of a tissue microstate. On the other hand, points come from different patients, 
each carrying a particular genetic load. The fact that the points are grouped in definite regions means that these 
regions are indeed attractors in GE space.

We want to describe the genesis of a tumor, that is the time evolution of a portion or sample of a tissue that 
starts in the normal region and progress towards the tumor zone. We have already defined a single coordinate 
describing this progression: x1 . In order to proceed further with the model, we shall clarify why and how this 
progression takes place.

The coordinate x1 describing the tissue microstate starts at a point near the origin and realizes random 
oscillations in the normal zone. The cause for such random displacements is discussed in the next sections. The 
motion is confined to the normal region for a long time because this zone is a local maximum of  fitness10,13. We 
have schematically represented in Fig. 1 bottom panel the fitness distribution along the PC1 axis. The y axis of 
this figure is the fitness with a minus sign, thus that the normal and tumor zones are local maxima of fitness. 
In the figure, the fitness is estimated from the histogram of samples along PC1. We have computed in Ref.13 the 
number of available microstates in each zone, showing that this number is much greater for tumors than for 
normal states. In other words, the volume of the basin of attraction is much greater in the tumor than in the 
normal region. In addition, as a consequence of breaking the restrictions imposed by homeostasis, the mitotic rate 
of tumor stem cells is usually greater than that of normal somatic stem  cells14. The conclusion is that the tumor 
minimum should be the deepest in Fig. 1, the one with highest fitness. Our drawing for the fitness distribution 
is a sketch built from the available data, however we are convinced that it is a qualitatively correct representation 
of the actual fitness distribution.

The intermediate region, Rn < x1 < x̄1 − Rt , holds a low-fitness  barrier10,13, as shown in Fig. 1 bottom panel, 
which prevents the spontaneous transitions from the normal to the tumor region. The relative scarcity of samples 
in this region evidences the existence of the barrier.

A tissue microstate realizes random displacements within the normal region. Only when the barrier is sur-
passed and the microstate leaves the normal basin of attraction it is driven towards the tumor attractor. The 
transition is seen as  discontinuous10.

A precise description of the transition requires the detailed knowledge of the fitness landscape and the causes 
of the random fluctuations. However, in order to estimate the risk of cancer in a tissue we may proceed in a sim-
pler way and compute the probability for the x1 variable describing the microstate to transit from the normal to 
the tumor region. The minimal walk length is x̄1 − Rn − Rt . This is the goal we are aimed at in the present paper.

The starting point in our model is a large set of samples or microstates located near the origin of Fig. 1. They 
represent small portions of the healthy tissue. We may think of colon crypts in the studied example. The mean 
number of crypts in a healthy individual is estimated in Ref.15 as 1.5× 107 . We shall follow the random oscilla-
tions in GE space of each of these crypts.

With regard to the time variable, it is natural to follow the renewal cycle of somatic stem cells, guaranteeing 
crypt homeostasis. In the studied example, the renewal rate is 73 per  year16. Thus, we shall measure time in terms 
of somatic stem cell generations. t = 0 may refer to conception or to the moment at which the first colon stem 
cell appears. On the other hand, t0 = log2 Nsc , where Nsc is the number of stem cells in the tissue, is the moment 
at which the tissue is formed. In colon, Nsc ≈ 2× 108 , and t0 ≈ 27 . This is our starting point.

Small random displacements in GE space
Any variation in the expression of genes is a displacement in GE space. We conceptualize two kinds of GE vari-
ations: small displacements and large rearrangements. Naively, one may relate small displacements to variations 
in the expression of one or a few genes, whereas large GE rearrangements are coordinated variations of the 
expressions of many genes.

Small variations of GE levels spontaneously occurs and may have different origins. First, somatic mutations in 
the human genome are known to occur at a rate of 8 per cell  generation17. Second, there is also a rate of accumula-
tion of epigenetic (mainly methylation and phosphorylation) events modifying the normal expression  levels18. 
Both processes could be boosted by inherited  mutations19,20 or external  carcinogens21.

We may thus write for the x1 coordinate, characterizing the microstate of a crypt at time t = n+ 1 , the fol-
lowing equation:

where

and δêi corresponds to a random variation of the expression of the i-th gene. Eq. (1) describes a Markov chain of 
 events22. On the other hand, Eq. (2) shows that fluctuations in the expression levels are filtered by the v1 vector.

In Fig. 2 we draw the 30 genes with the greatest contributions to v1 in  COAD11. Positive, v1i > 0 , and nega-
tive, v1i < 0 , amplitudes correspond respectively to over- and under-expressed (silenced) genes in the tumor 
progression. We have distinguished the genes CST1 and AQP8. The former is a known marker of colon  cancer23, 
whereas the latter plays a significant role in colon  homeostasis24 and should be silenced in tumors.

The maximum value of |v1i| defines a scale, D, for the fluctuations of x1 . In COAD, it coincides with the modu-
lus of the v1i related to the AQP8 gene. In order to get a simple estimate for the cancer risk, we may adopt the 

(1)x
(n+1)
1 = x

(n)
1 + δx1,

(2)δx1 = v1 · δê =
∑

i

v1i δêi ,
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following model for the fluctuations: δx1 = D r , where r is a uniformly distributed random number in (-1,1). This 
model may result from an independent variation hypothesis, i.e. random amplitudes and signs in the individual 
gene variations δêi , so that most of them cancel out. In this way, Eq. (1) for the small displacements in GE space 
describes a 1D Brownian or Poisson  process25.

We may use the well known fact that in a Brownian process, the final amplitudes at a given time are normally 
distributed, i.e. the probability density is given by:

where a = 2/(D2t) . We shall evaluate the probability for a trajectory starting in the normal zone to reach the 
tumor zone. Above, we pointed out that the minimal walk length is R = x̄1 − Rn − Rt . Thus, an estimate for the 
risk may be obtained from:

where Erfc(z) is the complementary error function. The argument of this function is z =
√
aR2 = √

2/t R/D , 
in principle a large number. Then, we may use the asymptotic behavior Erfc(z) ≈ exp(−z2)/(

√
πz) for large z. 

The risk of cancer in COAD is obtained by multiplying the escape probability for a single crypt by the number 
of crypts, or by the number of stem cells, which is proportional to it:

or

This expression is general enough to be applied to other tissues, besides colon. The constant in Eq. (6) may 
account for other effects as, for example, the role of the immune system. Microregions escaping the normal region 
and forming a prototumor could be the subject of an attack by the immune system in the very early  stages26. By 
definition, the constant is less than zero because the overall constant in Eq. (5) is less than one.

In Table 2 we compile a set of parameters for a group of tumors. The geometry of the normal and tumor 
regions, i.e. the parameters x̄1 , Rn and Rt come from Ref.10. The D value is estimated as the maximum of |v1i|11. 
On the other hand, the number of tissue stem cells, Nsc , the stem cell turnover rate, msc , and the lifetime risk of 
cancer (when available) are borrowed from Refs.27,28. The reported values of risk represent averages over 380 
cancer registries from different cities and countries around the  world28.

We may test Eq. (6) for the risk of cancer in a tissue resulting from small random variations of GE levels by 
using the data included in Table 2. A plot of the l.h.s. vs the r.h.s. of Eq. (6) should lead to a straight line with a 
slope near one and a constant less than zero. Notice that the life expectancy in Ref.27 is assumed to be 80 years. 
Thus, t is obtained by multiplying the stem cell rate, msc , by 80 years.

The results of that test are shown in Fig. 3. We get a nearly flat curve (slope = 2.1× 10−5 , or 1.5× 10−4 if we 
leave LUAD and THCA out of the fit), indicating that the proposed dependence of the risk on the parameters is 
not correct. Thus, the observed risk of cancer can not be explained by random variations of small amplitude in GE 
values. In the next section, we shall consider large GE rearrangements, or equivalently large jumps in GE space.

Let us stress that we use an expression like t = msc × age in a very broad age interval. It is well known that 
msc experiences a significant decrease as a result of  aging29,30. However, also as a consequence of aging there is an 

(3)p(x) =
√

a/π e−a(x−x0)
2
,

(4)
∫ ∞

R
p(x)dx = Erfc(

√
aR2),

(5)risk ∼ Nsc
D
√
t

R
e−2(R/(D

√
t))2 ,

(6)ln(risk/Nsc) = const + ln(D
√
t/R)− 2(D

√
t/R)−2.

Figure 2.  The 30 genes with most significant contributions to the v1 vector in COAD. The x axis is the sequence 
number of a given gene in the TCGA data. CST1 is highlighted among the over-expressed and AQP8 among the 
silenced genes.
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accumulation of epigenetic events and DNA damages leading to a reduction of fitness and a displacement towards 
the low-fitness zone. Thus, aging acts in the same direction as the low amplitude fluctuations of GE values.

Large (Levy) jumps in GE space
Besides small random displacements, related to quasi independent variations in the GE values, there is also the 
possibility of large jumps in GE space. The origin of such large motions could be diverse.

First, there are large scale mutations, involving DNA rearrangements and simultaneously modifying the 
expression of many genes. An example, known to play an important role in cancer, is that of  aneuploidies31.

Second, large jumps in GE space could be related to coordinated variations in a group of genes. Indeed, 
GE values are known to be regulated by GE  networks32. The global states of these networks define  attractors5,6. 

Table 2.  A set of parameters compiled for a group of tumors. The geometry of the normal and tumor 
regions, i.e. the parameters x̄1 , Rn and Rt come from Ref.10. The minimal distance between both regions is 
R = x̄1 − Rn − Rt . The D value is estimated as the maximum of |v1i|11. On the other hand, the number of tissue 
stem cells, Nsc and the stem cell turnover rate, msc , are borrowed from Refs.27,28. The lifetime risk of cancer and 
its deviation (when available) is computed from Ref.28 as the mean value and the standard deviation of the 
cumulative risk at a maximum age of 80 years. Bold marked tissues correspond to cancer types for which all 
the data is available.

Tissues x̄1 Rn Rt R D Nsc msc (1/yr) 〈risk〉 〈dev〉

BLCA 140.61 57.53 34.68 48.40 0.0512 . . . .

BRCA 137.37 20.97 31.66 84.74 0.0450 8.7× 10
9 4.3 0.09228 0.03427

COAD 155.89 11.71 28.53 115.65 0.0526 2× 10
8 73 0.04264 0.01504

ESCA 138.70 64.28 35.79 38.63 0.0710 6.65× 10
6 33.18 0.00412 0.01378

HNSC 123.50 27.74 23.54 72.22 0.0549 1.85× 10
7 21.15 0.01527 0.00578

KIRC 171.81 28.70 36.01 107.09 0.0679 . . . .

KIRP 163.42 19.90 27.78 115.74 0.0768 . . . .

LIHC 134.67 20.48 45.23 68.96 0.0461 3.01× 10
9 0.9125 0.00397 0.00310

LUAD 145.33 13.52 32.06 99.75 0.0581 1.22× 10
9 0.07 0.01610 0.00847

LUSC 194.49 11.62 36.65 146.22 0.0522 . . . .

PRAD 91.33 31.31 32.17 27.85 0.0523 2.1× 10
8 3 0.13712 0.07730

READ 168.05 22.90 28.81 116.34 0.0521 . . . .

STAD 136.97 27.14 43.24 66.59 0.0455 . . . .

THCA 112.55 20.02 39.85 52.67 0.0532 8.25× 10
7 0.087 0.00649 0.00442

UCEC 171.38 38.24 22.14 111.00 0.0439 . . . .

Figure 3.  A test of how Eq. (6) describes the risk of cancer in 8 tissues. Data from Table 2 is used to this end. 
A very small slope is obtained in both, the full fit and a fit without LUAD and THCA, thus small amplitude 
fluctuations in gene expression space may not account for the risk of cancer in these tissues.
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Variations in genes playing a decisive role in the network, or accumulation of variations in many genes, may 
cause a transition from one of these global states to another one.

Third, there is also the possibility of a programmed chain of GE variations leading to cancer, triggered by yet 
unknown causes, which is the basic hypothesis in the atavistic theory of  cancer33.

For the large GE variations, we shall specify their rate of occurrence, µ , and the probability distribution for 
their amplitudes, π(�x1) . It is very plausible to assume that π is of  Pareto34 or  Levy35 kind, with a power-like 
tail. Indeed, the Pareto character of GE distribution functions was demonstrated in Ref. 36 (see also 10). The Levy 
character of the length distribution functions in mutations was shown  in37.

Thus, our assumption is that displacements in GE space are a kind of Levy flights. Small variations allow 
the exploration of the fitness landscape at lower scales, whereas sporadic large jumps allow to find global max-
ima. Besides  mutations37, Levy flights are known to take place in many other biological processes, for example 
 foraging38.

For lage |�x1| , the tail of π is described by a Pareto exponent ν:

The probability of a large jump reaching the tumor region is thus proportional to

and the risk of cancer in a tissue:

where we assume ν > 1 . Below, we use ν = 2 in order to get an estimate of the risk.
Let us examine Eq. (9) in more details. First, Eq. (8) assumes that R is in the tail of the distribution function. 

This is justified if we compare R with the scale D, that in the case of COAD take the values of R = 115.65 and 
D = 0.0526 respectively. Second, no more than one hit or large jump is assumed to occur in the evolution of 
each microstate. In other words, the probability µt is less than one and large jumps are thought to be rare. Third, 
we should consider the possibility of large GE variations in the development period, that is why we included 
t0 = log2(Nsc) in the formula. This is particularly important in tissues with slow renewal rates but large number 
of stem cells. For example, in lung t0 ≈ 30 , but msc × 80 years is only 5.6. Fourth, the rate of large jumps, µ , is 
unknown. However, if we assume roughly the same value for all tissues, then it can be absorbed in the overall 
constant entering Eq. (9). The Pareto exponent is also unknown. Notice that in the GE distribution functions 
of COAD the exponents take values between 1.6 and 2.010. The value we use for estimates, ν = 2 , is motivated 
by this result.

Finally, we get the following expression for the risk, which may be tested against the data in Table 2:

where t = t0 +msc × age . The constant should be negative according to our hypothesis of µ small. The results 
of the test with an average life expectancy of 80 years are shown in Fig. 4.

The observed behavior is consistent with a linear dependence with slope near one. Indeed, we obtain a slope 
equal to 0.82. The Pearson correlation coefficient is 0.85, indicating that 72% of the dispersion of points may be 
explained by a linear dependence. The p-value is equal to 0.04. The small error bars suggest that the main reason 

(7)π(�x1) ∼ 1/|�x1|ν .

(8)D (µt)

∫ ∞

R
dx/xν ,

(9)risk ∼ NscDµ (t0 +msc × age)/Rν−1,

(10)ln(risk/Nsc) = const + ln(Dt/R),

Figure 4.  Testing the ability of Eq. (10) to describe the cancer risk in 8 tissues. The error bars were estimated 
by means of the last column of Table 2. The slope of the linear fit is near one, as expected. 72 % of the data 
dispersion is explained by the linear dependence (p-value = 0.04).



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4748  | https://doi.org/10.1038/s41598-022-08502-8

www.nature.com/scientificreports/

for the unexplained dispersion of points could be the assumption that the rate of large jumps, µ , is roughly the 
same for all of the tumors. A tissue specific µ variable would account for the dispersion.

In conclusion, we get the following simple expression for the risk of cancer per stem cell in a tissue, coming 
from large jumps in GE space:

where we included an effective rate, µ′ . Genetic, viral or external carcinogenic factors may increase µ′ , whereas 
the action of the immune system in the tissue may modify µ′ in any direction. In the next section, we qualitatively 
analyze a larger set of tumors by using Eq. (11).

Qualitative analysis of the data on cancer risk in different tissues
We use the extremely simple expression for the cancer risk in a tissue, offered by Eq. (11), in order to re-examine 
the data presented in paper 27. The idea is to rewrite the coefficients in front of the r.h.s of Eq. (11), as ERS × aref  , 
where aref = 2× 10−14 is a reference value and ERS is an extra risk score. Eq. (11) is thus rewritten as:

This expression provides a simple explanation for the intuitive claim in Ref.27 that the risk is related to the number 
of stem cell replications. The results are shown in Fig. 5 and Table 3. We should try to understand the observed 
values of ERS in terms of the tissue characteristics. In order to facilitate the analysis, the studied tumors are 
separated in groups.

Group I includes 12 tumors (10 tissues), located in a band delimited by red dashed lines in Fig. 5, and coef-
ficients 1 < ERS < 6 . In the lack of a better name, it is called the normal group. In this set, random fluctuations 
in GE space seem to play the main role in the genesis of cancer, as originally claimed in Ref.27. Notice that this 
group is conformed by very different tissues, from the medulloblastoma to the colorectal adenocarcinoma.

Group II, with five points in the figure, include cases in which genetic or viral causes enhance the rate µ′ . The 
ERS index exhibits very high values in this set.

The abnormal values of ERS for the 7 tissues (12 points) contained in Group III could have an immunological 
origin. Indeed, our body uses physical barriers, humors and immune cells in order to protect the tissues against 
infections caused by pathogens, which are the most common attacks. The combined effects of these factors 
guarantees immunity. In tissues where one factor is predominant, the others could be somehow depressed. On 
the other hand, the protection against tumors, which come form inside, that is originate in tissue cells, is mainly 
the responsibility of immune cells. In other words, in tissues where the role of immune cells is depressed at the 
expense of increasing barriers or other components, the relative cancer risk, and correspondingly the ERS fac-
tor, is increased.

Barriers are known to play a basic role in the protection of germinal  cells39 and the  brain40 against infections. 
The cellular component of immunity in these tissues is, in some way, depressed with the purpose of avoiding 
inflammation events. The relatively high values of ERS could be explained in this way.

By contrast, the inclusion of the Medulloblastoma in the normal group is probably related to regional differ-
ences in blood-brain barrier  permeability41.

With regard to bones, it is known that immunity relies strongly on  defensins42, possibly with a depressed role 
of immune cells. On the other hand, the thyroid is known to have a close cross-talk with the immune  system43. 

(11)
risk

Nsc
= µ′D

R
t,

(12)
risk

Nsc
= ERS aref (t0 +mscage).

Figure 5.  Lifetime risk of cancer per stem cell in a tissue vs the number of stem cell generations. The analysis is 
based on Eq. (12). The band delimited by the red dashed lines contains the group of tissues qualified as normal. 
See detailed explanations in the main text.
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It’s dysregulation is the cause of immune disorders. One may speculate that a low cellular response is needed in 
order to prevent dysregulation of the thyroid.

The extreme case in this group is gallbladder non-papillary adenocarcinoma, with an index ERS = 1300 , the 
understanding of which is a real challenge. However, one can speculate that the cellular response is also depressed 
in the gallbladder, because of the strong microbicide character of the  bile44.

On the other hand, the relatively low value of ERS for the small intestine adenocarcinoma (eight times lower 
than the reference) can not have other explanation than overprotection by the cellular component of the immune 
system. Indeed, the small intestine is a possible entrance door for the microbiota living in the colon, and as such 
it requires special protection. The mean value of microbes/gm experiences a jump from 104 to 1011 as we cross 
from the ileum to the  cecum45. Barriers can not be reinforced because of the reduced dimensions. Thus, perhaps 
the Paneth  cells46, Peyer’s  patches47, and other structures concentrated in the distal ileum are the responsible for 
this additional protection.

Finally, there is a group of 2 tissues exhibiting abnormally high values of the ERS index, presumably related 
to external factors. One example is lung adenocarcinoma, for which the concurrence of radioactive Radon and 
smoking produces a 90-fold increase of the slope.

Concluding remarks
In the present paper, the time evolution of microstates representing small portions of a tissue are described as 
Levy flights in gene expression space. The small amplitude Brownian component is characterized by a radius 
D
√
t  , much less than the distance between the normal and tumor regions, R = x̄1 − Rn − Rt . Only sporadic 

Table 3.  The Extra Risk Score (ERS) index of Eq. (12) for cancer in different tissues.

Cancer type ERS

Group I. Normal

Hepatocellular C 1.13

Melanoma 1.16

Pancreatic endocrine C 1.23

Pancreatic ductal AC 1.45

Medulloblastoma 1.49

Myeloid leukemia 1.54

Duodenal AC 1.93

Lymphocytic leukemia 1.95

Colorectal AC 2.04

Basal Cell C 4.02

Lung AC (non-smokers) 5.15

Esophageal SCC 5.44

Group II. Viral and Genetic

Hepatocellular C with HCV 11.29

Colorectal AC with Lynch 21.30

Colorectal AC with FAP 42.61

Head and Neck SCC with HPV 122.96

Duodenal AC with FAP 225.29

Group III. Immune

Small intestinal AC 0.12

Glioblastoma 30.03

Testicular germinal cell 52.78

Osteosarcomas Head 70.03

Ovarian germinal cell 79.87

Thyroid medullary C 84.22

Osteosarcomas Arms 124.72

Osteosarcomas Pelvis 138.09

Osteosarcomas 153.05

Thyroid papillary and follicular C 239.78

Osteosarcomas Legs 266.49

Gallbladder non papillary AC 1299.58

Group IV. Abnormal

Head and Neck SCC 21.38

Lung AC (smokers) 92.77
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large jumps, of Levy nature, allow the microstate to reach the cancer basin of attraction, and thus explain the 
risk of cancer in a tissue.

Although it is understood that aging induces a motion in the direction of the low-fitness region, it was not 
explicitly included in our model. Work along this direction is necessary.

The resulting formula for the risk of cancer in a tissue was quantitatively tested against the observed data in 
8 tissues, and applied to the qualitative analysis of a risk of cancer in a larger set of tissues. The most important 
conclusion, in our opinion, is a possible connection between the risk and the way the tissue is protected against 
infections. The blood-brain barrier in the cerebrum, for example, preventing the entrance of pathogens, is also 
the reason for the relatively low rate of elimination of prototumors, and thus large risk per stem cell in this 
organ. The low risk per stem cell in the small intestine, on the other hand, is understood as a reinforcement of 
the cellular component of immunity.

Data availability
The information about the data we used, the procedures and results are integrated in a public repository that 
is part of the project “Processing and Analyzing Mutations and Gene Expression Data in Different Systems”: 
https:// github. com/ Dario ALeon Valido/ evolp. In particular, the data we use from Refs.27,28 is replicated in ../evolp/
databases_external/Cancer_Risk/. The principal component analysis (PCA) on gene expression data downloaded 
from The Cancer Genome Atlas is located in ../evolp/databases_generated/TCGA_pca/. We include a specific 
python script for this work that can be found in the folder ./evolp/Levy_cancer/. The script produces two data 
files with the information contained in Tables 2 and 3, and two figures similar to the ones presented in the paper.
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