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Vector autoregression (VAR) modeling allows probing bidirectional relationships in
gender/sex development and may support hypothesis testing following multi-modal
data collection. We show VAR in three lights: supporting a hypothesis, rejecting a
hypothesis, and opening up new questions. To illustrate these capacities of VAR, we
reanalyzed longitudinal data that recorded dyadic mother–infant interactions for 15 boys
and 15 girls aged 3 to 11 months of age. We examined monthly counts of 15 infant
behaviors and 13 maternal behaviors (Seifer et al., 1994). VAR models demonstrated
that infant crawling predicted a subsequently close feedback loop from mothers of boys
but a subsequently open-ended, branched response from mothers of girls. A different
finding showed that boys’ standing independently predicted significant later increases of
four maternal behaviors: rocking/jiggling, lifting, affectionate touching, and stimulation of
infant gross-motor activity. In contrast, crawling by girls led mothers to later decrease the
same maternal behaviors. Thus, VAR might allow us to identify how mothers respond
differently during daily interactions depending on infant gender/sex. The present work
intends to mainly showcase the VAR method in the specific context of the empirical
study of gender/sex development.

Keywords: development, dyads, mother–infant, gender/sex, vector autoregression

INTRODUCTION

Bidirectional relationships are classically the stock in trade of modern psychological theorizing (e.g.,
Gottlieb, 2007a,b). For instance, developmental psychology regularly appeals to the concept of the
“active child.” This infant is not simply the passive recipient of environmental influences but is
also an assertive agent bringing their own interests and impulses to the interactive table. As infants
develop language and symbolic expression, they begin to translate the sensory information stored in
their nervous systems during infancy (so-called presymbolic representation; Beebe and Lachmann,
1994) into behaviors and preferences that in turn invite specific changes in caregivers’ behaviors. We
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accept as uncontroversial the idea that development is a perpetual
give and take between developing organism and context.

However, despite insisting on the crucial role of bidirectional
relationships underlying the development of complex systems
(Ashby, 1956), as a field, psychology has been slow to incorporate
the formal analyses that would give bidirectional hypotheses
appropriate mathematical framing. The prevailing analytical
strategies are t-tests, analysis of variance (ANOVA), and linear
regression. These are profoundly robust strategies, but for the
most part, they require psychologists to choose one variable
as a predictor or grouping variable and the other variable as
the dependent measure. In correlational research, psychologists
regularly encounter the challenge of not knowing which variable
is causing the other (e.g., “the directionality problem”; Gazzaniga,
2018). So, psychologists may sometimes make do with modeling
development in piecemeal fashion, treating this or that variable
by turn as the grouping variable or the dependent variable—this
point applies equally well to even very elegant approaches such as
hierarchical linear regression. In this paper, we are highlighting
that these traditional statistical approaches do not actually make
bidirectional relationships explicit and testable as part of an
inferential statistical model.

Nevertheless, statistical models for modeling bidirectional
effects—and so for giving full statistical leverage to these elegant
ideas—have existed for decades. We have in mind for the present
manuscript a method called “vector autoregression” (VAR; Sims,
1980) that, despite having enjoyed rich elaboration and wide
application over the past few decades (Lutkepohl, 2005), has
remained out of the view of some developmental psychologists.
This incomplete appearance of VAR to psychologists is likely due
to the fact that these methods arose in econometrics and have
only appeared in a few subfields of psychology also interested in
bidirectional relationships (Roebroeck et al., 2005; Billinger et al.,
2014; van Winkel et al., 2017; Xu et al., 2020). In this paper, we
will showcase VAR for a developmental–psychological audience.

For the developmental psychologist interested in bidirectional
relationships between, say, infant and caregiver, a central
question is: What are the possible ways to understand the
complex dyadic choreography? To illustrate this general formal
challenge, we take the specific example of gender/sexed
behaviors in infants. Gender/sex differentiation results from
a complex interplay, beginning prenatally and extending well
past adolescence, between nature and nurture. Gender/sexed
toy, color, and play preferences take shape during infancy
(O’Brien et al., 1983; O’Brien and Huston, 1985; Campbell et al.,
2000; Serbin et al., 2001), well before toddlers (roughly 2.5–
3.5 years) begin to exhibit gender/sexed knowledge (Bussey and
Bandura, 1999; Martin et al., 2002, 2004; Bandura and Bussey,
2004). Furthermore, caregivers differentially employ touch-
based interactions according to infants’ genital sex (Fausto-
Sterling et al., 2015), and infants use sound and sight cues
to distinguish adult males from adult females (Ruble et al.,
2006; Fausto-Sterling et al., 2012a,b) while developing the ability
to recognize culturally specific gender/sexed adult behaviors
(Eichstedt et al., 2002). Studying individual relationships singly
omits not just the multifactorial aspect of development but also
the bidirectional relationships between the actively developing

child and the responsive environment. The complexity and
bidirectionality at play in gender/sex differentiation make it
immensely challenging to study gender/sex development solely
using narrowly constrained traditional hypothesis testing.

Importantly and perhaps surprisingly, VAR has already been
hiding in plain sight at the heart of recent methods applied
by developmental psychology, such as state-space modeling
(SSM), lag-sequential analysis, and dynamic structural equation
modeling (DSEM). The first two analyses draw immediately
on data from continuous coding programs such as Noldus
Observer. For example, Sung et al. (2013) examined vocal
exchanges between mothers and sons, compared to mothers and
daughters by calculating how frequently—within a 1-s lag—a
vocal event from the mother is followed by an infant vocal
event or vice versa. Crucially, both SSM and DSEM are methods
that use repeated measurements to explore how lag-sequential
relationships among different measurements unfold across a
theoretically driven network of latent variables; SSM and DSEM
do effectively similar work in different form. At root SSMs and
DSEMs are each rewritable in terms of the other: they are both
VAR models enhanced with latent variables (Hamaker et al., 2018;
Hunter, 2018). Latent variables are computational tokens that
represent the underlying constructs as related but separate from
the measurements that operationalize these constructs. SSMs
have focused less on a singular cause of an individual behavior
and more on the dynamics of dyadic behaviors, both during
short-term interactions and as they evolve over longer periods of
time (Hollenstein, 2007, 2013). SSMs can reveal the short-term
structure of a dyadic system and, through re-analysis over longer
time periods, can reveal dynamic changes in system structure
(Hollenstein and Tsui, 2019).

In a sense, what we aim to do here is to showcase the important
option to take the relatively agnostic step to remove the latent
variables and explore the VAR relationships free of theoretical
preconceptions. At least in early explorations, research into
gender/sex identity and/or gender/sex expression could benefit
from such an agnostic approach to probing relationships among
variables over time—that is, how each variable’s current values
influence later values of itself and other variables. The non-
developmental psychological literature already recognizes VAR as
a data-driven approach to estimating bidirectional relationships
across time, and there are certainly ways to constrain this
data-driven approach with firmer theoretical frameworks (Chen
et al., 2011). Even though we take the well-demonstrated lesson
that exploratory data analysis can be a poor way to go about
rejecting null hypotheses (Simmons et al., 2011), a field such
as gender/sex development has at least two major reasons
to take a more exploratory view: first, cultural belief systems
have biased theorizing on the very biological roots of sex,
let alone gender/sex (Richardson, 2013). Second, the results
have encouraged debate as to whether even our most cutting-
edge theories of development manage so far to predict or
explain anything but the most traditional gender/sex outcomes
and the simplest unidirectional effects (Liben and Coyle, 2017;
Richardson, 2017; Bentley et al., 2019; Hyde et al., 2019). In short,
theory-driven hypothesis is generally the best practice, but when
the current theorizing bends under cultural belief systems toward
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only predicting the most traditional or most simplified outcomes,
theories may remain relatively mute on what more complex,
bidirectional relationships we should predict at the outset. So,
we believe that there remains a place for exploratory views for
what bidirectional relationships our current theories may not be
ready to predict. Indeed, we follow Hyde et al. (2019) in using the
term “gender/sex” rather than either “gender” or “sex” alone to
respect the inseparability of biological and the cultural—and so
the inadequacy of scientific approaches that leave them separate.

For gender/sex development or indeed for any field of
psychological research waiting for theoretical developments to
catch up to the diversity in evidence, VAR offers a valuable tool
for both exploring and testing bidirectional gender/sex-based
effects between mother–infant dyads. We use VAR modeling
to examine scaffolding of certain motor behaviors during the
first year of development in infants of different gender/sexes.
Despite agreement that boys and girls reach motor milestones
on the same schedule, reports abound of differences in activity
level, and of motor skills such as handling or throwing objects,
and athletic achievements such as running and jumping that
emerge in mid to late childhood (e.g., Boatella-Costa et al.,
2007). For many of these skills, gender/sex differences emerge
on the time scale of months to years. We will focus only on
the time scale of months and examine how mother and infant
press one another into patterns of behavior across time. VAR
may allow us to identify (and subsequently test the importance
of) possible stepping stones built at the start of life over months
of maternal/infant interactions through subsequent iterations of
particular motor skills.

Vector autoregression yields a wider view for modeling
bidirectional relationships, quite unlike standard analysis of
variance (ANOVA) and unlike the more elegant models resting
upon latent-variable networks. Whereas an ANOVA will only
test whether changes in one set of variables produce changes
in one variable at one time scale, VAR offers the possibility
of testing whether each variable might be associated with later
changes of all other variables at many time scales. Removing
the latent variables as in SSM and DSEM moors our statistical
view more firmly in the measurements. While that removal
does risk overemphasis of measurement error (Hunter, 2018),
the latent variables reflect just that imprint of theory that risks
overemphasizing our own biases and blind spots. To the degree
that developmental–psychological outcomes are more complex
than one variable influencing another at one time, VAR offers
a wider view of the more complex, bidirectional relationships
and at more time scales—particularly when VAR is unfettered
from the latent variables of SSMs and DSEMs. However, to
the degree that wider view rests on a wider set of statistical
relationships, VAR poses a somewhat daunting abundance of
structure—daunting because it amounts to a new thicket of
statistical detail.

To focus our attention amidst this abundance of structure,
we present this method in three different lights. To aid reader
understanding, we sketch three types of findings that illustrate
some of the ways that VAR might inform developmental research:
(1) expanding the scope of known effects, (2) uncovering
significant evidence against literature-motivated hypotheses, and

(3) uncovering so-far non-obvious effects that our theoretical
perspectives have not explicitly predicted (e.g., Gottlieb, 2007a,b).
None of these outcomes are unique to VAR, but we list them to
help organize our example and show how VAR can generate all
three of these outcomes in a framework that models bidirectional
effects within a dyad. Before we proceed any further, it is
important for us to insist that the present work aims to showcase
the method and not to make an argument. To provide a better
sense of what the model can do, we include empirical data
as an example of what the modeling strategy might uncover.
A methods paper without an empirical example risks asking
too much of the reader’s imagination. We present the empirical
examples to showcase the type of results that VAR produces.

Here are some specific examples of each type of hypothesis
that our subsequent VAR will test in this paper: (1) Maternal
pointing gestures are important in vocabulary acquisition (Pan
et al., 2005). Indeed, a plausible reading of the literature suggests
that during the first 8–10 months, maternal pointing aids the
development of infant pointing (Kishimoto, 2017). Thereafter,
infant pointing, an action one set of authors refer to as an
epistemic request (Kovács et al., 2014), leads to maternal speech
that teaches vocabulary. But does maternal pointing only have
an effect in the realm of language acquisition? Using VAR,
we test the possibility that it may also be important during
motor development. (2) VAR will be used to test the claim that
maternal behaviors providing gross-motor stimulation might
encourage more physical activity from boys than from girls
(e.g., Smith and Lloyd, 1978; Landerholm and Scriven, 1981).
Earlier work showing that during infancy mothers engage in
more stimulatory touch with sons compared to daughters also
raises the possibility that this differential leads to boys’ higher
physical activity levels (Fausto-Sterling et al., 2015). (3) VAR
will be used to discover or uncover maternal responses to infant
behaviors that differ by gender/sex of the infant above and
beyond any infant response to maternal input. Hence, we aim
to showcase VAR as a method offering, first, support from an
available data set for known effects, second, rejection of perhaps
intuitive hypotheses, and, finally, opening up altogether new and
unexpected developmental relationships.

MATERIALS AND METHODS

Data Source and Collection
Full details concerning the authors’ observation and coding
methods may be found in published work (Sung et al., 2013;
Fausto-Sterling et al., 2015).

Participants
Thirty families were matched for infant age and completeness
of biweekly time samples from 50 families originally observed
and taped by Seifer et al. (1994) for a study of infant
temperament. The mothers were all first-time mothers, white,
predominately middle and working class, married women from
Rhode Island, aged, on average, 29.1 years (SD = 4.2, range 22.2–
36.9) on their child’s birthdate. Four-factor SES averaged 1.96
(SD = 0.75, range 1–4). All children had been full-term babies.

Frontiers in Psychology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 1507

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01507 August 3, 2020 Time: 12:6 # 4

Eason et al. Vector Autoregressive Gender/Sex

The original, in-home videotapes were collected with permission
using procedures sanctioned at the time by an Institutional
Review Board. Reuse of the videos for the current study was
permitted under the terms of the original consent forms, but
underwent a second, specific review and approval by the Brown
University Institutional Review Board.

Procedure
Mother–infant interactions in the infants’ homes were videotaped
with minimal intrusion weekly for about an hour with minimal
intrusion for 40 weeks. During each hour-long session, mother–
infant dyads spent at least 10 min playing together (Seifer et al.,
1994). For most observations, the 10-min play period occurred
in a contiguous block of time, but in some cases, extended play
might be broken. For example, a mother might play with her
infant about 5 min, then change a diaper and then return to
playing with her infant. The mother–infant play scenes were
randomly distributed throughout early, middle, and end parts of
the hour-long session. Present analyses used randomly selected
5-min segments from two play sessions per month for months
3–12, giving 20 observations per infant. This selective time
window allowed fine-grained behavioral coding and followed
current evidence that thin slices of time are appropriate for
behavioral coding of social interactions (Murphy, 2005; Adolph
and Robinson, 2011). Although it might seem that more repeated
measures would be better, VAR modeling is actually best
served by short-term data sets for two reasons: (1) VAR only
models short-range relationships (i.e., relationship across small
numbers of lags) and so requires residuals without long-range
temporal correlations and (2) long-term raw measures of human
behavior are known to embody precisely the long-range temporal
correlations that would make VAR models fail to converge
properly (Van Orden et al., 2003; Ihlen and Vereijken, 2010).
Furthermore, we mitigated any effect of individual weeks yielding
unrepresentative data by pooling the weekly data by month. This
pooling had the additional benefit of better ensuring that the data
submitted to VAR modeling would have equal spacing.

Behavioral Coding
We performed second-by-second behavioral coding used
Observer XT 7 software (Noldus Information Technology,
Wageningen, Netherlands) using codes in Table 1. The Noldus
program allows batch exporting of data to SPSS. In this study,
we focused on two renderings into SPSS—for each code—
mean event frequency and mean duration of event. From
SPSS, all codes used in this study were imported into R and
aggregated by month.

As described by Sung et al., coders were considered reliable
upon having attained an average Cohen’s kappa of 0.60 or above
across at least six different observations (Supplementary File S1).
To evaluate reliability, a pair of research assistants double-coded
15% of the entire observation. That is, 15% of the approximately
250 observations of mother–infant play together scenes were
double coded by two coders. Fifteen percent may seem like a
small subset, but current standards for behavioral coding range
from 10% to 20% (Murphy et al., 2015; Ladd et al., 2016), and so
this behavioral coding meets those standards. Thus, the average

TABLE 1 | Code definitions.

Infant Behaviors Definition

Stand (Object
support)

Infant stands while holding onto something for support

Stand (Mother help) Infant stands and the mother assists by holding the infant’s
hands or trunk

Stand
Independently

Infant stands without holding onto mother or any other
object

Sit (Object support) Infant sits, typically in a seat with back support

Sit (Mother help) Infant sits with support from mother

Sit Independently Infants sits on their hips or bottom

Lie (All) Includes lying still, rolling over, and lying kicking

Lie Still Infant lies down and does not move

Babble All non-distressed, syllabic vocalizations where coder
cannot distinguish clear words

Cry Infant’s vocalizations indicate distress during vocalization

Reach Infant extends arm to grasp/get an object or to offer or to
show an object

Crawl Infant moves by some means other than walking

Play Frame
(dyadic play)

Play (Passive) Infant plays with objects (toys, other play objects) without
mother’s direct assistance

Play (Motor-Social) The mother plays using gestures alone (i.e., no toys)

Play (Object) The mother plays with an object jointly with the infant

Maternal
Behaviors

Rocks or jiggles
infant

The mother rocks, jiggles, or moves the infant rhythmically

Lifts infant Mother lifts the infant into the air as a kind of motor play
type

Assists locomotion Mother holds the infant to facilitate standing, walking, etc.

Stimulates gross
motor activity

The mother moves infant’s limbs so as to mimic
gross-motor behavior

Shifts infant The mother repositions the infant

Holds object The mother holds an object

Points to object The mother points to direct the infant’s attention to
something

Offers object Offering an object by handing it towards the infant

Manipulates object Use, move, arrange, operate, play, or control a toy or an
object to demonstrate how a toy works

Infant-directed
speech

If the mother uses coherent words, it is coded as speech.

Affectionate touch Any sort of touch or behavior that primarily conveys
affection.

kappa score is the mean score of 37 observations. Coding was
performed in passes by different coders. First, a coder assigned
play frames; then, a group of coders coded infant behaviors, while
a different group coded maternal behaviors. Coders specialized
in behavior categories such as vocalization, or object play or
motor play. The average kappa score across all measures was
0.73. All individual kappa scores were above the cutoff for
“substantial” or “acceptable” agreement except for two variables
(i.e., holding toy object and passive play—two variables that
meet current standards for “moderate” agreement; Danko et al.,
2016; Ladd et al., 2016; Marquis et al., 2017; Yao et al., 2017;
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Gaume et al., 2019). Neither of these variables were significant for
the analysis presented in this paper.

We provide full description of these codes in
Supplementary Data 1.

Data Analysis
Vector autoregression modeling and impulse-response
forecasting (IRF) are a complementary pair of analyses
used to understand relationships in an interactive system. In
its simplest case, we might describe the former as providing
the basic framework of relationships among potentially causal
nodes, aggregated and averaged across time. Here, the nodes
are behaviors, either of an infant or of a mother. VAR estimates
connection strengths between each pair of nodes, i.e., each
pair of behaviors—providing ultimately a web (Figure 1) of
relationships summarizing a complex system. It is important
to guard always against misconstruing the relationships in a
VAR as explicitly causal, but they offer the potential for testing
whether two variables are related in an extremely limited but still
interesting type of cause, namely, Granger cause, in which the
prior changes of one variable are associated with later changes
in a second variable above and beyond the second variable’s
contributions to its own later changes (see Roebroeck et al., 2005;
Xu et al., 2020).

IRF allows us to reach into this complexity with a
mathematical probe and test the effects of manipulating a single
node at a time. Taking the web of relationships from VAR,

IRF plucks one of the nodes (or more mathematically speaking,
simulates an impulse for one of the nodes) and examines what
happens to all of the other nodes at a later time (Figure 2).

VAR Modeling
We used the R library “vars” to compute VAR and IRF models
(Pfaff, 2008), and for the purposes of an accessible tutorial mode
aimed at developmental psychologists interested in gender/sex
development and in mother-child interactions, we only detail
the simplest variant of VAR and IRF. As noted above, more
elegant variants of VAR exist where users prefer more theoretical
constraints (e.g., Roebroeck et al., 2005). Also, old as the initial
VAR modeling strategy is (i.e., almost 40 years since Sims,
1980), a relatively recent update includes, for instance, multi-
level modeling into VAR strategies (Bringmann et al., 2013).
VAR modeling has traveled unevenly enough across the different
subfields to inspire widely different views as to recommended
usage. That is to say, far from finding any stable expression
of best practices in the psychological field, we find that uses
of VAR differ in how researchers adapt VAR to psychological–
scientific needs and constraints. We have been fascinated to
note that readers of earlier drafts of this manuscript actually
diverged quite a bit in their recommendations of best practices:
one reader insisted that any comparison of bidirectional effects
by gender/sex should require encoding gender/sex as an explicit
predictor within fewer models, and another reader recommended
fitting a new VAR model for each dyad. We aim to showcase the

FIGURE 1 | VAR(1). Schematic of relationships modeled by vector autoregression at a lag of one time step.
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FIGURE 2 | Impulse-response modeling. Schematic of impulse-response modeling and how it serves to test for unique contributions of individual variables engaging
in bidirectional relationships.

simplest variant of VAR if only to give developmental psychology
the simplest possible entry point to this method for testing
bidirectional effects.

Background
Beyond mean and variance, repeated-measures designs require
acknowledging a third component of the linear model. To
understand VAR, it helps to go back briefly to the basics of
the linear model. This step is not to rehash anyone’s statistical
training but to point out a specific foundation of the linear
model that many introductory statistics trainings may, for the
most admirable pedagogical reasons, have omitted. The linear
model comprises three major elements, but many an effective
introductory statistics class presents only two, i.e., the mean and
the variance (or standard deviation). The third element—called
“the autocorrelation function” or just “the autocorrelation”—
very often appears only implicitly and, at that, only with zero
value in the guise of the “fair coin” that, when flipped, will
have equal probabilities of coming up “heads” or “tails” on each
flip. To be clear, the “fair coin” metaphor is a statement about
memorylessness of events, which amounts to an autocorrelation
with all values of zero, but for students first encountering
statistics, mean and variance are all we need to steer a semester’s
curriculum through analysis of variance and/or ordinary least-
squares regression (Tabachnik and Fidell, 2007).

The purpose of all statistics in linear modeling is to account
for the variance of a measure x. The mean is the sum of
measurements divided by the number of measurements (i.e., x̄,
the sum of all xi divided by N for i = 1,. . .,N where N is the
sample size), and although linear modeling can focus very much
attention on the mean, the mean is usually most interesting
insofar as it can vary in a way that informs a hypothesis test.
A mean that does not vary is just an intercept on a vertical axis
whose value we can take or leave depending on our choice to look
at raw or mean-centered values, respectively, of our measure x.
Variance is, roughly, the average squared difference of each value

of x (i.e., again xi for i = 1,. . .,N where N is the sample size), and
indeed, it appears just as well under another name “mean-squared
deviation” (often alongside reference to standard deviation as
“root mean-squared deviation” or “root mean square”). Perhaps
the best reason to stop with mean and variance is that very many
useful statistical procedures only need mean and variance. Very
many hypothesis tests aim to find less variance within groups
and more variance among the means of those groups. In short,
variance is what it is all about (Tabachnik and Fidell, 2007).

The only reason to even consider the autocorrelation is
when our measure is not just x but, rather, x(t). That is,
autocorrelation only enters into the possibility of definition when
x is a repeated measure. So, given the need to cover between-
groups designs and given the higher costs—not just in data
collection but in computation—of repeated-measures designs, we
find introductions to statistics widely appealing to the “fair coin”
metaphor, the idea that we prefer measures in psychology that
do not depend on what we measured before. Obviously, some
dependence on the past is ideal or expected: we expect a measure
of intelligence to be reliable and reproducible across multiple
tests with the same participant, and our ability to fumble for the
light switch when we return home in the dark depends on the
dimensions of our doorway and electrical circuitry to remain the
same across time. However, these examples in the prior sentence
are about stability of a mean, and really, the issue of the fair
coin failing to resemble its past is about the variance: what we
do not want is for repeated measurement to change (i.e., to
“vary”) based on previous measurements. So, for instance, our
intelligence test should be capable of asking the questions in any
sequence, and we do not want significant change in response to
any single question because of its following or preceding the any
other question–response pair (Tabachnik and Fidell, 2007).

This dependence of change based on the past is what
autocorrelation is all about. In effect, autocorrelation is all about
variance all over again: autocorrelation is the capacity for current
variance in a measure to be predicted by past variance. One of
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the central assumptions of the linear model is that variance is
homogeneous across groups but also across time. If you look
at autocorrelation too hastily, it could look like autocorrelation
breaks that homogeneity-of-variance assumption, and that could
be confusing for students just embarking on their statistics
training. So, it is not really a mystery that more introductory
statistics classes do not teach autocorrelation functions or that
autocorrelations are not more familiar to more readers. The
fair-coin metaphor suggests that linear statistics actually work
best when there are no autocorrelations. That suggestion may
be true, but the fair coin is by no means a fact of all repeated
measurements and sooner a simplifying assumption that is
routinely broken in practice (e.g., Metzler et al., 2014).

The autocorrelation function encodes how past values of x(t)
at all possible time lags predict current values of x(t). It is
central to the success of repeated-measures designs that linear
statistical models have the capacity for modeling the departure
of our measurements from fair-coin independence across time.
This capacity comes from the autocorrelation function as the
third and final foundation supporting the linear model (Mandic
et al., 2008). We only need this foundation explicitly as noted
above when our modeling does not simply address a variable
x but more specifically a time-varying measure x(t). These
methods apply equally well to spatially varying measures, but
given the multiple dimensions of space, the mathematical
treatments of autocorrelation usually unfold over the domain
of time. x(t) is called a “repeated measure” or a “time series.”
Despite the similar terminology, repeated-measures ANOVA
does not use the autocorrelation and only represents the time
dependence of repeated measures in terms of an intercept
defining each participant’s mean value. We need to look at
repeated measures on the order of hundreds or thousands of
measurements x(t). We can distinguish the entire time-series
x(t) from x(i), the individual ith value of x at the individual
ith interval of time [i.e., x(i) for i = 1,. . .,N where N is now
the total number of equally spaced measurements in time;
Box and Jenkins, 1976].

The autocorrelation function is a mathematical way to encode
how past values of a time series x(t) contribute to current values
of x(t). For any time series x(t) of length N, the autocorrelation
function is a series of N − 1 weights, one weight for each of
N − 1 possible time lags. Each individual jth weight indicates how
well, on average, we can predict current values of x(t) from x(t −
j) values. The use of weights in the autocorrelation function is
much like the use of weights in regression models: the magnitude
and the sign of the weights indicate the size and direction of the
average effect of past values on predicted current values.

Weights can be positive or negative or zero, and as far as many
introductory statistics curricula go, the weights are all zero for
all available time lags. If we look at the fair-coin metaphor, we
can lift the veil on the autocorrelation function and see that it
had been there the whole time. The best reason more people had
not talked about it might have been that all weights equaled zero
for all time lags. So, we if had a time series x(t) composed of 100
coin flips, we would have an autocorrelation function 99 weights
representing the contribution of the just-previous coin flip, of

the flip before that, and all others leading up to the first coin
flip. The autocorrelation function would represent “just previous”
as “lag-1” and “the flip before that just-previous flip” as “lag-
2,” and the first coin flip would get represented as lag-99. There
would be no lag-100 because the last coin flip would be the 100th,
and there would not have been a flip 100 flips before that one.
However, the fair-coin metaphor entails that each weight for each
time lag was zero.

It might be more accurate to say that each weight of a fair coin’s
autocorrelation will fail to be significantly different from zero.
The purity of an all-exactly-zero autocorrelation in theory begins
to flicker from view as soon as we collect an actual sample of 100
real coin flips. The finite size of any series of real coin flip is going
to show some non-zero average dependence across flips, but the
small-sample limitations is going to entail that the variance of this
flip-to-flip dependence will be quite large compared to its average.

We can start to imagine what a set of coin flips might look like
for positive time-lagged weights in the autocorrelation function.
For instance, if there is only a strong significant positive weight
on lag-1, then it would mean that the just-previous flip is a strong
predictor of the current flip. So, the first coin flip was “heads” (H),
and if we had a positive weight on lag-1, then our coin flips might
have shown the following sequence:

HHHHHHHHHHHH. . ..HHHHHH
or if the first coin flip were “tails” (T), the positive weight on

lag-1 would entail the following sequence:
TTTTTTTTTTTTTTTT. . ..TTTTTT.
Now, if we kept the same positive lag-1 weight but found a

slightly smaller positive weight for this time lag, it would reflect
that the flip-to-flip dependence was a little weaker, e.g., yielding
less uniform coin-flip series resembling:

HHHHTHHHHHTHHTHHHHHHH. . ..HHHTHH or
THTTTTTTTHTTTHTTTTTTT. . .. . .TTTTTTTHT
Conversely, a strong negative lag-1 weight would suggest that

the just-previous value was a good predictor of the current value,
but in the opposite direction. Thus, an idealized coin-flip series
with a strong negative lag-1 weight would look like the following:

HTHTHTHTHTHTHTHTHTHTHTHTH or
THTHTHTHTHTHTHTHTHTHTHTHT.

Autoregressive (AR) regression models. The autocorrelation can
live side by side with any regression model that we estimate
for our time-series dependent variables. That is to say, the
regression modeling that begins with repeated-measures ANOVA
grows seamlessly into the autoregressive modeling that draws
on the autocorrelation function. It is the same math for
predicting variance in our dependent measures, and it respects
the same assumptions about unpredicted variance left over
in our residuals. If anything, autoregressive modeling is a
bridge between repeated-measures regression model staught
introductory statistics training and the linear time-series
modeling that supports forecasting in fields like finance.

We can formalize the fair-coin and the lag-1 relationships
into a standard regression format. The probability p of a fair-
coin flip x(t) coming up “heads” H is 50%. So, p(x = H) = 50%
on average for a fair coin, giving us x̄ = 50% if we are
collecting coin-flip data, we also expect variability, and we
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expect the random variability ε to be binomial and, in the
long run with larger samples, converging toward Gaussian with
variance s2. Hence, we can write the standard regression formula
as follows:

x̂(t) = x̄ + ε

If we have a coin weighted to yield an average rate of H
equaling 75% of the flips, that amounts to updating only the
x̄ term with a new average value, but the weighted coin might
still be “fair” insofar as having no dependence from flip to flip.
What this foregoing regression equation entailed is that the time
variability of coin flips x(t) is best approximated as the average
outcome plus binomial-to-Gaussian variability. The ε represents
the residuals of this regression model, whose variance should
remain equal across time and without temporal structure.

Now, if we have a coin with non-zero lag-1 weight in the
autocorrelation function, we can update the regression equation.
This admission of a significantly non-zero predictive weight from
the autocorrelation function becomes known as “autoregression”
(AR). For what it is worth, we know to estimate an autoregression
model when the residuals ε from the above model show temporal
structure (sometimes called “serial correlations,” indicating
that there are statistical relationships across the sequence of
measurements). If the residuals ε show temporal structure, then
it means that the model is poorly specified. Residuals ε with
temporal structure require that regression modeling include a
weight from the autocorrelation function. That inclusion looks
like the following:

x̂(t) = x̄ + B1x(t− 1) + εAR(1),

where x(t − 1) represents the average of lag-1 values of
x(t), B1 represents the autocorrelation weight for lag-1 on
predictions of current values of x(t). Note that εAR(1) is a new
residual term that differs from ε because we have fit a new
regression model. “AR(1)” is mathematical notation that means
“autoregression using lag-1 autocorrelation weights,” with “AR”
abbreviating “autoregression” and “1” equaling the maximum lag
used. The B1 weight is directly related to the autocorrelation
weight for lag-1. If B1 is positive, then we would have series
like “HHHHHHH. . .HHH” or “TTTTTTT. . .TTTT.” If B1 is
negative, then the just previous coin flip should predict the
opposite outcome for the current flip, e.g., “HTHTHTHTHT.”

When would we ever use autoregression? The statistical
housekeeping here requires attention to the residuals of each
of these models. We should only have fit the autoregressive
model if the residuals ε had temporal structure. According to
the linear model, ε is assumed to arise from the sum of many
independent random variables, and it is the independence of
these component random variables that should guarantee the
homogeneity of variance, and so any structure in ε suggests that
there are deterministic relationships to the dependent measure
x(t) hiding in the ε term. So, because the central limit theory
assumes that measures are the sum of deterministic components
and non-deterministic components, the variance of ε should be
the sum of two variances: variance due to x(t − 1) and variance
due to εAR(1). Ideally, εAR1 should differ from ε in two respects:

εAR(1) should have smaller variance than ε, and εAR(1) should
have weaker evidence of temporal structure than ε because the AR
model will have, by definition, controlled for lagged values of x(t).

How much autoregression can we fit into our models? The
answer to this question requires attention to our residuals again.
If εAR(1) turns out to have temporal structure remaining, then
regression modeling may benefit from further autoregressive
terms, that is, from using any further weights from the
autocorrelation for more time lags than just lag-1. Effectively,
regression modeling has access to all N − 1 time lags
evaluated in the autocorrelation function. We can generalize the
autoregressive formalism to all time lags that we might use in our
regression model as follows:

x̂(t) = x̄ + B1x(t− 1) + B2x(t− 2) + . . . + Bp−1x

(t− p + 1) + Bpx(t− p) + εAR(p),

yielding a generic form for all autoregressive models AR(p) where
p is equal to the maximum time lag incorporated into the model.
The same wisdom holds for autoregressive terms as for higher-
order interactions: if they do not improve model fit, we do not
include them (e.g., Allison, 1977).

When does the autoregression stop? In theory, because there
are N − 1 time lags available from the autocorrelation function,
an AR model could include up to p = N − 1 autoregressive
predictors. However, in practice, it is extremely unlikely to get
any but short-lag models. Recall that each weight for each pth
time lag represents an average contribution across that given time
lag, and the average weight is only going to be as informative as
the sample size of lag-p relationships increases in the measured
time series. In a 100-flip time series of coin flips, there is only
one lag-99 relationship in evidence, i.e., that between the 1st and
the 100th coin flip. Meanwhile, there are 99 instances of a lag-1
relationship in the same series. Hence, there will be a much more
stable estimate of lag-1 effects than of the lag-99 effect. For this
reason, autoregressive models usually pertain to only short lags
(e.g., lags 1 through 5; Wagenmakers et al., 2004). Long-range
relationship between lagged and current values appears in linear
modeling as an exceptional case (e.g., fractional integration;
Granger and Joyeux, 1980) or as a symptom of non-stationarity
(Box and Jenkins, 1976). Neither case is required to understand
AR or VAR models, but both cases warrant corresponding
steps to make them more tractable for regression-modeling
purposes. We note them only to help distinguish the scope of
AR and of VAR. It is extremely likely that residuals for the
AR(p) model will stop exhibiting temporal structure at p much
less than N − 1. Recall that we only fit new autoregressive
terms if the residuals ε have temporal structure, and so as soon
as residuals εAR(p) show no temporal structure, then we will
have satisfied the long-standing assumption that variance should
be homogeneous across time. Once the residuals exhibit the
signs of no-structure homogeneity across time, then we can
conclude the AR model.

The purpose and the scope of vector autoregressive (VAR)
regression models. The econometrician Sims (1980) developed
VAR modeling quickly on the heels of innovative developments
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in time-series modeling such as by Box and Jenkins (1976). The
motivation to develop VAR was that macroeconomics posed
two major challenges to statistical modeling. First, economics on
the macro-scale of whole industries, nations, and multi-national
trade organizations could never draw on truly experimental
work with random assignment to treatment groups. Second,
each measurable time series in macroeconomics was tangled up
in many others. For instance, gross domestic product, imports,
exports, wages, unemployment, physical plant processes, and
consumer spending all influenced one another. As a consequence,
many regression models that presumed to name a predictor
variable, to name an outcome variable, and to estimate the
effect of one on another could only make the most hedging,
contingent conclusions about underlying relationships. Not only
was macroeconomics stuck doing correlational research, but
whereas correlational research is burdened with an uncertainty
as to which variable causes which, macroeconomists such as Sims
were fairly sure that multiple variables might just be both cause
and effect amid a thicket of interlocking relationships.

Vector autoregression modeling presumes to apply the same
logic as motivated AR modeling of time series x(t), but it
broadens the class of autoregressive predictors to include lagged
values not just of x(t) but also of past values of other time
series. The same logic means that VAR respects the same
assumptions of residuals that are homogeneous in variance and
so free of structure across time. VAR is only valid for time
series with short-lag autocorrelations, and non-stationarity and
fractional integration require explicit extensions of the basic VAR
framework. As it applies to multiple time series, VAR requires
that the time series are cotemporaneous. That is to say, because
we are going to be using the same p-lagged values of multiple time
series, we need the time series to begin at the same time and to
progress with the same time intervals (Lutkepohl, 2005).

As linear models go, VAR is agnostic to the underlying
network of relationships among all potentially causal and
potentially effect variables. Except for the assumptions of
homogeneous variance and of short-lag relationships, VAR allows
the capacity to explore all possible relationships. Just as there
are VAR elaborations to suit non-stationarity and fractional
integration, there is a less exploratory variant of VAR called
“structural VAR” (SVAR) that allows prior delimiting of available
autoregressive relationships among the variables. However,
because we come to our questions about gender/sex relatively
skeptical about theoretical preconceptions, we do not present
SVAR here. The drawback of taking such a shotgun approach to
modeling is that the results are copious (Lutkepohl, 2005).

Vector autoregression generalizes the same autoregressive
framework to a multivariate (i.e., multiple dependent variable)
case for which, rather than predicting the current value of a
single time series x(t), it predicts current values of a whole
system of multiple time series x1(t),x2(t),. . .xm−1(t),xm(t), where
m is the number of time series in the system. Although it is
possible to treat some of the variables as exogenous, i.e., as
influencing other variables without responding to any other
variable, the strength of VAR modeling lies in the capacity to
treat variables in this m-dimensional system as endogenous,
i.e., as both influencing and responding to other variables.

Hence, for every endogenous variable xj(t) for j ≤ m, VAR
models regression coefficients for all p past values of all m
variables, i.e., x1(t − p),x1(t – p + 1),. . .x1(t − 2),x1(t −
1), x2(t − p),x2(t − p + 1),. . .x2(t − 2),x2(t − 1),xm−1(t −
p),xm−1(t− p+ 1),. . .xm−1(t− 2),xm−1(t− 1), xm(t− p),xm(t−
p + 1),. . .xm(t − 2),xm(t − 1). Whereas AR modeling only
allowed testing the effect of past values of a variable on current
values of itself, VAR modeling accomplishes the same as AR but,
in addition, simultaneously allows testing the effects of past values
of many other variables on current values of itself (Lutkepohl,
2005). To illustrate with a more compact case, if we have two time
series x1(t) and x2(t), then the VAR(1) model would look like:

x̂1(t) = x̄1 + B1x1(t− 1) + B2x2(t− 1) + ε1VAR(1)

and

x̂2(t) = x̄2 + B3x2(t− 1) + B4x1(t− 1) + ε2VAR(1).

Hence, whereas AR(1) models only feature one instance of
x(t − 1), now, we see that the same lagged value, e.g., x1(t − 1),
appears twice in the two-time-series VAR model and so prompts
modeling two separate coefficients, e.g., B1 and B4, the former and
the latter contributing to predictions x̂1(t) and x̂2(t), respectively
(Lutkepohl, 2005).

It is noteworthy that each equation has its own residual term.
Model stability depends on whether the residuals are identically
distributed and whether they are independently distributed
across time—that is, again, we have to satisfy those perennial
assumptions of homogeneous variance and of no temporal
structure. Just as failure of these assumptions led us above to
include another lagged value, if a VAR model fails either of
these assumptions, it is important to incrementally increase the
parameter lag p until these requirements of the residuals are
met. Otherwise, the VAR model would not be stable and would
not provide a judicious model of short-lag effects. Testing these
conditions requires multivariate tests for heteroscedasticity (i.e.,
failures of homogeneous variance) and for serial correlations (i.e.,
failures of independence across time). Both of these tests are
available with the R library “vars” (see Supplementary Data 2 for
example script).

Limitations of VAR. Despite being an elegant means for
investigating short-lag effects of multiple variables on each
other, VAR suffers from all the same limitations of correlational
analysis. Although impulse-response functions (see section
“Impulse-Response Modeling”) address some of the question of
directionality (i.e., which of the related variables influences which
others), the fact remains that poor selection of the variable or
of the proper sample size is always a threat to interpretation.
There are likely more variables and more measurements that
would inform the conclusions. As ever, correlation does not entail
causation. The specific strength of VAR is that it can establish
correlation of one variable’s increases with another variable’s
later changes. Beyond that strength, VAR is prone to spurious
correlations as any other regression model.

Spurious false positives are a problem for all correlational
analyses, but no matter whether correlation does not entail
causation, causation should at some point produce correlation.
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So, perhaps a more important point is to delimit the types
of causal relationships that might register a true significant
effect in VAR. In this light, the more specific limitation
of VAR is that it can only estimate relationships between
variables that exist across short lags. That is, it can only
estimate relationships between variables that unfold across the
briefest time scales. For instance, it is possible that changes
in one variable only have effects on another variable that
appear at a very long delay. A second possibility is that the
actually causal interactions between variables unfold across
multiple time scales at once. Both sorts of causal relationships
are expected in developmental psychology where we cannot
easily assume that all variables change in the same way
(Adolph and Robinson, 2011). VAR would be insensitive to
any causal relationships, and to get at long-range or multi-
scale relationships, we would need the vector error correction
(Lutkepohl, 2005) and vector fractional integration models
(Podobnik and Stanley, 2008). For present purposes, we hope
that it is a worthwhile step to introduce VAR as a first
constructive step.

Present application of VAR
We ran four lag-1 VAR models across all infants using the month-
by-month frequency of variables described in Table 1, that is,
VAR models with lag p as noted in the previous paragraph.
We only ran lag-1 VAR models because lag-1 was sufficient
to generate stable models according to the requirement of
identically and temporally independently distributed residuals.
This modeling strategy allowed us to test whether different
maternal and infant behaviors influenced each other, controlling
for all relationships of all previous values of variables with all
current values of the variables. Two models used series encoding
duration in seconds, and two models used series encoding
frequency as number of events. One of each model type pertained
to male infants or their mothers, and the other of each model type
pertained to female infants or their mothers.

Impulse-Response Modeling
Conceptual motivation for using impulse-response functions
(IRFs)
Impulse-response functions use VAR models to generate a
prediction of each variable’s unique effect on another variable
in the same system of equations. There is no principled reason
why the regression coefficients are closed to direct interpretation,
but various mathematical treatments of VAR suggest a general
distaste for attempting to interpret the raw coefficients. Indeed,
the problem is not that the coefficients are not trustworthy,
but if you have 26 variables each participating in the VAR
model, the simplest case of p = 1 requires reading (26 lagged
values × 26 equations = ) 676 coefficients. What the impulse-
response functions do is iterate predicted values forward into
time based on time-lag coefficients. This method generalizes the
idea of Granger cause (see section “Data Analysis”), projecting
predicted values of each variable over several time steps into
the future in response to unique variables. In the econometrics
parlance, the impulse-response function simulates a “shock”
from each individual variable and then uses the VAR model

coefficients to project how that shock from one variable prompts
later responses from predicted values of the other variables.
Granger cause is not all of cause, and perhaps Granger cause
is better understood as prediction. However, the benefit of
Granger cause and impulse-response functions is that they
model relationships between variables in which one variable’s
increase is prior to the predicted values of another variable
(Lutkepohl, 2005).

IRFs use residuals to simulate instantaneous shocks from
unique variables
Impulse-response functions leverage both the VAR coefficients
and the residuals. The VAR coefficients encode average time-
lagged relationships. We can think of the set of VAR coefficients
as a skeleton of linkages composing the network of variables.
This skeleton holds on average and none of the weights are prior
to one another. So, they are not sufficient to make predictions
about unique effects from one variable on another. On the
other hand, the residuals of the VAR model describe how the
measured time series vary above and beyond their average.
So, the residuals are where impulse-response functions take
hold. Impulse-response functions aim to simulate the effect
of a “shock,” i.e., a drastic increase in a unique variable. For
instance, in a two-variable VAR, modeling the effect of prior
x1 on later x2 involves artificially increasing the residual term
for ε1VAR(p) for one-and-only-one time step while leaving the
residual term ε2VAR(1) unchanged. The question for the impulse-
response function is whether this instantaneous increase in the
residuals in one variable has a later effect on the other variable
(Lutkepohl, 2005).

Enforcing uniqueness of simulated shocks requires
orthogonalizing residuals
The difficulty in estimating an impulse-response function to
portray unique effects is that the residuals in any VAR(p) model
are correlated with one another. Correlation of residuals is
an expectable fact of causally related variables. Unique effects
are what scientists want to know about. So, to make up the
difference between inevitable correlation and desired uniqueness,
the common resolution is to orthogonalize the matrix of residuals
(i.e., a matrix of m columns and N rows, where m is the number
of regression equations and N is the length of the time series).
Generally, VAR-IRF procedures employ Cholesky decomposition
to accomplish this orthogonalization. Once orthogonalized, it is
possible for the statistician to reach into the residuals and to
produce a “shock” by adding a standard error at one and only
one time step. That standard error increase will increase the
predicted value for that one variable at that one time step, but
then, at the next time step, the increase in that one variable
will have spread through the entire system of equations. So,
orthogonalization of residuals allows simulation of how unique
variables have unique effects on later changes in other variables
(Lutkepohl, 2005).

IRFs shed light on directionality of effects between interactive
variables
The impulse-response function is thus a very important attempt
to resolve the directionality problem of correlational research.
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Whereas pairwise correlation only expresses association and
does not indicate which of the two variables might influence
the other, impulse-response functions provide a better way to
express which variable could possibly influence which other
variable. It is certainly true that there remains a “third-variable
problem” in VAR because researchers could always have failed
to include all of the relevant variables. However, with the
capacity to model uniqueness and priority of one variable’s earlier
change improving prediction of another’s later change, VAR has
been an important step forward in grasping for any glimpse
of causal relationships among many interacting, time-varying
measurements (Lutkepohl, 2005).

Computing average values of IRFs
Impulse-response function modeling simulates an “impulse” by
increasing each of the m variables at a time by a standard error,
and lastly, it allows this brief increase to propagate through the
vector-autoregressive system’s regression coefficients over many
time steps into the future. The default number of time steps in the
R library “vars” is 10. Responses to impulses decay to zero, but in
the short range of 1 to 10 or so steps forward in time, impulse-
response modeling can show that an increase in one variable can
promote either an increase or a decrease in another. Hence, IRF
allows us to test the unique effects of each variable on later values
of other variables. These average values predicted by charting the
effect of a unique-variable shock can vary across time and across
different variables. Any given variable can respond more or less
to a given shock, and some variable’s shocks can have stronger
or weaker effects. Hence, IRFs do not simply provide a binary
signal of future effects of earlier shocks. Given the abundance of
effects in the present paper, we will collapse most of these IRF
results into binary information (e.g., there was a significant later
response, or there was not), and we will indicate the direction of
this later response (e.g., the later response was positive, or it was
negative; Lutkepohl, 2005).

Computing 95% confidence intervals for IRFs
The VAR coefficients provide means for calculating the average
value of later responses to earlier shocks, but identifying
statistical significance of non-zero responses requires a 95%
confidence interval for each time step into the model-predicted
future. The standard way to estimate the confidence interval
for IRFs is to bootstrap multiple new model predictions
from the VAR. This bootstrapping procedure involves
resampling the residuals with replacement, that is, taking
a randomized subset of the actual residuals and randomly
reshuffling their order across time. Reshuffling the residuals
of the VAR model 100 times can produce slightly different
model-predicted values across time. These 100 different
model predictions generate a 95% confidence interval, and
significant forecast effects are indicated when the bootstrap-
generated 95% confidence interval does not include zero
(Lutkepohl, 2005).

Fine print for conservative estimation of IRFs for any given
(or all) variables
Producing conservative estimates of any given variable’s unique
effects on the other variables in a VAR model requires entering

that variable last (i.e., as the rightmost column) in the matrix
submitted to the VAR-estimating function. For each of the four
VAR models noted above, we ran VAR modeling with 26 different
orderings of the variables to ensure that we could report only
the most conservative estimates of each variable’s impulse effects
on all other variables. Each of those 26 models had a different
variable occupying the rightmost column in the matrix submitted
to the R script for VAR estimation. This resorting might strike
a newcomer as unduly cumbersome, but it is necessary in order
to avoid overstating a given variable’s impact by leaving it in a
position other than rightmost-in-the-matrix.

The reason that order of variable entry matters has to
do with the iterative nature of Cholesky decomposition for
orthogonalizing the residuals. Order of variable entry will
not change VAR coefficients in the least. VAR is symmetric
across variable entry: coefficients estimated for [x1,x2] are
exactly the same as those coefficients estimated for [x2,x1].
It is conceptually similar to partial correlations between two
variables. Partial correlations between x and y are often less
than simple pairwise correlations because partial correlations
begin by taking account of correlations between x and a third
variable z. Similarly, the first column in the orthogonalization
matrix produced by a Cholesky decomposition includes the
standard deviation s1 for the first-entered variable’s residuals
ε1VAR(p) in the top row, and all other rows in that first
column contain the covariance terms (covariance between first
variable and each other variable) divided by s1. Then, as the
Cholesky decomposition iterates, it fills each new column of
the orthogonalization matrix and is calculated by subtracting or
dividing the previous column’s entries (e.g., for x1) from the
next variable’s residual [e.g., ε2VAR(p)] standard deviation and
covariance terms. Hence, the structure of the residuals appear
untempered for ε1VAR(p), but each subsequent set of residuals
[e.g., ε2VAR(p), ε3VAR(p), . . . εm−1VAR(p), εmVAR(p)] is represented
in the orthogonalization matrix with progressively more of
the preceding variables tempering their variance contributions.
So, the last entered variable’s residuals εmVAR(p) participate
in impulse-response functions only after the variance of all
other residual terms has been controlled for, and this iterative
tempering makes the IRF test of later responses to prior impulses
most rigorous for impulses produced by the last-entered variable
(see Supplementary Data 2 for example in R script).

RESULTS AND DISCUSSION

Tables 2, 3 present the significant (at p < 0.05) results of IRF in
two directions. Table 2 shows impulse-response results indicating
the responses of infant behaviors to previous maternal behaviors.
Table 3 shows impulse-response results indicating the responses
of maternal behaviors to previous infant behaviors. To help
orient readers through these tables, we have included Figure 3
to guide the eye through all of the detail. Figures 4, 5 depict
example IRF curves with average effects and 95% confidence
intervals to illustrate effects reported in Section “What Infant
Behaviors Elicit Changes in Mothers’ Behavior that Differ by
Gender/Sex of Infant? ” Figure 6 offers a pictorial summary.
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“Impulses” or Maternal Behaviors as simulated prior events

Rocks/
Jiggles

Lifts
Infant

Assists
Locomotion

Stimulates
Gross Motor

Shifts
Infant

Holds
Object

Points to
Object

Offers
Object

Manipulates
Object

Speech to
Infant

Affectionate
Touch

“Responses” or
Behaviors as effects

Stand (Object support) +G

Stand (Mother help) −B −G[−G] [+G] +B

Stand Independently [+B] +G +B[+G]

Sit (Object support) +B −B +B −B

Sit (Mother help) [−G] [−B] −B

Sit Independently [+B] −B [−B]

Lie (All) [+B] −B [−G]

Lie Still [+B] +B −B [−G] +B

Babble +G[+G]

Cry -G

Reach +G[-B] [−G] −G [−G]

Crawl [+B] [+B]

Play (Passive) [+B] +B [+B]

Play (Motor-Social) +G[+B] [−G]

Play (Object) [+B] −B [+B] [+B]
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These results from the IRFs reflect the output of four separate
applications of VAR: two for dyads including girl infants (one for
durations and the other for occurrences of each behavior code)
and two for dyads including boy infants (one for durations and
the other for occurrences of each behavior code). Raw data are
available on request.

Mothers’ Behaviors Shape Infants’
Behavior
Extending a Known Effect From the Literature on
Language Development to Motor Development: VAR
Confirms That Pointing Influences Later Infant Motor
Behaviors
Infant behaviors showed significant changes subsequent to
increases in maternal pointing (Column 7; Table 2; “Points to
Object”). When mothers point to an object, the act appears
to increase the time (duration) girl infants spend reaching
but decreases the number of occasions (frequency) boy infants
reach. However, both boy and girl infants show an increase in
duration and occurrence of standing independently. This result
stimulated us to return to our original data set to see if there
were gender/sex-related differences in the frequency or duration
of maternal pointing.

Disconfirming a Likely Extrapolation From the
Literature: VAR Shows That Stimulation of
Gross-Motor Coordination Encourages Boys to Lie
Down/Still
Gross motor stimulation (Column 4; Table 2) elicited more
motor-social play in both mother–son and mother–daughter
dyads. Beyond this similarity, however, the effects of gross-
motor stimulation diverged for male compared to female infants.
Gross-motor stimulation increased passive play and object
play frames for mother–son dyads but not mother–daughter
dyads. Rather than encouraging more physical activity later
on in boys, increasing maternal stimulation of gross-motor
coordination actually increased the number of times boys lay
down (all sub-codes) and lay still. Given the presumption that
motor stimulation strengthens muscles and neuro-muscular
connections, a less surprising finding was that gross-motor
stimulation reduced the time boy infants spent standing with
maternal support.

What Infant Behaviors Elicit Changes in
Mothers’ Behavior That Differ by
Gender/Sex of Infant?
Opening Up New Avenues for Research: Standing
Independently and Crawling Show Many Significant
Relationships With Later Infant Behaviors, and
Mothers Respond More to Boys and Less to Girls
The most populated columns in Table 3 are for later effects of
standing independently and crawling, indicating that these infant
behaviors are most likely to change later maternal behaviors. For
the most part, infant crawling or standing independently accrue
later increases in maternal involvement for boys but, in a novel
result, appeared to decrease later maternal involvement for girls.
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FIGURE 3 | How to read the tables. A step-by-step guide to reading Tables 2, 3, guiding readers through Table 3 as an example, following the question “What was
the effect of mothers’ assisting locomotion on infants’ later behaviors?”

When male infants stand independently, that change predicts
more numerous later occurrences of mothers rocking/jiggling,
assisting locomotion, stimulating gross-motor coordination,
manipulating objects (though spending fewer seconds in this
behavior), and affectionately touching infants (Figure 4). In
contrast, the only increased later maternal involvement for
female infants’ standing independently was time spent assisting
locomotion. Otherwise, girls’ standing independently predicted
significantly less duration of maternal shifting and less duration
(and fewer occurrences) of mothers offering objects later
on (Figure 5). As can be seen, the predicted later changes
are relatively small for impulse of standing independently
by girls, but the predicted later changes in response to an
impulse of standing independently by boys shows a range of
different sized effects.

Girls’ crawling reduced the number of later occurrences of
rocking/jiggling, assisting locomotion, stimulating gross-motor
coordination, and affectionate touching of the infant. Girls’
crawling predicted later increases of the time that mothers held
an object (toy) but later decreases of the time that mothers
spent offering an object (toy). Boys’ crawling has fewer effects
on maternal behaviors: mothers spent more time pointing and
holding toy objects on fewer occasions. Similar effects appeared
in sitting: Boys’ sitting independently leads mothers to assist
locomotion less but to hold toy objects and point to toy objects
more. Girls sitting independently only predicts that mothers will
later spend less time offering objects.

The foregoing remarks refer only to a small portion of the
existing results. We have included Tables 2, 3 in their entirety
as well as Figure 3 offering pointers for further reading of these
tables so as to offer the reader an opportunity to see the results
in their entirety. Readers hoping to check their understanding of
the remainder of the results not explicitly discussed can consult
a complete list of all significant effects in online supplementary
material (Supplementary Data 3, 4). A big data set presents
many analytic challenges. VAR and subsequent IRF offer a way
to let the data speak to bidirectional relationships and bring
into relief, through traditional filters of significance testing,
those strongest relationships that interested researchers may
probe with subsequent experimental test. Figure 6 cartoons the
reviewed findings.

CONCLUSION

We demonstrate that VAR serves the known needs for hypothesis
testing but brings the traditional rigor for testing hypotheses to
the space of bidirectional relationships: it can expand known
effects, disconfirm likely hypotheses suggested by the literature
(e.g., that gross-motor stimulation encourages greater physical
activity in boys), and open up new avenues for research that prior
literature and modeling have not proposed or explored. As in
the introductory remarks, we emphasize that these findings serve
as examples of findings that VAR modeling could potentially
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FIGURE 4 | Impulse-response functions modeling the predicted later increase in various maternal behaviors following an increase in occurrences of boys standing
independently. Solid black curve represents the average IRF values over months into the future. Dashed lines represent the upper and lower bounds of the 95%
confidence interval. Dotted lines represent zero-change. Predicted occurrence of “mother rocking or jiggling infant” increased 2–3 months into the future (top left).
Predicted occurrence of “mother stimulating gross-motor coordination” increased 1–2 months into the future (top right). Predicted occurrences of “maternal
affectionate touch” increased 1–2 months into the future (bottom left). Predicted occurrences of “mother assisting locomotion” increased 1–3 months into the future.
Note that, although all predicted later changes are positive and significant over the first few months, the predicted later effects in the top two panels are much smaller
than the predicted later effects in the bottom two panels.

generate and that might answer old questions and unearth new
questions for future research. We address the results of latter type
in our remaining remarks.

Because gender/sex-related differences in activity levels and
active play styles are widely reported (Campbell and Eaton, 1998;
Lillard, 2015), we originally developed the motor codes used
here with the hypothesis that mother–infant dyadic interactions
would contain observable antecedents to later gender/sex-related
differences. Thus, we were not surprised to find mothers respond
to boys’ physical activities with greater physical stimulation and
affectionate touch. However, we did not anticipate the current
study’s findings that motor activities from girls would lead to a
decrease (as opposed to no effect) in gross motor stimulation,
rocking and jiggling, interactive object play, and affectionate
touch. These kinds of results add weight to the claim that
rather than being a piecewise process starting with biology and
expanding via socialization, gender/sex differences in play and
physical activity are emergent, interactive properties produced
through the day-to-day physical interactions between infant and
caregiver (Fausto-Sterling et al., 2015).

In the current study, the forecasted effects of simulated
impulses are on the order of months rather than minutes,
days, or years. However, our results can instruct us on how
to design a study that could begin to expose these steps on a
more fine-tuned time scale following the caution laid out by
Adolph and Robinson (2011) of the need for time dense sampling

in developmental studies. Nor is it unusual for longitudinal
studies to sample on the time scale of months and even years
(Beebe et al., 2010; Feldman, 2015). Our results also lead to
hypotheses about developmental dynamics or chains of events.
For example, as cartooned in Figure 6, we found a feedback
loop in which male infant crawling might lead at some later
date to more maternal pointing, and more maternal pointing
might lead to more male infant crawling. For female infants,
we uncovered a more open-ended set of events. Female infant
crawling results later in an increase in maternal object holding,
which in turn leads to increases in independent standing and
babbling for girls. Increased independent standing for girls
appears to precede more maternally assisted locomotion, but a
decrease in the frequency with which mothers offer objects to
their daughters.

We did not expect looped versus more open-ended feedback
for mother–son versus mother–daughter dyads, but this finding
might add to existing understandings of dynamic social processes
during gender/sex differentiation. Children can recognize
gender/sex (e.g., distinguish male from female faces) in their
world as early as 12 months. But as we show here (and as others
show in a wide-ranging literature), the patterns of handling,
feedback, and touch–response–touch behavioral loops and chains
differ in mother or father–son and mother or father–daughter
dyads (Feldman et al., 2006, 2010; Feldman and Eidelman, 2009;
Feldman, 2015). As infants incorporate a bodily sense of self and
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FIGURE 5 | Impulse-response functions modeling the predicted later changes in various maternal behaviors following an increase in durations of girls standing
independently. Solid black curve represents the average IRF values over months into the future. Dashed lines represent the upper and lower bounds of the 95%
confidence interval. Dotted lines represent zero-change. Unlike in Figure 4, all predicted later responses are relatively small and all persist only 1 month into the
future, with small increase in predicted duration of “mother assisting locomotion” (top left) and small decreases in predicted duration of “mother shifting” or “mother
offering objects” (bottom left and bottom right, respectively).

FIGURE 6 | Relationships among behavioral codes. Cartoon of relationships among behavioral codes distinguished by vector-autoregressive and impulse-response
modeling.
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develop response expectations from the adults with whom they
interact, they also observe gender/sex-stereotyped behaviors of
others in their world, producing behaviors and beliefs varying
in the fierceness with which they are held (Zosuls et al., 2009;
Ruble et al., 2010).

The application of VAR-IRF analyses to a detailed,
longitudinal data set opens a novel window onto the thicket
of causal relationships supporting gender/sex development
and differentiation. No matter the elegance of the statistical
modeling strategy, it is of course incumbent on critical consumers
to acknowledge that VAR- and IRF-based estimates indicate
relationships that, much like pairwise correlation, cannot be
equated with causality. However, it is important to evaluate
our suspicions as to bidirectional relationships where we
suspect that one variable may influence future values of
another variable. Our results provide a promising existence
proof for testing multimodal, bidirectional relationships
in the gender/sex-dependent interactions of children and
their caretakers. We do not intend for this existence
proof to stand for explanations of each of the results,
but we expect that such modeling could prove useful for
developmental research. We hope that the results serve to
give substance to what might otherwise have been a dry
mathematical tutorial. Future research in the development
of gender/sex identity and expression might build on these
early results using VAR-IRF analyses, with elaborations
of particular early dyadic interactions between infant and
caregiver, and offer specific focus on how infants born into
a highly gender/sex-designated culture learn to internalize
individual identities.
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