
International  Journal  of

Environmental Research

and Public Health

Review

New Approach Methods to Evaluate Health Risks of
Air Pollutants: Critical Design Considerations for In
Vitro Exposure Testing

Jose Zavala 1 , Anastasia N. Freedman 2, John T. Szilagyi 2, Ilona Jaspers 3,4,5,6,
John F. Wambaugh 7 , Mark Higuchi 8 and Julia E. Rager 2,5,6,*

1 MedTec Biolab, Inc., Hillsborough, NC 27278, USA; jose@medtecbiolab.com
2 Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,

The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
stasfree@live.unc.edu (A.N.F.); szilagyi@email.unc.edu (J.T.S.)

3 Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA; ilona_jaspers@med.unc.edu

4 Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel
Hill, Chapel Hill, NC 27599, USA

5 Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
6 The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of

North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
7 Center for Computational Toxicology and Exposure, Office of Research and Development, United States

Environmental Protection Agency, Durham, NC 27709, USA; wambaugh.john@epa.gov
8 Center for Public Health and Environmental Assessment, Office of Research and Development,

United States Environmental Protection Agency, Durham, NC 27709, USA; higuchi.mark@epa.gov
* Correspondence: jrager@unc.edu; Tel.: +919-966-4410

Received: 14 February 2020; Accepted: 19 March 2020; Published: 23 March 2020
����������
�������

Abstract: Air pollution consists of highly variable and complex mixtures recognized as major
contributors to morbidity and mortality worldwide. The vast number of chemicals, coupled with
limitations surrounding epidemiological and animal studies, has necessitated the development of new
approach methods (NAMs) to evaluate air pollution toxicity. These alternative approaches include
in vitro (cell-based) models, wherein toxicity of test atmospheres can be evaluated with increased
efficiency compared to in vivo studies. In vitro exposure systems have recently been developed
with the goal of evaluating air pollutant-induced toxicity; though the specific design parameters
implemented in these NAMs-based studies remain in flux. This review aims to outline important
design parameters to consider when using in vitro methods to evaluate air pollutant toxicity, with the
goal of providing increased accuracy, reproducibility, and effectiveness when incorporating in vitro
data into human health evaluations. This review is unique in that experimental considerations and
lessons learned are provided, as gathered from first-hand experience developing and testing in vitro
models coupled to exposure systems. Reviewed design aspects include cell models, cell exposure
conditions, exposure chambers, and toxicity endpoints. Strategies are also discussed to incorporate
in vitro findings into the context of in vivo toxicity and overall risk assessment.
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1. Introduction

1.1. Introduction to Air Pollution Health Impacts

Air pollution negatively affects human health worldwide, with ambient air pollutants estimated
to be responsible for approximately 3.7 million deaths annually [1,2]. This estimate equates to 6.7%
of all mortalities worldwide, with air pollution-relevant deaths resulting from respiratory diseases
(e.g., lung cancer, respiratory infections, etc.) and other related diseases (e.g., cardiovascular disease) [1].
Air pollutants can be split into two main categories based on emittance and/or formation sources:
primary and secondary air pollutants. Primary air pollutants are those emitted directly into the
atmosphere, including industrial and biogenic processes; while secondary air pollutants are those
that are formed within the atmosphere. In terms of chemical composition, air pollution represents
a complex mixture of both gases and particulate matter (PM). Both gases and PM are recognized to
pose a threat to human health [3] and both can induce varying toxicity over time as they react under
atmospheric influences [4–7].

It has been estimated that up to 87% of the world’s population lives in areas that exceed the
World Health Organization’s (WHO) Air Quality Guidelines for PM2.5 (PM with diameter of less
than 2.5 µm), estimated to contribute to 2.9 million deaths per year [8]. Gases within the atmosphere
are also present at deleterious levels, with ozone, for example, estimated to contribute annually to
217,000 deaths [8]. Though the general public is impacted by air pollution exposure, susceptible
populations such as the elderly, pregnant women, children, and those with certain preexisting diseases
can be at even higher risk of related morbidity and mortality [9]. As an example, increased levels
of outdoor ozone, sulfur dioxide, and carbon monoxide have been associated with a higher risk of
cardiovascular-related hospitalizations among patients aged 65 and older [10]. Underlying asthma
can also cause increased susceptibility to air pollutant-induced effects, with asthmatic individuals
shown to experience exaggerated responses to ozone, among others [2]. Other social factors such as
health disparities, including poor nutrition, low socioeconomic status, and race, are also associated
with increased risk to air pollutant-induced adverse health effects [11].

Air pollution represents a dynamic and complex mixture of chemicals that can occur as individual
constituents, as well as co-occur in a limitless number of combinations, making it difficult to accurately
evaluate and quantify health risks attributable to air pollution components. Furthermore, it is
impossible to test health impacts of all chemicals present in air pollution under atmospheric aging
conditions. To address these critical limitations, new methods based on in vitro and in silico approaches
are needed to more accurately evaluate air pollution toxicity and determine the contribution of the
various components to the overall toxicity. When designed and interpreted using rigorous and
scientifically sound approaches, data from these methods have the potential to improve health risk
characterizations, resulting in regulatory action that more effectively protects public health.

1.2. Methods to Evaluate Air Pollution Health Impacts

There are many types of study designs that can be used to evaluate the health effects associated
with air pollutant exposure, including epidemiological, controlled human, animal, and in vitro-based
studies. A high-level overview of these study designs in air pollution research is discussed here.
An introduction to enhancing such air pollutant evaluations through the incorporation of alternative
methods, including in vitro (cell-based) models, is also discussed.

1.2.1. Epidemiological Studies in Air Pollution Research

The goal of environmental epidemiology research is to better understand relationships between
environmental factors and their potential impact on public health [12]. In general, these types of studies
use statistical methods to relate measures of environmental exposures to disease outcomes based on
observational data, rather than experimental data. Epidemiological studies on air pollution include (i)
short-term designs, in which air pollution episodes are associated with acute health outcomes; as well
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as (ii) long-term designs, in which chronic air pollution measures are associated with incidences of
both acute and chronic health outcomes [12]. These study designs have been used to characterize
associations between various air pollution exposure conditions and multiple disease outcomes.

A historical example of epidemiological research was conducted surrounding the 1952 London Fog,
one of the most referenced fog events in the twentieth century that led to the public’s understanding of
the dangers of air pollution [13]. In that instance, a study published two years after the event found
a relationship between the number of deaths per day and the rapid increases in sulfur dioxide and
smoke concentrations [14]. In terms of long-term effects, this study also found that the daily number
of deaths did not return to normal until about two weeks after the incident occurred [14]. Another
historical example surrounded the 1948 Donora Smog event in Pennsylvania, encompassing five days
of heavy smog resulting from poor implementation of smoke control measures [15]. Pollutant exposure
conditions were associated with increased rates of mortality due to cardiovascular disease, particularly
in subjects that had previous reports of heart or respiratory disease [15]. These historical examples,
among others, laid the foundation for the current breadth of epidemiological research supporting the
role of air pollution exposures in human health and disease. Epidemiological investigations in the
field of air pollution, to date, have been conducted using various study designs, study cohorts, climate
conditions, and air pollutant categories, and have been previously reviewed [16–19].

1.2.2. Controlled Human Studies in Air Pollution Research

In some instances, human volunteers can be used to evaluate the health impacts of select air
pollutants. This has been done, for instance, in the evaluation of diesel exhaust particles [20] and ozone
using controlled human exposure chambers [21,22]. These study designs typically involve humans that
are exposed to controlled single pollutants or pollutant mixtures either for short one-time durations or
repeat conditions that would induce transient adverse effects that pose no long-term damage. Endpoints
that are typically evaluated include general health symptoms, physical examination results, pulmonary
function test results, and electrocardiographic indices. More molecular/cellular/chemical-based
endpoints can also be evaluated using collected biological samples, which can include breath condensate,
blood, urine, sputum, and bronchoscopy samples (e.g., bronchial brushing, bronchoalveolar lavage
fluid, and/or endobronchial biopsy) [20]. Obtaining data from humans exposed in such controlled
environments is advantageous since accurate characterization of exposure conditions and health
responses in humans can be used for comparison and validation of data obtained from animal studies.
Though it is important to consider that these types of studies are resource-intensive, require institutional
review board approval, and have inherently complex ethical considerations.

1.2.3. Animal Studies in Air Pollution Research

The toxicological effects caused by air pollutant exposures can be evaluated in more controlled
environments through the use of animal testing. Rats and mice are the most common model, though
other animals such as nonhuman primates, dogs, and rabbits have also been used to evaluate air
pollution toxicity [23]. Air pollutant exposures can be conducted in animals using acute, subchronic,
and chronic study designs. Acute designs can involve for example, a single day exposure, two-day
exposures, or daily exposures that span 5–7 days/week across ≤14 days. Subchronic designs consist
of similar daily exposures, but are maintained for up to 90–180 days; and chronic designs span
between 180 days to two years [23,24]. Many types of toxicological outcomes can be observed from
animal studies, including overall mortality and gross abnormalities, organ and tissue-level effects, and
molecular-level effects.

There are several types of dosing routes in which animals can be exposed to gaseous or
PM-based pollutants in a laboratory setting. These routes include gavage, aspiration, instillation, and
inhalation [25]. Oral gavage represents a route in which chemical substances are administered to
animals using a small plastic feeding tube passed through the nose or mouth and into the stomach [26].
Aspiration and instillation exposure routes are similar in that they involve the introduction of
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substances to the throat. Aspiration involves the introduction of substances into the region of the
pharynx whereas instillation requires substances to be introduced directly into the trachea [27,28].
These methods have become widely used as they allow for greater control over dosage and location
compared to other exposure routes, such as inhalation, though these routes have certain limitations.
For example, aspiration/instillation exposure designs can omit certain chemical groups and may
introduce differences in chemical deposition in comparison to inhalation exposure designs. These
approaches remain common routes of exposure used to test air pollutant toxicity [29–31] due to
many advantages, including increased feasibility of collecting and evaluating various test atmosphere
samples, the ability to more fully characterize chemical composition of the sample, and increased
feasibility of in vivo testing to provide reproducible results.

Exposing animals via inhalation represents another route commonly used in the in vivo testing
of air pollutants, and can occur using whole body, head only, or nose only designs. Whole-body
inhalation designs allow for potentially large numbers of animals to be exposed either simultaneously
or separately, wherein animals are not restrained or anesthetized during exposure [24]. Limitations
surrounding whole body inhalation designs include the potential for highly variable dosing across
animals and competing exposure routes (e.g., dermal and ocular exposures) [24]. Head- or nose-only
inhalation designs allow for repeat exposure conditions that are more consistent across animals, though
may introduce stress as animals are restrained [24]. An advantage to using the inhalation exposure
route is that these conditions reflect those that occur when inhaling air pollutants.

In general, there are advantages and limitations to using animals in the testing of air pollutant
toxicity. A notable advantage is the ability to incorporate many types of controlled models. For example,
genetically modified models can be used to evaluate disease mechanisms and potential interindividual
disease susceptibility. Other exposure models can include models of disease (e.g., asthma) and models
at critical periods of development (e.g., in utero) [32–34]. Additionally, animal models have the inherent
advantage of providing the opportunity to evaluate potential systemic effects (e.g., cardiovascular
toxicity) as well as other toxicity responses throughout multiple organs of the body [23,24]. Potential
limitations in using animal models include physiological and genetic differences between animals
and humans, which can impact air pollutant dosimetry and associated toxicity [35–37]. Animal study
exposures can also require large amounts of time and resources [38] and require important ethical
considerations [39]. Animal models have historically been used as the standard in toxicological
assessments of air pollutants; though much attention has been placed on reducing reliance upon animal
testing in recent years [40,41].

1.2.4. New Approach Methods in Air Pollution Research

To address the increasing need to implement more efficient toxicity screening of air pollutants,
new approach methods (NAMs) are being expanded upon and represent an area within inhalation
exposure and toxicity research that is rapidly growing. The term “NAMs” represents a relatively
new research classification that was introduced within the past five years, with definitions expanding
to broadly include new experimental and computational approaches that can more rapidly inform
chemical risk assessments [42–44]. NAMs; therefore, include in vitro models, which often require less
time and resources to screen chemicals for toxicity. This is particularly important for air pollutant
research, as many airborne chemicals and mixtures are currently lacking data required for hazard
assessment. A few reviews have been published previously on the topic of in vitro models in
inhalation toxicology [45,46], including some that were recently published [47,48]. Here, we contribute
to this expanding body of literature by reviewing critical elements of study design to incorporate
when planning and executing in vitro methods in air pollution research, with the ultimate goal of
incorporating these NAMs into chemical hazard and risk assessment applications.
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1.3. Purpose of the Current Review

The specific aim of this review is to outline important design parameters to consider when using
in vitro methods to evaluate air pollutant toxicity, with the goal of ultimately providing increased
accuracy, reproducibility, and effectiveness when incorporating in vitro data into human health and
chemical risk assessments. Updated resources are currently limited for scientists designing experiments
using in vitro methods to evaluate air pollution toxicity. This review uniquely addresses this resource
gap by covering aspects of experimental design and “lessons learned” from the authors’ first-hand
experiences, as well as issues raised within the published literature. Current data gaps and limitations
surrounding experimental, biological, and computational aspects are also discussed. The current
review therefore serves as an important resource for toxicologists, exposure scientists, and risk assessors
that are interpreting findings from published inhalation toxicology studies, as well as planning future
experimentation to more accurately and efficiently evaluate air pollutant-induced toxicity.

2. In Vitro Study Design Considerations

When designing an in vitro study to evaluate air pollutant toxicity, it is important to carefully
consider experimental aspects that will play large roles in data accuracy and reproducibility. It is also
advantageous to maximize the value of any in vitro-derived results by ensuring the translatability of
findings into the context of in vivo toxicology and overall chemical safety evaluations. With these goals
in mind, critical design aspects are reviewed here and include cell models, cell exposure conditions,
exposure chambers, and toxicity endpoints.

2.1. Cell Models

Many types of cell models can be used to evaluate air pollution toxicity. Models include various
monoculture cell lines, cells from human donors, including those with underlying diseases, and other
emerging models that are currently being integrated into air pollution studies. As reviewed here,
each model has inherent advantages and disadvantages (Table 1); though when used with potential
limitations in mind, can impart valuable information towards understanding the toxicity resulting
from air pollutant exposures.

Table 1. Overview of cell models available for air pollution toxicology studies. Example model
categories are listed alongside advantages and disadvantages towards the evaluation of toxicity
associated with air pollutant exposures.

Cell Model
Category Advantages Disadvantages

Monoculture
cell lines

- Easy to grow and maintain
- Inexpensive
- Amenable to high-throughput screening
- Reproducible toxicity responses
- High viability in comparison to other models
- Available for different cell types present in the

respiratory tract
- Availability/standardization allows for

comparison of results among different groups

- From one donor, which does not
account for population
response variability

- In cancer/transformed cell lines, genetic
and epigenetic profiles differ from
non-cancer cells

- Depending on cell line, limited
representation of an in vivo
epithelial barrier

- Findings are limited to one cell type



Int. J. Environ. Res. Public Health 2020, 17, 2124 6 of 28

Table 1. Cont.

Cell Model
Category Advantages Disadvantages

Cells from
human donors

- Allows for evaluation of specific subpopulation
of interest (e.g., age, disease, sex, etc.)

- Allows for identification of cell populations
with increased susceptibility to adverse effects

- Improved physiological relevance
- Evaluation of responses across multiple

cell types
- Can be maintained in culture for weeks/months

at a time
- Can be used for repeated exposures to simulate

chronic conditions

- Expensive
- Requires more advanced cell

culture capabilities
- Time and resource intensive to process

and maintain cell culture
- Difficult to determine which cell type

drives observed toxicity

Lung-on-a-chip

- Improved physiological relevance due to
potential cell-to-cell communications

- Continuous replenishment of nutrients and
removal of waste

- Can model influence of circulating
immune cells

- Includes physical and mechanical properties
involved in in vivo pulmonary functions

- Can allow for organ-crosstalk
(e.g., body-on-a-chip)

- Difficulties surrounding ease of use
- Expensive
- More chronic exposures are currently

difficult due to viability considerations
- Technologies are more recently

developed and may require
further testing

- Insufficient biological material for
downstream analyses

2.1.1. Monoculture Cell Lines

The types of cells that are commonly used in air pollution research largely consist of cells derived
from the respiratory system. Cell line selections for inhalation toxicology research have previously been
summarized and reviewed [49]; and as such, this section provides a high-level overview of pertinent
cell lines. Some of the most widely used immortalized cell lines represent those that are derived from
human tumors or transformed from normal primary cells. A widely used cell line derived from a
human tumor is the A549 cell line, derived from adenocarcinomic alveolar basal epithelial cells. A549
cells are still commonly used in air pollution toxicity studies, as they are easy to grow and maintain,
provide toxicity results that are reproducible, and can remain viable in conditions that may cause
cytotoxicity in other more sensitive cell lines (e.g., field site studies). Furthermore, A549 cells have
important characteristics that parallel the in vivo airway epithelial lining, including their ability to
mimic airways surface tension by secreting surfactant [50]. For these reasons, A549 cells have been
used to evaluate toxicity resulting from exposure to a multitude of pollutants specifically including
1,3-butadiene [6], formaldehyde [51], ozone [52], and complex atmospheric mixtures [7,53]. A549
cells have also notably been used in high-throughput screening initiatives (e.g., ToxCast/Tox21) [54].
However, when using such a tumor-derived cell line to inform toxicity responses that occur in animals
or humans without cancer, it is important to remember that differences exist between cancer and
non-cancer cells. For example, it is well established that cancer cells can exhibit differences in genetic
sequences, epigenetic profiles, and other underlying molecular patterns in comparison to non-cancer
cells, which can impact the ways in which cells respond to toxicant exposures.

Additional examples of immortalized and/or transformed cells from the respiratory tract that are
also commonly used in the laboratory setting include human cells lines (e.g., BEAS-2B, Calu-3, and
16HBE14o-) as well as rodent cell lines (e.g., LA-4 and MHS), among others. For example, the BEAS-2B
cell line consists of immortalized human bronchial epithelial cells that have been infected with an
SV40/adenovirus 12 hybrid and cloned. These cells can differentiate into squamous cells in response to
certain substances, which make them amenable for screening chemicals that may induce or affect cell
differentiation processes potentially relevant to carcinogenesis [55]. Studies using BEAS-2B cells have
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identified alterations in cell differentiation signaling in response to PM2.5 [56], indoor molds [57], and
diesel exhaust particles [58].

When deciding which cell type to use in an in vitro study design, it is important to consider the
advantages and limitations surrounding cancer vs. primary cell lines, as well as the applicability of the
respiratory region in which the cells were derived. As mentioned above, cancer cells lines are more
robust and can therefore be more amenable to varying exposure conditions; and transformed cell lines
can be more indicative of responses from healthy individuals [49]. Furthermore, the region of the
respiratory tract in which the cells were derived is important to consider. It may be more applicable
to use cells from the upper respiratory tract (e.g., nasal, pharynx, and larynx cells) when evaluating
air pollutants that are more volatile and are mostly absorbed within the upper respiratory tract after
inhalation [59,60]. Conversely, cells from the lower respiratory tract (e.g., tracheal, bronchial, and
alveolar cells) may be more suitable for evaluating air pollutants that are less volatile and reach the
lower respiratory region [61]. Other cells involved in respiratory tract signaling, including immune
cell populations, such as macrophages, can also be used to evaluate potential responses in immune
signaling relevant to air pollution [49]. For example, the RAW264.7 is a commonly used macrophage cell
line that has been employed to demonstrate the inflammatory effects of air pollution on macrophages
in vitro [62–64]. When properly designed, monoculture techniques can contribute valuable information
surrounding potential toxicity and disease mechanisms associated with air pollutant exposure.

2.1.2. Cells from Human Donors

Studies have leveraged the use of cells collected directly from human donors, including nasal and
bronchial epithelial cells, and lung macrophages [49,65,66]. Advantages of using cells collected from
humans include the ability to perform analyses on a specific subpopulation of interest. For example,
our research group has evaluated primary differentiated human nasal epithelial cells obtained from
volunteers, selecting according to different age groups (i.e., between the ages of 20–27 and 55+) [67].
These data provide insight for important age-associated differences between epithelial responses to
air pollutants [67]. Obtaining cells from human donors also allows for the identification of toxicity
responses and trends in disease susceptibility that may be dependent upon sex (i.e., sexually dimorphic).
For instance, increased expression of interleukin-6 (IL-6) and interleukin-8 (IL-8) have been found
in nasal epithelial cells derived from males exposed to ozone, while this trend was not apparent in
females [68]. A potential limitation surrounding the use of cells from human donors includes the
identification of study participants that meet specific study inclusion criteria at high enough enrollment
rates, ensuring study feasibility [67]. Cells from donors can also exhibit limited life spans in comparison
to cell lines [49].

To address potential limitations of human donor cultures, commercially available airway tissue
models have been developed. Examples of commercial airway tissue models that are currently used
in research include the MucilAir (Epithelix Corp., Geneva, Switzerland) and the EpiAirway (MatTek
Corp, Ashland, Massachusetts, USA) systems. Both the Mucilair and EpiAirway systems are 3D tissue
models reconstituted using primary human respiratory epithelial cells, spanning nasal, bronchial,
and/or tracheal cells [69,70]. They have been engineered to represent models of the human respiratory
tract with potentially increased biological relevance as they are prepared by collecting cells from
single or pooled donors that can vary in health status, ranging from healthy individuals to smokers to
individuals with disease pathologies (e.g., asthmatics, chronic obstructive pulmonary disease, etc.).
These cultures have been designed with improved physiological relevance as they consist of multiple
layers of cells organized using engineered support systems, such as physical scaffolds or bioreactors
that control nutrient and waste product exchange [71]. The cells are then cultured at an air–liquid
interface (ALI) and shipped “ready-to-use” to research laboratories. Previous studies have tested these
systems to evaluate mechanism of toxicity associated with air pollutant exposures [53,72,73].

More generally speaking, the accessibility and availability of the commercial airway tissue models
are important for in vitro studies because they can incorporate multiple cell types, and allow for the
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identification of toxicity responses across the respiratory system [74], which is not possible using
monocultures. However, when including multiple cell types in a study, it is important to consider
the varying baseline expression and toxicity response profiles that can be present across multiple cell
types [53,75,76]. These variable profiles can make it difficult to determine which cell type is inducing
specific biomarkers or other toxicity responses associated with air pollutants. Although human donor
cultures, such as MucilAir and EpiAirway models, are promising and allow for a broader analysis of
air pollutant exposure effects, more peer-reviewed studies comparing responses between these models
are necessary to expand our understanding of how these models can further inform the existing body
of evidence on air pollution toxicity. Our research group has recently assessed the biological response
variability in EpiAirway cells vs. A549 cells after ALI exposure to various air pollutants [53]. Results
showed that the EpiAirway model was more toxicologically resistant compared to A549 cells when
investigating changes in cell viability and cytokine secretion after exposure at the ALI [53]. These
initial comparative analyses demonstrate the need to further evaluate potential differences in model
sensitivity that are important to understand when designing and implementing in vitro screening of
air pollutants.

2.1.3. Lung-On-A-Chip Models

Lung-on-a-chip represents an emerging model that can be used in the evaluation of air pollution
toxicity, which involves the culturing of respiratory epithelial cells on a flexible polymer scaffold
designed to more accurately recapitulate conditions in vivo [77]. This technology offers several
advantages over traditional in vitro models of lung. Common to other organ-on-a-chip technologies
are the use of microfluidics to simulate blood flow [77]. This allows the continuous replenishment of
nutrients and simultaneous removal of waste, unlike the standard, static culture media conditions
which accumulate nutrients and waste until the media is refreshed manually [78]. Lung-on-a-chip
often incorporates two compartments: one lined with endothelial cells purged with media and one
lined with respiratory epithelial cells and exposed to air, generating an ALI [79]. This model; therefore,
allows researchers to study more histopathologically-driven endpoints, such as pulmonary edema,
by quantifying vascular leakage [77], and asthma, by measuring goblet cell hyperplasia, cytokine
hypersecretion, and ciliary function [80].

Lung-on-a-chip scaffolding also provides researchers with the ability to exert mechanical forces,
such as stretching, to mimic the natural motions of a breathing lung [81]. The inclusion of these
mechanical properties contributes to increased accuracy in modeling in vivo conditions for the purposes
of hazard identification and risk evaluation. For instance, the addition of mechanical stress to simulate
breathing sensitizes alveolar epithelial cells to the toxic effects induced by silica nanoparticles and
Escherichia coli [81]. Breathing lung-on-a-chip models have also been used in conjunction with
other organs to form a body-on-a-chip [82]. As proposed, body-on-a-chip would link multiple
organ-on-a-chip models with a common microfluidics system to accurately recapitulate a complete
in vivo system [83,84]. A shared “circulatory system” would allow for the evaluation of multiple
influences, including route of exposure, pharmacokinetics, endocrine signaling, and organ interaction,
for toxicological assessments using one model [83,84]. In the study of air pollutants, for instance,
the entire system could be exposed by “breathing” the compound of interest, which passes through
the ALI across alveolar epithelial cells and interacts with the other organ systems through the shared
microfluidics. However, this task would be challenging when trying to couple the lung-on-a-chip to a
pollutant generation system, suggesting that more extensive research and development is currently
needed. The lung-on-a-chip model has also been combined with micro-optical coherence tomography
to quantitate cilia motion and mucociliary transport [85]. For chemical evaluation purposes, both
lung-on-a-chip and body-on-a-chip models allow for increased physiological relevance in comparison
to traditional in vitro techniques, while providing a more humane practice than those based on
in vivo designs.
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Lung-on-a-chip models are still being developed and improved upon and have certain
limitations [86,87]. For instance, employed lung-on-a-chip models are highly dependent upon
the types of cells that are seeded into the model itself; therefore, the aforementioned limitations inherent
in the cells translate to the chip model. Additionally, there are continued discussions surrounding the
accurate composition of artificial blood used in microfluidics. Further, these systems represent advances
in methods to parallel in vivo tissue organization; though full recapitulation of tissue organization
remains to be achieved through these approaches. Other limitations exist, particularly surrounding
ease-of-use; though, lung-on-a-chip designs may be incorporated with increased feasibility in the
upcoming years.

2.2. Cell Exposure Conditions

2.2.1. Exposures Using Submerged Conditions

Cells are often exposed within the in vitro setting through the use of submerged conditions,
wherein cells are exposed to chemicals of interest that have been dissolved in a liquid. Conventional
in vitro exposure studies of airborne pollutants, for example, involve the addition of PM or PM extracts
to the cell culture medium, or the bubbling of gases into the culture medium. Though with these study
designs, the physical and chemical characteristics of tested substances may be altered (e.g., particles
agglomerating or dissolving) when placed in solution, thus changing the exposure conditions that
would occur in the air. Dosing of cells attached under submerged conditions is beneficial when
individual chemicals are soluble in water or dimethyl sulfoxide (DMSO). This method becomes
problematic when the testing of insoluble chemicals is needed, as well as airborne particulates and
complex mixtures that vary in composition once dissolved in a liquid. Furthermore, the apical media
inherently in submerged cell cultures can alter the respiratory epithelial cell phenotype, expression of
critical genes, and barrier conditions for gases to contact the cells under evaluation [48]. Although
cell-based assays using submerged conditions can still impart useful information surrounding air
pollution toxicity, these limitations must be taken into account when designing and interpreting such
studies. More realistic cell exposure conditions that evaluate toxicity resulting from gases, vapors, and
aerosols incorporate ALI designs.

2.2.2. Exposures Using Air–Liquid Interface Conditions

If the main route of exposure in humans is via inhalation for the particular chemical or particle
of interest, then it is clearly advantageous to evaluate exposure effects in a similar fashion. It has
become widely accepted that exposing cells at the ALI is advantageous to simulate an inhalation
exposure [47,48]. Cells in the ALI condition are cultured on porous inserts that contain cell culture
medium in the basolateral side to maintain viable cells, while the apical side is directly exposed to the
air, permitting a direct exposure [88,89]. Cells exposed via ALI have demonstrated different toxicity
responses in comparison to those exposed via submerged conditions [90,91]. As an example, diesel
exhaust exposures have been found to induced greater inflammatory responses when conducted at
the ALI vs. submerged conditions, in which samples were collected on a filter and resuspended in
culture medium [92]. Although ALI exposures are used to better represent direct pollutant-to-cell
interactions and can be reasonably regarded as an effective in vitro surrogate for inhalation, these
studies are inherently more complex to carry out in comparison to traditional submerged conditions.
Exposing cells at the ALI requires the use of specialized in vitro exposure equipment, as detailed in the
next section.

2.3. ALI Exposure Chambers

Various ALI in vitro exposure systems have been developed by multiple research groups, and few
systems are currently available commercially. Some systems have been optimized for delivering either
gases or particles onto cells effectively. For particle delivery, various mechanisms such as diffusion,
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sedimentation, thermophoresis, and electrostatic precipitation have been incorporated into these
systems. Recent reviews have provided a summary of the existing ALI chamber systems and the state
of the science [88,93,94]. In brief, these exposure chamber systems can be grouped into three categories,
depending on the methods used to introduce air flow: (i) undirected flow, (ii) perpendicular flow, and
(iii) horizontal flow. Figure 1 illustrates a basic schematic for each of these different types of in vitro
chamber systems. Examples of these types of systems are described here, along with a discussion on
exposure parameters and test controls.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 10 of 28 
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Figure 1. Schematic of in vitro exposure chamber systems. (A) An undirected flow system is shown
with air circulating within the “box” housing a multi-well plate containing cells. (B) A perpendicular
flow system is illustrated with nozzles that direct the air flow directly over the cells. (C) A horizontal
flow system shows air flow moving across the cell culture inserts that are sitting below the flow path.

2.3.1. Undirected Flow

An undirected flow exposure system consists of a “box” where inserts are exposed to air that is
set-up to circulate both above and around the cells. Because the air flow is undirected, these exposure
chambers are typically used to expose cells to gaseous pollutants. This type of exposure system has
been used by government agencies, academic institutions, and research institutions. For example,
the U.S. Environmental Protection Agency (U.S. EPA) has used these types of systems since the early
1990s, consisting of incubator chambers that have been retrofitted to contain an isolated 28.3 L stainless
steel enclosure containing two perforated shelves to support up to eight tissue culture plates of any
format (i.e., six-, 12-, and 24-well). Air enters the chamber through a port on top at a flow rate of
20 L/min, and the air is randomly dispersed as it flows through the perforated shelves before exiting
at the bottom [95]. An example chamber system using undirected flow within the academic setting
was engineered at the University of North Carolina (UNC) at Chapel Hill and termed the Gas In Vitro
Exposure System (GIVES). Similar to U.S. EPA’s Incubator Chambers, the GIVES consists of an 8 L
chamber with a perforated platform. The inlet and outlet ports are located at the bottom and a flow
rate of 1 L/min is used [95]. Both the U.S. EPA’s Incubator Chambers and the UNC GIVES are dynamic
systems where the sampled air is flowing continuously.

Another example of an undirected flow system was generated at UNC-Chapel Hill for the purpose
of evaluating electronic cigarette (e-cig) exposures [96,97]. This system comprises a 17.8 × 17.6 ×
10.0 cm3 Plexiglas chamber with an inlet port for e-cig devices operated at conditions to mimic vaping.
A brushless fan within the chamber circulates the incoming puff, allowing high doses (0.25–1.0 mg/cm2)
to be delivered. Conversely, the Air–Liquid Interface Cell Exposure System (ALICE) System, produced
by the German Research Center for Environmental Health, is an example of a static system with
undirected flow that is used for aerosol delivery [98]. Here, a small box contains inserts at the bottom in
a heated platform, while an inlet port is located on top. The inlet port uses an aerosol cloud generator
(a pulse of air over a powder or liquid solution) to introduce an aerosol cloud that can deposit over the
cells due to gravitational settling of the cloud [98].
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2.3.2. Perpendicular Flow

In a perpendicular flow system, a nozzle guiding the air flow directly over the cells is placed
above each individual cell culture insert. Typically, the nozzle is positioned 1–5 mm above the cells.
By doing so, the incoming air flow travels in a downwards direction, perpendicular to the cell surface.
Two commercially available systems that use perpendicular flow are the Vitrocell Systems and the
CulTex Systems. In these systems, the flow rate is typically operated at 2–10 mL/min/well, depending
on the insert size [99]. These are dynamic systems that typically rely on diffusion and sedimentation
forces to regulate particle deposition onto the cells, while a few other models use electrostatics to
enhance this deposition. The Nano Aerosol Chamber for In Vitro Toxicity (NACIVT) is a similar
system that was developed mainly for nanoparticle exposures, where electrostatics are used to enhance
particle deposition [100]. In these systems, each individual cell culture insert is manually transferred
onto a custom well inside the exposure system. In an effort to miniaturize the U.S. EPA’s Incubator
Chambers, researchers have developed the Cell Culture Exposure System (CCES), which incorporates
a perpendicular flow design coupled with thermophoresis to enhance particle deposition [95]. This
system accommodates six- and 24-well plate formats which can be directly placed inside the system.
This eliminates the individual handling of the inserts and facilitates the addition and removal from the
exposure chamber. Similar to the CCES, the Fraunhofer Institute developed the ExpoCube system that
also incorporates thermophoresis-enhanced particle deposition, where a 12-well tissue culture plate
can be placed inside the system [101]. Other perpendicular flow systems focused on portability for
on-site field testing have also been developed [102,103].

2.3.3. Horizontal Flow

The horizontal flow system has been mainly used by the same family of chamber exposure
systems that use electrostatics to enhance deposition. In these systems, the air flow occurs horizontally
to the cells, with the culture insert positioned below the flow path. The cell culture inserts are
placed in the deposition region where they can be subjected to an electric field as particles flow over
the cells. An example system that includes this type of design is the Electrostatic Aerosol in Vitro
Exposure System (EAVES), originally developed at UNC-Chapel Hill and used to evaluate diesel
exhaust exposures [90]. The next iteration of this system was the modified-EAVES, which was used to
study coarse PM and combustion particles [91]. This device has been further expanded upon into the
development of the Gillings Sampler [104] and is now commercially available as the CelTox Sampler
(MedTec Biolab, Inc) [105]. These horizontal flow systems, among others, represent important methods
in which researchers can evaluate toxicity resulting from various air pollutant exposure conditions.

2.3.4. Particle Deposition Forces

Understanding particle aerodynamics is essential when determining which chamber exposure
system is the most appropriate for a particular study. Diffusion and sedimentation forces are natural
forces exerted on the particle that vary depending on the particle’s diameter. Systems that rely on
diffusion forces for particle deposition are appropriate when testing nano-sized (<100 nm) particles.
For these nano-sized particles, as the diameter of a particle decreases, its associated diffusion velocity
increases, resulting in increased deposition efficiency via diffusion [106]. Conversely, systems that
rely on sedimentation forces (gravitational settling) are adequate when testing micron-sized (>1 µm)
particles. For these micron-sized particles, the larger the particle diameter, the greater the gravitational
settling velocity, thus the greater the deposition efficiency via sedimentation [106]. While these natural
forces can be sufficient regulators of particle deposition in certain studies, poor performance is achieved
for particles between 100 nm and 1 µm when systems simply rely upon natural deposition forces.
In these instances, external forces can be used to enhance particle deposition. The use of thermophoresis
(thermal forces) can improve deposition of nano-sized particles whereby the thermal forces are more
dominant than diffusion and can help with particles slightly larger than 100 nm [107]. The use of
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electrostatic forces are applicable to all particle sizes, including PM2.5, an important range of particle
sizes with reported association to many adverse health effects and thus the focus of major air regulatory
guidelines [108,109].

2.3.5. Exposure Parameters and Test Controls

The use of ALI in vitro exposures for screening the toxicity of air pollutants is now widely
accepted as an effective in vitro surrogate for inhalation studies. As with any inhalation study in vivo,
a matched in vitro clean air exposure should be conducted alongside the pollutant exposure to have
a proper vehicle control for comparison. Additionally, a negative control is recommended whereby
a multi-well plate containing matched cells grown on membrane inserts remain unexposed in the
incubator. However, there is inconsistency in published research that prevents cross-study comparisons,
meta-analyses, and finding consensus due to the lack of exposure guidelines and evident variability in
how these systems are operated [99]. Even in the most basic parameter, such as the vehicle control, there
exists variability among studies. Clean, filtered air is the standard vehicle control for ALI studies, yet
studies have encountered issues in maintaining cell viability in samples exposed to clean air. To further
limit variability and increase confidence in the reported findings, it is recommended to optimize control
conditions in order to limit non-specific cytotoxicity resulting from clean air conditions. To achieve such
conditions, our group has shown that regulating temperature (37 ◦C) and relative humidity (>75%) of
the delivered air to the cells eliminates the cytotoxicity resulting from clean air exposures [99].

Within reported ALI exposure study designs, the methods and engineered exposure conditions
should be clearly stated to allow for accurate interpretation of resulting data. Important engineering
parameters to report include those that contribute towards determining adequate exposures and
effectiveness of dose delivery. These parameters include: (1) air flow per well, (2) total flow rate,
(3) temperature of the sampled air, (4) relative humidity of the sampled air, (5) the concentration in the
air entering the ALI chamber, and (6) the dose delivered to the ALI cultures. In addition, it is important
to describe the parameters of the pollutant generation system, the concentrations at the generation
source, and the pollutant physicochemical properties [99]. These experimental parameters represent
standard variables typically measured and reported in inhalation studies in vivo. By replicating
these standards in vitro, it becomes more feasible to translate in vitro findings into the context of
in vivo toxicology.

2.4. Toxicity Endpoints

The types of toxicity endpoints that can be incorporated into in vitro screening efforts surrounding
air pollution testing are ever increasing, in parallel with the growing number of technologies to
evaluate biological mechanisms linking exposures to disease outcomes. Some of the most commonly
incorporated toxicity endpoints are discussed here, and include measures of cell viability, gene-level
changes, protein-level changes, and epigenetic-level changes (Figure 2). These endpoints are obtained
using lab-based measures that are becoming increasingly reliant upon computational approaches for
effective interpretations, as technologies and measured read-outs are providing increased depth of
information at higher throughput [110–113].



Int. J. Environ. Res. Public Health 2020, 17, 2124 13 of 28Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 13 of 28 

 

 
Figure 2. Types of toxicity endpoints relevant to air pollution exposure that can be evaluated through 
the use of in vitro models. A generic in vitro exposure condition held at an air–liquid interface, as an 
example, is shown in the middle, with various categories of toxicity responses that can be measured. 
For more information, see details within this review described under the overall categories of cell 
viability, gene-level changes, protein-level changes, and epigenome-level changes. 

2.4.1. Cell Viability 

Cell viability (or cell death) is a critical measure of toxicity that is needed in all in vitro study 
designs for quality control. The methods currently available to evaluate cell viability leverage 
measurable properties, such as the ability to quantitate select proteins/enzymes that are directly 
proportional to the number of viable cells in a given sample. These protein/enzyme measures are 
evaluated within exposed and unexposed cells to identify potential changes in cell viability from 
baseline conditions, as well as the conditions being tested. Positive controls should be included 
within the experimental design to accurately calculate the total percentage of cells that remain viable 
or have died. In general, methods of detecting cell viability are important quality control measures 
that are necessary for in vitro studies and are amenable for inclusion in high-throughput screening 
assays to ensure study quality and interpretability across a large scale [114]. 

A commonly used viability assay within the field of in vitro air pollution research includes the 
lactate dehydrogenase (LDH) assay. This colorimetric assay measures the amount of LDH released 
into cell culture supernatants when plasma membranes are damaged and this measure is directly 
proportional to the number of dead or damaged cells [115]. Cell viability can also be estimated using 
assays that rely upon cellular metabolic activity and ATP formation, including the CellTiter-Glo 3D, 
Water-Soluble Tetrazolium Salts-1 (WST-1), 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium 
Bromide (MTT), and Adenylate Kinase assays [116–119]. Alternatively, the AlamarBlue assay uses 
fluorescence to measure the reducing capabilities of living cells to convert resazurin to the fluorescent 

Figure 2. Types of toxicity endpoints relevant to air pollution exposure that can be evaluated through
the use of in vitro models. A generic in vitro exposure condition held at an air–liquid interface, as an
example, is shown in the middle, with various categories of toxicity responses that can be measured.
For more information, see details within this review described under the overall categories of cell
viability, gene-level changes, protein-level changes, and epigenome-level changes.

2.4.1. Cell Viability

Cell viability (or cell death) is a critical measure of toxicity that is needed in all in vitro study designs
for quality control. The methods currently available to evaluate cell viability leverage measurable
properties, such as the ability to quantitate select proteins/enzymes that are directly proportional to
the number of viable cells in a given sample. These protein/enzyme measures are evaluated within
exposed and unexposed cells to identify potential changes in cell viability from baseline conditions,
as well as the conditions being tested. Positive controls should be included within the experimental
design to accurately calculate the total percentage of cells that remain viable or have died. In general,
methods of detecting cell viability are important quality control measures that are necessary for in vitro
studies and are amenable for inclusion in high-throughput screening assays to ensure study quality
and interpretability across a large scale [114].

A commonly used viability assay within the field of in vitro air pollution research includes the
lactate dehydrogenase (LDH) assay. This colorimetric assay measures the amount of LDH released
into cell culture supernatants when plasma membranes are damaged and this measure is directly
proportional to the number of dead or damaged cells [115]. Cell viability can also be estimated
using assays that rely upon cellular metabolic activity and ATP formation, including the CellTiter-Glo
3D, Water-Soluble Tetrazolium Salts-1 (WST-1), 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium
Bromide (MTT), and Adenylate Kinase assays [116–119]. Alternatively, the AlamarBlue assay uses
fluorescence to measure the reducing capabilities of living cells to convert resazurin to the fluorescent
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molecule, resorufin [120]. Similarly, in the Calcein AM cell viability assay, the Calcein AM permeates
live cells which then is converted into a green-fluorescent calcein due to hydrolysis by intracellular
esterases; and resulting stained cells can be quantified and correlated to cell viability [121]. There
are many examples of studies using these types of assays to screen for cytotoxicity in air pollutant
toxicity studies [4,6,7,51,53,122–125]. Consideration should be given to the use of these assays for
investigations involving PM, as particles from diesel exhaust and soot have been shown to interfere
with MTT and LDH signals at varying concentrations [126].

The Neutral Red Uptake assay is another type of test that detects the number of viable cells in a
culture through the uptake of neutral red dye. Viable cells incorporate the dye into their lysosomes
while non-viable cells do not carry out this dye-based incorporation [127]. The neutral red uptake assay
has served as an industry standard since it has been validated and accepted by regulatory agencies,
such as the Organisation of Economic Cooperation and Development (OECD) [128]. However, it is
important to consider potential limitations in this assay when interpreting results from these study
designs. For example, we have found that the neutral red dye can be absorbed by the porous membrane
inserts that are commonly used in ALI designs, and thus be detected in the presence of viable cells.
This can result in the false interpretation that cells are non-viable, when in actuality, cells are alive.
It is therefore important to take into consideration these potential assay-specific limitations when
interpreting findings from cytotoxicity assessments.

2.4.2. Gene-Level Changes

There are several toxicity-associated responses at the gene-level that can be evaluated within
in vitro air pollution studies, including those relevant to DNA damage (also known as genotoxicity)
and gene expression. DNA damage can lead to mutations and genome instability, which represent
common molecular events to evaluate when assessing the effects of chemical exposures using in vitro
models [113]. DNA damage can be evaluated using many assay-based methods such as the comet,
gamma H2A histone family member X (γ-H2AX), micronucleus (MN), and terminal deoxynucleotidyl
transferase (TdT) dUTP nick-ends labeling (TUNAL) assays [113]. As an example, Rossner et al.
analyzed DNA damage induced by gasoline engine emissions within BEAS-2B and the 3D MucilAir
cell systems treated at an ALI [73]. Authors found that double strand breaks were induced within
the BEAS-2B cells through use of the γ-H2AX assay [73]. A similar study found that engine emission
exposures increased MN frequency in BEAS-2B cells [129]. Such indicators of genotoxicity are important
to evaluate, as genotoxicity represents a potential key molecular event involved in chemical-induced
carcinogenesis and other disease phenotypes [130,131].

Gene expression-level changes also represent a commonly investigated endpoint that is amenable
to in vitro screening. Gene expression changes can directly result in protein expression changes,
which are important to evaluate given that proteins are the ultimate regulators of cell function and
overall health. Realtime quantitative reverse transcription PCR (qRT-PCR) is a common gene-specific
method for investigating transcriptional changes. High-throughput technologies such as cDNA
microarrays and RNA sequencing are also common platforms that are becoming increasingly utilized
for understanding impacts across the genome [110,113]. For instance, we compared the toxicity of two
different complex air pollutant mixtures representing those present within urban atmospheres using
transcriptomic approaches coupled with in vitro air chamber exposure systems [7]. Through these and
other studies, we have found that it is important to properly collect, lyse, and stabilize RNA from cell
samples immediately post-experimentation using reagents specifically suited for RNA stabilization
(e.g., TRIzol, RNAProtect, and similar reagents). These types of stabilizing reagents ensure that RNA
remain intact and at high enough concentration to allow for genome-wide transcriptional assessments.
Together, gene-level measures of toxicity are clearly important to evaluate in the context of air pollution
responses and can be used to obtain important information surrounding disease mechanisms.
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2.4.3. Protein-Level Changes

Proteins are complex molecules that play critical roles to support various biological processes
regulating cellular function, including those relevant to air pollution defense mechanisms and related
disease processes. Protein measurement techniques can be employed within in vitro study designs
by measuring activities/levels within and/or secreted outside the cells under evaluation. Within
the context of air pollution studies, proteins involved in inflammation and immune response are
commonly investigated. Example protein families that are highly relevant to these processes include
the following: cytokines and growth factors [e.g., C-X-C motif chemokine ligands (CXCLs), C-C motif
chemokine ligands (CCLs), interleukins (ILs), and tumor necrosis factor ligand superfamily members
(TNFSFs)], and transcription factors [e.g., aryl hydrocarbon receptor (AHR), hypoxia inducible factor 1
subunit alpha (HIF1A), interferon regulatory factor 1 and 7 (IRF1 and IRF7), nuclear factor kappa B
subunit 1 (NFκB1), and RELA proto-oncogene, NFκB subunit (RELA)], among others [132]. When
secreted by epithelial cells in the respiratory tract, inflammatory proteins act in cell communication
to recruit immune response cells (e.g., neutrophils) and other cells that respond to injury, such
as macrophages [133]. Other proteins involved in air pollution responses can also be measured,
including those involved in angiogenesis/vascularization, cancer, hormone regulation, oxidative stress,
metabolism, and tissue injury signaling.

There are several methods that can be implemented to measure the concentration or activity of
proteins within the context of in vitro studies. For example, studies have commonly employed Western
blot and enzyme-linked immunosorbent assay (ELISA) technologies to evaluate the concentrations
of proteins secreted intracellularly, as well as secreted during/after exposures into extracellular
compartments [7,53,134,135]. Additionally, multiplex protein detection platforms such as Luminex
allow the simultaneous quantification of multiple intra- or extracellular proteins to establish a
protein expression profile after toxicant exposure in vitro. This technology is useful to measure lung
inflammation as it can simultaneously quantify a panel of secreted cytokines [136]. In addition to
expression, the testing of protein function may also be relevant to inhalation exposure, for instance as
indicators of signal transduction or oxidative stress. As examples, enzymatic assays can be utilized
in vitro to measure kinases (MAPK, JNK), proteases (MMPs), oxidases (NOXs), and metabolic activities
(mitochondrial, CYP450s), among others, that may be altered after certain exposure conditions [137–140].

Careful considerations should be given to the use of ELISAs when exposing cells to combustion
and engineered particles. Previous studies have shown that carbonaceous particles and engineered
nanomaterials potentially interfere with the ELISA assay as the particles can absorb the proteins,
thus preventing or decreasing detection and quantification [141–143]. Proteomics is also a growing
research strategy which allows for the large-scale study of proteins, potentially resulting in the
increased understanding of functional protein networks that can be modified by environmental
exposures [110,113]. Proteomic studies within in vitro air pollution research remain limited; though
future research could apply these strategies to more comprehensively examine the consequences of air
pollution exposure conditions.

2.4.4. Epigenetic-Level Changes

Epigenetic modifications represent toxicological endpoints that are more recently becoming
integrated into air pollution health research. Epigenetic mechanisms influence the way in which
genes are expressed without changing the underlying DNA sequence [112]. There are three main
types of epigenetic modifications, namely, microRNAs (miRNAs), CpG methylation, and histone
modifications. miRNAs are small, non-coding RNAs approximately 17-24 nucleotides in length that
post-transcriptionally regulate the levels at which genes are expressed, either by directly binding to
target mRNA molecules, recruiting chromatin modifying enzymes to target genes, and/or recruiting
proteins to form ribonucleoprotein complexes [112]. CpG methylation represents the presence of
a methyl group on the cytosine of a CpG dinucleotide within DNA [144]. CpG methylation can
result in gene silencing through the attachment of methylation-sensitive DNA binding proteins and/or
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through interactions with certain histone protein modifications, decreasing access of transcriptional
machinery to gene promoter regions [144]. Histone modifications represent the addition or removal
of acetyl, methyl, or phosphoryl groups; ubiquitin; or small ubiquitin-like modifier proteins on
histone [112]. These types of modifications have been associated with both increased and decreased
expression of critical genes involved in disease progression [112]. Epigenetic modifications have the
potential to persist through cell replication and become heritable; as such, these changes are vital
towards understanding the potential long-term and multi-generational effects induced by toxicant
exposure [145].

Previous in vitro studies have employed methods that assess epigenetic-level changes associated
with air pollutant toxicity. As an example, our research group has used microarray techniques to
measure genome-wide miRNA expression profiles in relation to gaseous formaldehyde exposure in
human lung cells, identifying those involved in cancer and inflammatory processes [51]. We have also
employed gene-specific approaches using methylation qPCR assays to identify increased promoter
methylation of interferon regulatory factor 7 (IRF7) within nasal epithelial cells from smokers, which
was then linked to enhanced susceptibility to viral infection using in vitro models [146]. To further
understand the genome-wide landscape of CpG modifications associated with cigarette smoke, we
also employed Illumina Methylation BeadChip technologies to identify 390 genes with significantly
differential methylation between nasal epithelial cells from smokers vs. non-smokers, including an
expanded number of genes involved in antiviral responses [147]. Similar to the aforementioned
transcriptomic study designs, these studies highlighted the importance of adequate DNA/RNA
stabilization and isolation protocols. In study designs that result in isolated DNA/RNA samples with
high quality and purity, genome-wide epigenetic platforms can capture exposure-induced changes
with higher sensitivity and accuracy. Together, these approaches can clearly contribute to the increased
understanding of novel mechanisms underlying air pollutant-induced disease.

3. Placing In Vitro Findings in the Context of Animal and Human Exposure Conditions

Chemical risk evaluations have historically been reliant upon the use of data derived from in vivo
studies. In the field of air pollution research, these have encompassed data from both animal studies
as well as data from controlled exposure designs conducted in humans (e.g., ozone), in addition to
epidemiological evidence [148]. However, as detailed in Section 1, there are important limitations
surrounding these approaches, which have necessitated the increased reliance upon NAMs within
chemical risk assessments. As in vitro studies become increasingly more common, it is essential to
consider in parallel how these data relate to those produced from in vivo systems. Furthermore, it can
be beneficial to use data derived through in vitro testing to inform the efficient design of in vivo studies,
particular in terms of selecting dose, exposure duration, and target tissues to evaluate. Here we discuss
aspects that should be considered and understood when designing NAMs-based studies evaluating air
pollution toxicology, specifically focusing on experimental and computational-based methods to better
translate in vitro findings into in vivo toxicological understanding.

3.1. Experimental Methods to Compare In Vitro Findings to In Vivo Toxicology

It is of utmost importance to design and implement experimental methods that allow for the
production of in vitro-derived data that are amenable to informing in vivo-level toxicology for air
pollution assessments. To achieve such translational data, it is critical to provide consistency across
models of test subjects (e.g., cells, animals, humans) when generating test articles for inhalation
exposure as the primary route of administration. Some of these similarities include air exchange
rate, temperature, relative humidity, exposure generation, and analytical chemistry methods. Some
differences between in vitro vs. in vivo models and exposure systems will inevitably persist, and in
these instances, it is imperative to understand and account for these differences. For example, the route
of exposure administration often varies between study designs. Animals exposed via intratracheal
instillation or pharyngeal aspiration (intratracheal) do not always experience the same effective route
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as animals exposed via inhalation [149]. Additionally, previous studies have utilized direct liquid
instillation at the ALI for respiratory cell cultures as a surrogate for inhalation study designs [150].
In vitro designs that more closely parallel in vivo inhalation studies could include gaseous exposure
conditions at the ALI, as we have done previously [5,7,51,53,95].

A method to ensure consistency between routes of administration that we propose includes
the use of an exposure chamber that is independent of the test model. As illustrated in Figure 3,
such an exposure system would allow for either in vitro or in vivo model evaluation using the exact
same generation and delivery system. Such design minimizes variables for generation systems,
analytical monitoring, and delivery systems that allow for more direct comparisons between in vitro-
and in vivo-induced toxicological responses. For in vivo evaluations (comprising animal or human
subjects), this exposure system can include either whole-body or nose-only chambers. Whole-body
chambers are typically used for gases and vapors while aerosols use nose-only chambers to minimize
secondary routes of exposure through the gastrointestinal tract by animal grooming (OECD GD 39).
The parallel in vitro evaluations should operate under the same considerations used for in vivo systems
but with parameters controlled for the cells in an ALI environment. For example, the operating
parameters such as temperature and relative humidity must be controlled to physiological conditions
that also maintain cell viability (e.g., 37 ◦C and 75%–85% relative humidity). In addition, a reduced air
flow rate is required to eliminate cell desiccation, but with the caveat that analytical limitations will be
introduced [95,99].
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As an example, if we consider chamber airflow rate as an important parameter of inhalation
exposures, the comparison between a whole-body (in vivo) design to an in vitro exposure system is
dramatic. A typical 1 m3 inhalation chamber operates at 15 air changes per hour or 250 L/min. While
a typical in vitro direct perpendicular flow exposure system operates at ~10 mL/min per well (ALI)
or for a 24-well cell culture plate ~240 mL/min. This 1000-fold decrease in airflow rate limits many
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other operating parameters like maintaining relative humidity and quantitative analytical analysis
of the test article. Therefore, special humidification systems must be employed to maintain the cell
environment (75%–85% relative humidity) without causing condensation in the exposure system.
The need to provide quantitative analytical results of the actual exposure concentration at ALI is
much more difficult, especially for gases and vapors as typical monitoring instruments operating
flow rates used for inhalation chambers will not suffice at airflow rates of 240 mL/min for in vitro
exposure systems. There are many solutions to address these in vitro exposure issues but as with
in vivo inhalation exposure systems, characterization and qualification of the exposure system must be
conducted [151].

3.2. Computational In Vitro-To-In Vivo Extrapolation Modeling

The extrapolation of experimental evidence for suitability in human health assessments represents
an important aspect of chemical risk evaluation that is of growing interest due to ethical and resource
considerations [152–155]. As discussed previously, traditional toxicology testing methods often
involve extrapolation across species and routes. Similar challenges are posed in extrapolating
from in vitro testing data to in vivo conditions. Computational-based in vitro-in vivo extrapolation
(IVIVE) is necessary despite the potential for using human—rather than animal—biological material
in vitro [156,157]. In fact, the National Academies of Sciences, Engineering, and Medicine, as well
as many others, have described a “parallelogram approach” in which IVIVE and animal-to-human
extrapolation are considered as comparable approaches [158]. Within the parallelogram approach, the
four categories of data that make up the “corners” include: (i) “human, in vivo”, (ii) “human, in vitro”,
(iii) “animal, in vivo”, and (iv) “animal, in vitro.” Extrapolation is needed to translate data from one
“corner” to any of the others. Interestingly, one of the best ways to learn about IVIVE for humans
has been to perform it for animals, since in some cases it is easier to obtain both in vitro and in vivo
measures of animal toxicity as opposed to human toxicity [159–162].

IVIVE can be sub-divided into the extrapolation of in vitro data towards mechanism of action
applications, based upon the interpretation of bioactivity (i.e., toxico- or pharmaco-dynamics); and the
extrapolation of in vitro data towards toxico- or pharmacokinetics applications, which inform processes
of absorption, distribution, metabolism, and excretion (ADME) of a chemical by the body [156,163].
For volatile compounds, both dynamics and kinetics in vitro can be confounded if not properly
accounted for. For example, high-throughput testing designs often make use of multi-well plates for
the testing of multiple chemicals per plate that are typically not sealed, allowing volatile chemicals
to not only escape a test well (therefore reducing effective concentration) but also to contaminate
nearby wells [164–166]. However, given appropriate handling, in vitro data can be very useful for
informing in vivo predictions: Quick and Shuler (1999) demonstrated a predictive toxicokinetic model
for the volatile compound naphthalene that could be constructed using in vitro data on rate constants
for metabolic kinetics [167]. This approach was generalized by Jongeneelen and Ten Berge (2010) to
construct a chemical-agnostic (“generic”) physiologically-based toxicokinetic (PBTK) model for a range
of volatile substances for which metabolic rate constants could be characterized in vitro [168]. Models
for kinetic aspects such as dermal evaporation were included by these researchers based purely on
physicochemical properties.

To date, in vitro measures of toxicokinetics for volatile compounds have not been included in
chemical risk prioritizations [163,169,170] because both bioactivity and kinetic data cannot be obtained
using the same methods as previously implemented for the non-volatile and semi-volatile compounds
that make up the majority of high-throughput screening libraries [164,171]. The development of a
generic PBTK modeling framework that can concurrently handle higher throughput data on semi- and
non-volatile chemicals with lower throughput data on volatile chemicals would enable comparison of
chemical risk rankings across these diverse chemistries. Such approaches could more effectively link
in vitro data from air pollution toxicity tests to chemical risk evaluations.
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3.3. Current Limitations and Future Directions

This review highlights that the field of in vitro toxicology within air pollution studies is rapidly
growing to meet the current demands of twenty-first century exposure science and toxicology. Alongside
this growth, there remain some important limitations and data gaps that should be addressed in
future research efforts. These data gaps were discussed throughout the current review and include
those relevant to instrumental/experimental limitations and capabilities to extrapolate in vitro-derived
findings into in vivo-level outcomes. Experimental methods are clearly being expanded upon to more
adequately test air pollutant toxicity through the use of several types of in vitro models, as well as
advancements in experimental designs to allow for more effective IVIVE. Chemical exposure conditions
that have been used to evaluate air pollution toxicity in vitro have historically been limited when testing
complex mixtures of volatiles and PM that are more representative of real-world exposure conditions.
An additional limitation when evaluating toxicity endpoints using in vitro screening methods is the
amount of sample that can be collected within the employed plate designs (e.g., 6-, 12-, 24-, 96-, and
384-well plates). These designs typically yield smaller amounts of DNA/RNA/protein in comparison
to full cell culture flasks or tissue samples collected in vivo. However, advances in biotechnologies
are allowing for improved sensitivity with smaller sample requirements to extract biological data
with increased efficiency. Computationally, generic PBTK modeling frameworks within the field of
inhalation toxicology would prove beneficial towards increasing our understanding surrounding the
dosimetry of larger numbers of chemicals present in air pollution. These current limitations and data
gaps should be addressed as this field of research continues to expand.

4. Conclusions

In conclusion, there is clear interest towards increasing reliance upon in vitro screening within air
pollution toxicity and risk assessment evaluations. This review provides a timely discussion on the
expanding in vitro approaches that can be implemented to evaluate toxicity resulting from various air
pollutant exposure conditions. Critical aspects of experimental design and data interpretation that are
highlighted include cell models, cell exposure conditions, exposure chambers, and toxicity endpoints.
The integration of in vitro findings into informing in vivo toxicology and overall human health risk
assessment is also discussed in the context of IVIVE and other extrapolation approaches. Though this
field has expanded in recent years, there remain data gaps and future research directions that can be
addressed with the goal of maximizing testing efficiency and data utility from such experimental efforts.
Taken together, this review summarizes important aspects to consider when designing, conducting,
and interpreting NAMs within the field of air pollution research.
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