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Abstract

In tissue engineering, an ideal scaffold attracts and supports cells thus providing them with

the necessary mechanical support and architecture as they reconstruct new tissue in vitro

and in vivo. This manuscript details a novel matrix derived from decellularized Wharton’s

jelly (WJ) obtained from human umbilical cord for use as a scaffold for tissue engineering

application. This decellularized Wharton’s jelly matrix (DWJM) contained 0.66 ± 0.12 μg/mg

sulfated glycosaminoglycans (GAGs), and was abundant in hyaluronic acid, and completely

devoid of cells. Mass spectroscopy revealed the presence of collagen types II, VI and XII,

fibronectin-I, and lumican I. When seeded onto DWJM, WJ mesenchymal stem cells

(WJMSCs), successfully attached to, and penetrated the porous matrix resulting in a slower

rate of cell proliferation. Gene expression analysis of WJ and bone marrow (BM) MSCs cul-

tured on DWJM demonstrated decreased expression of proliferation genes with no clear

pattern of differentiation. When this matrix was implanted into a murine calvarial defect

model with, green fluorescent protein (GFP) labeled osteocytes, the osteocytes were

observed to migrate into the matrix as early as 24 hours. They were also identified in the

matrix up to 14 days after transplantation. Together with these findings, we conclude that

DWJM can be used as a 3D porous, bioactive and biocompatible scaffold for tissue engi-

neering and regenerative medicine applications.
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1. Introduction

Disease or trauma to the human body leads to damage and degeneration of tissues, thereby

requiring their repair, replacement or regeneration. Tissue regeneration requires an optimal

combination of cells, scaffolds, appropriate media and growth factors. The properties of an

ideal scaffold for tissue regeneration are high porosity, biocompatibility, biodegradability and

mechanical properties consistent with and suitable to the location of implant [1]. Current

treatment options for tissue regeneration involve the use of autografts or allografts. Neverthe-

less, autografts can be difficult to obtain due to expensive and painful procedures, while allo-

grafts pose the risk of infection and immune rejection. Several types of scaffolds from natural

or synthetic sources (polymers, ceramics, and composites) have been developed for tissue

regeneration over the years [1]. Since, such scaffolding is associated with material-specific lim-

itations, there is growing interest in the use of biocompatible, natural bioactives, or synthetic

materials as alternatives. [2–8].

Wharton’s jelly (WJ), is a firm mucoid connective tissue surrounding umbilical cord vessels

[9], possessing many unique biochemical characteristics required for a scaffold. Mesenchymal

stem cells (MSCs) are derived from WJ and immersed in ground substance that is rich in colla-

gen, hyaluronan, and also containing numerous sulfated glycosaminoglycans (GAGs) [9].

MSCs widely express the archetypal hyaluronan receptor, CD44, also expressed on osteocytes,

chondrocytes, and hematopoietic marrow cells [10]. WJ is a rich source of peptide growth fac-

tors, notably insulin-like growth factor-1 (IGF-1) and to a lesser extent platelet-derived growth

factor (PDGF), [11] both of which are linked to controlling cell proliferation, differentiation,

synthesis and remodeling of the extracellular matrix [12].

This work is based on a hypothesis that customized cell removal procedures can effectively

process WJ to produce a decellularized, bioactive Wharton’s jelly matrix (DWJM). We also

postulated that DWJM would provide a 3D environment specifically well suited to support

undifferentiated mesenchymal cell culture. This paper details the decellularization processes

used to obtain this matrix, in addition to its characterization and analysis of its structural con-

tents. Here, we also demonstrate that WJ and bone marrow MSCs (BMMSCs) can be seeded

and cultured in vitro upon this matrix. We further studied the gene expression profiles of these

MSCs when seeded on our 3D scaffold, and also assessed the biocompatibility of our matrix in
vivo using a murine bone defect model.

2. Materials and methods

Human umbilical cord collection, WJMSCs and WJ tissue harvest followed by decellularization

were performed in accordance with the approved University of Kansas Medical Center’s Insti-

tutional Review Board protocol # HSC 12129 (title—Decellularization of umbilical cord Whar-

ton’s jelly for tissue regenerative applications including avascular necrosis) at the University of

Kansas Medical Center. Consents were collected from donors by obtaining their written signa-

tures on the approved informed consent form. Umbilical cords were immediately collected

from consented mothers with full-term pregnancy after normal vaginal delivery. The umbilical

cord was placed in a transport solution made of Lactated Ringer’s solution supplemented with

penicillin 800 U/mL (Sigma-Aldrich, St. Louis, MO), streptomycin 9.1 mg/mL (Sigma-Aldrich),

and amphotericin 0.25 mg/mL (Sigma-Aldrich) and immediately refrigerated at 4˚C. The decel-

lularization process was initiated within 72 hours of umbilical cord collection.

2.1 Decellularization process

The decellularization procedure has recently been described in our earlier publication [13].

Briefly, fresh human umbilical cords were transported from the delivery room in a transport
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solution at 4˚C. Umbilical cords were dissected in a laminar flow safety cabinet, by separating

the matrix into large oval pieces away from the surrounding membranes and vascular struc-

tures. They were then subjected to two cycles of osmotic shock, alternating with a hypertonic

salt solution containing sodium chloride, mannitol, magnesium chloride, and potassium chlo-

ride with an osmolarity of approximately 1,275 mOsm/L, and against a hypotonic solution of

0.005% Triton X-100 in ddH2O centrifuged at 5,000 rpm at 4˚C.

After two cycles of osmotic shock, the tissues were subjected to an anionic detergent

(sodium lauryl) and, sodium succinate (Sigma L5777), then switching to a recombinant

nucleic acid enzyme, (Benzonase™) in buffered (Tris HCl) water for 16 hours. Following this,

an organic solvent extraction with 40% ethyl alcohol was performed for 10 minutes at 5,000

rpm in the centrifuge at 4˚C. All of the detergent and other processing residuals were then

bound and removed utilizing ion exchange beads (iwt-tmd (Sigma), XAD-16 Amberlite beads

(Sigma), and Dowel Monosphere 550A UPW beads (Supelco)) in a reciprocating flow-through

glass system at room temperature in ddH2O for 30 hours. The decellularized matrix was cryo-

preserved using 10% human recombinant albumin (Novozymes) and 10% DMSO (Sigma)

solution in standard RPMI media, employing a material-specific computer controlled freezing

profile developed to freeze at -1˚C/minute to -180˚C [14].

2.2 Isolation, expansion, and WJMSCs seeding onto DWJM

a. Preparation of DWJM for seeding with WJMSCs. Freshly obtained fragments of

DWJM were transferred to a large petri dish and covered with phosphate buffered saline

(PBS). DWJM pieces (5–7 mm in diameter) were obtained using a sterile 5–7 mm skin punch

biopsy kit. The resulting DWJM pieces were cylindrical in shape and with non-uniform

heights varying between 2–3 mm. DWJM scaffold volume obtained was approximately 72

mm3. From this point on, these pieces of DWJM will be referred to as “DWJM scaffolds”.

DWJM scaffolds were transferred using sterile forceps to a large petri dish and washed twice

with PBS then transferred to non-tissue culture treated plates at the time of seeding.

b. MSC isolation and expansion.

i. WJMSCs—WJMSCs were isolated and expanded according to the procedures described

by Wang et al [15]. Briefly, the outer layer of the cord was carefully removed and the cord was

cut into smaller segments. The blood vessels were dissected from these cord segments and

then cut into smaller pieces and digested with Collagenases (Worthington Biochemical Corpo-

ration, Lakewood, NJ) in low glucose Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-

Aldrich) with 10% Fetal Bovine Serum (FBS) (Atlanta Biologics, Atlanta, GA) and 1% penicil-

lin/streptomycin (Sigma-Aldrich) overnight at 37˚C to obtain WJMSCs. The WJMSCs were

passaged and maintained in this low glucose DMEM-10% FBS-1% penicillin/streptomycin

medium with passages 4–9 being used for the following experiments.

ii. BMMSCs—BMMSCs were isolated from bone marrow aspirates of healthy consented

donors at University of Kansas Medical Center (HSC # 5929). The cells were isolated following

standard ficoll density gradient separation method (Lymphoprep, Stem Cell Technologies,

Vancouver, BC). The isolated cells were maintained in high glucose DMEM (Sigma-Aldrich),

20% FBS (Atlanta Biologics) and 1% penicillin/streptomycin (Sigma-Aldrich) at 37˚C, under

5% CO2 and 90% humidity.

c. MSC characterization and phenotyping. The MACS Miltenyi Biotec MSC human

phenotyping kit was used to characterize the expanded WJMSCs and BMMSCs, and analyzed

by BD Flow Cytometer LSR2 (Beckton Dickinson). MSCs isolated from human umbilical cord

and bone marrows were stained for CD14, CD20, CD34, CD45, CD73, CD90 and CD105.

DWJM as a 3D biocompatible scaffold
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d. MSC seeding onto DWJM. For each set of seeding experiments, Single-donor (n = 1)

WJMSCs or BMMSCs were used. 1 x 106 MSCs suspended in 50-μL culture medium were

seeded on each DWJM scaffold (average seeding density 1.4 x 104–4 x 104/mm3 per DWJM

scaffold) in a 48-well plate, followed by addition 1 mL of culture medium per well.

For the gene expression studies, 0.25 x 106–1 x 106 WJMSCs or BMMSCs from passages

4–9 were seeded on DWJM in a 24-well non tissue culture treated plate (Corning Inc., Corn-

ing, NY) for 4 to 7 days and cultured in their respective media.

2.3 Characterization of DWJM

a. DNA quantification. DNA in the samples was isolated using the Qiagen DNeasy Blood

and Tissue Kit (Dusseldorf, Germany) according to the manufacturer’s instructions. Pico

Green dye (Molecular Probes, Eugene, OR) was used as a label and the extracted DNA quanti-

fied fluorometrically using Quant-iT dsDNA HS (high sensitivity) Kit (Invitrogen, Carlsbad,

California). The amount of extractable DNA was calculated as wet weight tissue and expressed

as a percent reduction in extractable DNA relative to that for non- decellularized tissue. All

analyses were run in triplicate.

b. Glycosaminoglycan’s (GAGs) content analysis. The Blyscan assay (Biocolor Life Sci-

ences, UK) was used according to the manufacturer’s instructions for analysis of sulfated gly-

cosaminoglycan content. Tissue samples from native umbilical cord WJ and DWJM were

analyzed and the results were reported as μg/mg of glycosaminoglycan per wet tissue weight.

c. Protein identification by mass spectrometry. DWJM samples from two different

umbilical cords samples were analyzed following two methods of protein extraction. For the

first method, DWJM was snap-frozen using liquid nitrogen, tissue homogenized, and sus-

pended in WJMSC culture medium as described above.

The second method used the Ready Prep Protein Extraction Kit with zwitterion detergent

ASB-14 as a solubilizing agent (Bio-Rad Laboratories, Inc., Hercules, CA). This step was fol-

lowed by a cleanup step to free the proteins of ionic contaminants by selective precipitation

of detergents, lipids using Ready Prep 2-D Cleanup Kit (Bio-Rad Laboratories, Inc., Hercu-

les, CA). The protein pool present in the extracts was denatured in 6M guanidine hydro-

chloride, reduced, alkylated, and subsequently digested for 18 h with sequencing grade

trypsin (12 ng/L, Promega, Madison, WI) at 37˚C. Following enzymatic digestion, the

extracted peptides were concentrated to a final volume of 50 μL on a Centrivac Concentra-

tor (Labconco, Kansas City, MO). The peptide extracts were analyzed by reversed phase

chromatography using a 2D NanoLC HPLC (Eksigent Technologies, Dublin, CA) coupled

to a Linear Thermo Electron Quadripole Electron Trap—Fourier Transformation (LTQ FT)

mass spectrometer (Thermo Fisher Scientific, Waltham, MA). The mass spectrometer was

controlled by the Xcalibur software to perform continuous mass scan on the FT in the range

of 400–1900 m/z at 50,000 resolutions, followed by MS/MS scans on the ion trap of the six

most intense ions. All tandem mass scans were searched using the Proteome Discoverer

(version 1.3, Thermo Fisher) against a human protein database using trypsin cleavage speci-

ficity, with a maximum of 2 missed cleavages. The following variable modifications were

selected: oxidation of M (methionine), deamidation of N (asparagine), and Q (glutamine),

and carboxymethylation of C (cysteine) selected as fixed modifications, with a maximum of

4 modifications/peptides allowed. Estimation of false discovery rate (FDR) was conducted

by searching all spectra against a decoy database. For protein identification an FDR >1%

(high confidence) was defined for all peptides of interest, which were subsequently reviewed

manually.

DWJM as a 3D biocompatible scaffold

PLOS ONE | DOI:10.1371/journal.pone.0172098 February 21, 2017 4 / 23



2.4 Evaluating seeded WJMSC adherence to and penetration of DWJM

scaffolds

a. Confocal microscopy. To assess WJMSCs attachment to DWJM scaffolds after cell

seeding and culture, scaffolds were transferred to a viewing chamber for confocal microscopy

examination using a Fluoview scanning laser confocal microscope (Olympus, Center Valley,

PA). Prior to viewing, the seeded DWJM scaffolds were rinsed twice with PBS and incubated

with 1 mL culture medium containing 2 μg Calcein stain (Molecular Probes, Eugene, OR).

Calcein is a cell-permeant dye that is converted to green-fluorescent Calcein when in live cells.

Using this stain, we tracked live WJMSCs after their being seeded onto DWJM scaffolds at 2,

24 and 48-hour intervals.

b. Dual beam electron microscopy. MSCs were seeded on DWJM as described above

and cultured in their appropriate media for 7 days. The matrix with cells was collected after 24

hours and at day 7 and was fixed overnight in 4% paraformaldehyde (VWR, Randor, PA) in

PBS at 4˚C. Tissue specimens were washed three times in PBS then stained with 2% osmium

tetroxide (OT) for 24 hours to label lipids. Since OT gives off a strong electron backscatter sig-

nal, OT- stained samples were again washed three times for 10 minutes in PBS. All samples

were gradually dehydrated with ethanol and cleared in xylene, before being embedded in par-

affin. Samples were sectioned to a thickness of 10 μm or 20 μm using a microtome (Leica, Buf-

falo Grove, IL) and mounted on Super Frost glass slides (Thermo Fisher, Waltham, MA). OT-

stained samples were deparaffinized using two 3 minute washes of xylene and critical-point

dried in 100% ethanol using an Autosamdri 815B super-critical dryer (Tousimis, Rockville,

MD) Samples were sputter-coated with 5 nm of copper using a Q150T Turbo-Pumped Sputter

Coater (Quorum Technologies, West Sussex, and United Kingdom) and then imaged on a

Versa 3D Dual Beam electron microscope (FEI, Hillsboro, OR) at a voltage of 30 kV. An Ever-

hart-Thornley detector (ETD) and circular backscatter (CBS) detectors were used to detect

secondary electrons and backscatter electrons, respectively.

c. Live cell imaging. DWJM scaffolds of 30μ thickness were placed in a 12 well plate and

the matrix blocked with 3% BSA for 2 hours and subsequently incubated with 3 μL anti-fibro-

nectin antibody [F1] (Alexa Fluor1 488) (Abcam, Cambridge, MA) in the dark for 12–15

hours at 4˚C. Immediately prior to being seeded onto DWJM scaffolds, the WJMSCs were cul-

tured in a 12 well plate and labeled using the CellVue1 Burgundy Labeling Kit (Affymetrix

eBioscience, Santa Clara, CA) according to the manufacturer’s instructions. Briefly, 2.5–5 x

105 WJMSCs were seeded on the labeled matrix, and cultured for 24 hours at 37˚C. Imaging

was made on a Leica 10X HC PL Fluotar 506505 objective of a semi-automated Leica DMIRE2

inverted epifluorescent microscope outfitted with a Ludl Bioprecision motorized stage, Sutter

Instruments Xenon Lamphouse with shutters and a Retiga SRV CCD camera controlled by

customized TiLa KU (KU Time Lapse) acquisition and image processing software. Regions

under study/interest were imaged in Bright field, GFP (Chroma 41001 HQ480/40 excitation

HQ535/50 Emission) and CY5 (Chroma 49006 ET620/60 excitation, ET700/75 emission).

DWJM interaction with WJMSCs was imaged at 15-minute intervals over an 18-hour period.

d. Scanning electron microscopy (SEM). The DWJM scaffolds were fixed in 2% glutaral-

dehyde for SEM processing. The fixed samples were washed with PBS for 10 minutes, placed

into buffered 1% osmium tetroxide for 1 hour, and then washed 3 times each for 10 minutes in

distilled water. The samples were then dehydrated through a graded series of ethanol at con-

centrations 30%, 70%, 80%, 95%, and 100% for 15 minutes each. Following this, the samples

were critical point dried in CO2 in a model EMS 850 dryer (Electron Microscopy Sciences,

Hatfield, PA), then mounted onto aluminum and coated with gold in a Pelco SC-6 sputter

coater. The samples were finally viewed using a Hitachi S-2700 scanning electron microscope.

DWJM as a 3D biocompatible scaffold
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e. Transmission electron microscopy (TEM). Scaffolds for TEM were rinsed in a buffer

prior to fixing in 1% to 2% osmium tetroxide for 1 hour. After osmication, the scaffolds were

dehydrated in an ethanol series of 30%, 70%, 80%, 95%, and 100%, 10–15 minutes for each

concentration, then placing them in propylene oxide (PO) twice for 10 minutes. To enhance

tissue infiltration, the scaffolds were then placed in an equal mixture of resin and PO over-

night. At this point, the 1:1 mixture mix was removed from the tissue and fresh 100% resin

mixture added to the sample, and allowed to sit on a platform rocker for at least 30 min. The

samples were subsequently covered in resin and finally were placed in 60˚C oven overnight to

cure the resin. The samples were sectioned afterwards using a Leica UCT ultra microtome slic-

ing at 80 nm in thickness, contrasted with 4% uranyl acetate and Sato’s Lead Citrate and

viewed at 80 KV with a JOEL JEM-1400 TEM.

2.5 Histology and immunohistochemistry

DWJM scaffolds were fixed in either 10% formalin or 4% paraformaldehyde, embedded in par-

affin, sectioned, and stained. Slides were reviewed using an Olympus BX40 microscope and

pictures were acquired using a DP72 digital camera (Center Valley, PA).

a. Gomori’s trichrome staining. Tissue sections were stained with trichrome stain kit—

Richard Allan 87020 (Thermo Fisher, Waltham, MA) according to the manufacturer’s instruc-

tions. Using this stain, the nuclei were stained bluish-black to black, cytoplasm, muscle fibers

and keratin stained red, while collagen and mucus stained blue.

b. Immunohistochemistry. Immunohistochemistry staining was performed at room tem-

perature using an IntelliPATH FLX™ automated stainer (Biocare Medical, Concord, CA) at

room temperatures. Briefly, after deparaffinization, sampleswere blocked in 3% hydrogen per-

oxide for 10 minutes, rinsed and blocked in strepatividin/biotin (Vector Laboratories, Burlin-

game, CA.). The samples were again rinsed and stained for 60 minutes at room temperature

with 1:200 dilution hyaluronic acid binding protein (RMD Millipore, Danvers, MA) followed

by a 15 minute labeling with horse radish peroxidase (HRP) (Dako, Carpinteria, CA). Chro-

mogenic detection of the enzyme conjugate was made using 3,3’ diaminobenzidine (DAB)

(DAkp, Carpinteria, CA) when applied for 5 minutes with slides counterstained with

hematoxylin.

For collagen immunohistochemistry, after deparaffinization and rehydration, the tissue sec-

tions were incubated with a primary antibody against Collagen I (Abcam, Cambridge, MA).

Following a 30-minute incubation at room temperature and rinsing, the sections were incu-

bated with secondary antibody, goat anti-rabbit HRP-polymer MACH 2 rabbit HRP-polymer

(Biocare Medical, Concord, CA). Finally, collagen staining was visualized by DAB (Dako, Car-

pinteria, CA) and the nuclei as counterstained by hematoxylin.

Green fluorescent protein (GFP) immunohistochemistry staining was performed by incu-

bation with primary monoclonal goat-anti GFP antibody (1:100 dilution for 45 minutes), fol-

lowed by secondary MACH2 rabbit antibody (CST, Cell Signaling Technology, Danvers, MA)

MACH 2 for 45 minutes on a Clinical intelliPATH FLX automated slide stainer.

2.6 Evaluating seeded WJMSC proliferation

The alamarBlue1 (AB) cell viability assay (ThermoFisher Sci, Waltham, USA) was used to

assess WJMSC viability and proliferative response following seeding onto DWJM by correlat-

ing fluorescent or absorbance signal related to metabolic activity. DWJM scaffold pieces (7

mm in diameter and 2–3 mm in height) were seeded with the expanded human WJMSCs at 1

x 106 cells onto each DWJM scaffold. For controls, 1 x 106 cells per well were cultured as a

DWJM as a 3D biocompatible scaffold
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monolayer in each well of a 24-well plate. AB was assessed at 24 and 48 hours as well as 1 week

following WJMSC seeding. These experiments were performed in triplicate.

2.7 Evaluating WJMSC migration toward DWJM by the trans-well

migration assay

WJMSC suspension at 3–7 x 105 was loaded to the upper chamber of Transwell set (Costar,

Corning Inc.) and the minced DWJM tissue in low glucose DMEM with 10% Fetal Bovine

Serum (FBS) and 1% Penicillin/Streptomycin added to the lower chamber. After 4 hours, the

trans-wells were removed and the migrated cells counted for viability using a Vi-cell (Beck-

man-Coulter). All the experiments were conducted in triplicate.

2.8 Molecular studies

a. RNA extraction from cells. WJMSCs and BMMSCs were cultured as a monolayer (2D)

or on DWJM (3D) as described in section 2.2d for 7 days. The cells were collected at day 0

(monolayer prior seeding DWJM), day 4 and day 7 after seeding onto the matrix. WJMSCs

were harvested from the scaffolds following overnight digestion with Collagenase II. The

MSCs were washed twice with PBS and centrifuged at 13000 rpm, for 20 minutes at 4˚C to

obtain a cell pellet which was suspended in 1 mL monophasic phenol guanidine isothiocyanate

(Trizol) (Life technologies) and stored at -80˚C until further processing. Once all the samples

were collected, RNA was extracted using the standard procedure according to the manufac-

turer (Life Technologies, Carlsbad, CA).

Briefly, the RNA was separated from the aqueous phase using 0.2 mL chloroform, then 0.7

volumes of isopropanol added with centrifugation to precipitate RNA. The RNA pellet was

washed twice with 75% ethanol and dissolved in 30–50 μL nuclease-free water. RNA was quan-

tified by Nano drop spectrophotometer 8000 (Thermo Fisher Scientific). First, 1.5μg of RNA

was treated and isolated using the DNA-free™ DNase l kit (Life Technologies). Then a high

capacity cDNA reverse transcription kit (Applied Biosystems) was used to generate cDNA

from the extracted total RNA samples by a Bio-Rad T100 thermal cycler.

b. Quantitative real-time PCR analysis. The quantitative real-time PCR (qPCR) reac-

tions (20 μL) were performed with the TaqMan gene expression master mix (Life Technolo-

gies), and TaqMan array 96 well plates (Applied Biosystems, Foster City, CA) using the

StepOnePlus™ real-time PCR system (Applied Biosystems). The primers used are described in

Table 1. The qPCR reactions were performed in triplicate. StepOnePlus™ real-time PCR system

(Applied Biosystems) was used for qPCR. Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) was used as an internal control to normalize the samples to obtain cycle delta

threshold over background (ΔCT). The delta delta CT method (2-ΔΔCT) was used to analyze the

relative gene expression levels.

2.9 Animal studies

2.9.1 Animal surgeries. Prior to the animal studies, DWJM scaffolds were washed twice

in PBS and pre-incubated in low glucose DMEM (Sigma-Aldrich) with 10% FBS (Atlanta Bio-

logics) and 1% penicillin/streptomycin (Sigma-Aldrich) for 24 hours at 37˚C, 5% CO2 and

90% relative humidity. After incubation, DWJM scaffolds were washed multiple times in PBS

to remove excess media before transplantation. All the animal experiments were performed in

strict accordance with the approved University of Kansas Medical Center Institutional Animal

Care and Use Committee (IACUC) protocol # 2013.2158. All the animal studies were per-

formed on transgenic 10kB DMP1—Cre floxed mice (6–8 week old) expressing green fluores-

cent protein (GFP)[16]. Mice were anesthetized with intraperitoneal injection (IP) of

DWJM as a 3D biocompatible scaffold
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ketamine (90–150 mg/kg) (Vedco) and xylazine (7.5–16 mg/kg). Buprenorphine SR (0.15–0.5

mg/kg) (Zoopharm pharmacy) was given subcutaneously immediately before the surgical pro-

cedure for analgesia. One midline skin incision of approximately 1cm in length was made on

the dorsal surface of the cranium, followed by the separation of skin and periosteum. A full-

thickness parietal bone defect (5.0-mm in diameter) was implemented with a trephine bur

(Fine Science Tools, Foster City, CA) attached to an electric Dremell hand piece (Ideal micro

drill, Harvard apparatus, Holliston, MA). The defect was left empty (n = 4) or filled with the

decellularized matrix (n = 4) and the skin incision was sutured with 5–0 coated Vicryl (polyga-

lactin 910) (Ethicon™, Johnson and Johnson Co., New Brunswick, NJ). Heat was provided dur-

ing the entire procedure and recovery by circulating warm water blankets to protect the

animals from hypothermia. Post—surgery, the animals were monitored for signs of abnormal

behavior, paralysis, or infection at the surgical site such as swelling, redness and discharge, and

checked daily for 3 days, followed by once every other day for the duration of the study. Ani-

mals with cranial defects, and not receiving an implant served as controls. Craniotomy defects

in mice were either left un-implanted (control) or implanted with DWJM to study the cellular

migration and localization by observing GFP expression. The mice were humanely sacrificed

after 14 days by carbon dioxide euthanasia as the primary method of euthanasia, followed by

decapitation as the secondary method in accordance with the above-mentioned institutional

IACUC protocol.

Table 1. Real time RT-PCR TaqMan primers and their description.

Gene symbol Detector Gene name

GAPDH GAPDH-Hs99999905_m1 Glyceraldehyde-3-phosphate dehydrogenase

ACAN ACAN-Hs00153936_m1 Aggrecan

SOX9 SOX9-Hs00165814_m1 SRY (sex determining region Y)-box 9

COL2A1 COL2A1-Hs00264051_m1 Collagen, type II, alpha 1

ALPL ALPL-Hs01029144_m1 Alkaline phosphatase, liver/bone/kidney

RUNX2 RUNX2-Hs00231692_m1 Runt-related transcription factor 2

ITGB1 ITGB1-Hs00559595_m1 Integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)

CD44 CD44-Hs01075861_m1 CD44 molecule (Indian blood group)

THY1 THY1-Hs00174816_m1 Thy-1 cell surface antigen

ENG ENG-Hs00923996_m1 Endoglin

ALCAM ALCAM-Hs00977641_m1 Activated leukocyte cell adhesion molecule

CD14 CD14-Hs00169122_g1 CD14 molecule

MKI67 MKI67-Hs01032443_m1 Antigen identified by monoclonal antibody Ki-67

BAX BAX-Hs00180269_m1 BCL2-associated X protein

VIM VIM-Hs00185584_m1 Vimentin

ACTA2 ACTA2-Hs00426835_g1 Actin, alpha 2, smooth muscle, aorta

SPP1 SPP1-Hs00959010_m1 Secreted phosphoprotein 1

COL1A COL1A1-Hs00164004_m1 Collagen, type I, alpha 1

COL4A1 COL4A1-Hs00266237_m1 Collagen, type IV, alpha 1

COL6A1 COL6A1-Hs01095585_m1 Collagen, type VI, alpha 1

DES DES-Hs00157258_m1 Desmin

HAS2 HAS2-Hs00193435_m1 Hyaluronan synthase 2

BGN BGN-Hs00156076_m1 Biglycan

VCAM1 VCAM1-Hs01003372_m1 Vascular cell adhesion molecule 1

NOS3 NOS3-Hs01574659_m1 Nitric oxide synthase 3 (endothelial cell)

PCNA PCNA-Hs00427214_g1 Proliferating cell nuclear antigen

doi:10.1371/journal.pone.0172098.t001
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2.9.2 In vivo IVIS imaging. Mice were anaesthetized with isofluorane gas prior to imag-

ing at 24 and 48 hours by an IVIS station (Perkin Elmer), and then euthanized according to

protocol.

2.9.3 Tissue samples. Cranial samples with the matrix were collected in 10% phosphate

buffered formalin (Newcomen Supply) within 24 hours. Tissue specimens for the animal study

were decalcified using the Rapid Bone Decalcifier solution (American MasterTech) for 5–10

minutes, paraffin embedded, sectioned vertically, and stained as described above.

2.10 Statistical analysis

All data were expressed as means ± standard error of mean (SEM) using a threshold of

p� 0.05 determined statistically significant, and analyzed by the Student’s t-test, two-way

analysis of variance (ANOVA), with post-hoc Bonferroni, or non-parametric Man-Whitney U

testing. A threshold of p� 0.05 determined statistical significance. The statistical analyses

were performed utilizing Graph Pad Prism software version 6 (Graph Pad Software, Inc.).

3. Results

3.1. Characterization of DWJM scaffold structure, biochemical

components, and biomechanics

DWJM scaffolds were prepared from the isolated and decellularized matrix as shown in Fig

1A. Various methods were used to test the effectiveness of the decellularization process for

these scaffolds. Histologically: DWJM was porous and devoid of intact cells, nuclei or other

cellular components (Fig 1B). Trichrome staining of the human umbilical cord (Fig 1D) shows

collagen-rich extracellular matrix in blue, nuclei/cells in dark blue/black distributed in the

matrix and blood vessel wall, and blood in red. Since blood vessels are removed and the cells

are lost during the decellularization process, the matrix obtained is rich in blue stain represent-

ing collagen (Fig 1E). Immunohistologically: staining for collagen (Fig 1C) and hyaluronic

acid (Fig 1F) demonstrate that DWJM is rich in collagen and hyaluronic acid (Fig 1C and 1F).

Scanning electron microscopy imaging: indicates that DWJM has interconnected open spaces,

with sizes ranging from 20 to 100 μm (Fig 1G). Transmission electron microscopy: demon-

strates an absence of intact cells the DWJM scaffold under examination (Fig 1H). Thus, the

decellularization process resulted in a porous matrix, rich in collagen and hyaluronic acid and

devoid of cells.

3.1.1 DNA quantification studies. DNA was isolated from the native WJ matrix and

from DWJM and quantified as described above. Mean dsDNA content per DWJM wet weight

sample was 1.7 x 10−3 μg/mg (range: 1.4 x 10–3–2 x 10−3 μg/mg), while the mean dsDNA per

WJ matrix wet weight sample was 5.1 x 102 μg/mg (range: 3.17 x 10–2–7.33 x 10−2 μg/mg) (Fig

2A). Therefore, 96.6% ± 0.4% reduction in dsDNA was achieved for all the scaffolds analyzed,

thus indicating that the majority of cells and nuclei of human umbilical cord were removed.

3.1.2. Protein content analysis. Mass spectrometry revealed that the DWJM matrix pieces

were composed of several structural proteins, including collagen I, III, VI, and XII. Transform-

ing growth factor beta (TGFB) was also observed in addition to matrix proteins such as fibro-

nectin-I, which binds to extracellular matrix components for instance collagen, heparin

sulfate, tenascin and lumican. A full list of the proteins identified on mass spectrometry evalua-

tion of DWJM is as shown in Table 2.

3.1.3. Glycosaminoglycan content analysis. Glycoaminoglycans (GAGs) are glycopro-

teins with a protein core and long unbranched polysaccharide with repeating disaccharide

units. Among other functions, through its carboxylic and /or sulfate ester groups, GAGs can

DWJM as a 3D biocompatible scaffold
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Fig 1. Characterization of Decellularized Wharton’s Jelly Matrix (DWJM). A) A fragment of the isolated DWJM. A skin punch biopsy kit,

(right lower corner image) was used to obtain 5–7 mm DWJM scaffolds. B) hematoxylin and eosin (H&E) stained sections of the DWJM

showing empty spaces. (Scale bar represents 0.1 mm.) C) Collagen I immunohistochemistry of the DWJM (scale bar is 50 μm), D)

Trichrome staining images of human umbilical cord, and E) Decellularized Wharton’s jelly matrix. (Scale bar represents 50 μm.) Red color

represents blood, light blue collagen, and cells/nuclei are in black/dark blue. F) Immunohistochemical staining of DWJM by anti- hyaluronic

acid antibody. The matrix is rich in collagen and there is abundant hyaluronic acid expression at some parts compared to the others. (Scale

bar represents 25μm.) G) Scanning electron microscopy images of DWJM. One surface appears flat with compact matrix (left lower image)

while, less dense tissue with open spaces is identified in other areas (lower right and middle images). (Scale bar for the full picture is

600 μm.) H) Transmission electron microscopy images of DWJM. More electron-dense areas of DWJM (left upper image) and less electron

dense areas (right upper image) are observed. No intact cells were observed in any of the panels. (Scale bar for left upper image is 2 μm, for

right upper image 10 μm, and for the two lower images 500 nm.).

doi:10.1371/journal.pone.0172098.g001
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form bridges and link collagens constructing an interconnected network of extracellular

matrix to maintain and define shape of connective tissues and organs [17, 18]. Glycosamino-

glycan analysis indicated that DWJM contained sulfated GAGs (mean = 0.661 ± 0.107 μg/mg),

which was significantly less than that for native umbilical cord Wharton’s jelly tissue

(3.0 ± 0.355 ug/mg, <p = 0.05) (Fig 2B). The loss of various cell types such as human umbilical

vein cells (HUVECs), Wharton’s jelly mesenchymal stem cells (WJMSCs), and umbilical cord

blood mesenchymal stem cells (UCBMSCs) during processing may account for the reduced

content of GAGs (19), yet retaining some in the scaffold material.

3.2. DWJM scaffold seeding with WJ and BM MSCs

3.2.1. MSC characterization by flow cytometry. The isolated WJMSCs (Fig 3A) and

BMMSCs (Fig 3B) were plastic- adherent and stained positive for MSC markers such as CD73,

CD90, and CD105 by flow cytometry. WJMSCs and bone marrow mesenchymal stem cells

(BMMSCs) were negative for hematopoietic cells markers CD45, CD34, CD14 or CD11b,

CD79α or CD19.

3.2.2 Assessment of MSC interactions with DWJM. WJMSC interactions with DWJM

were studied using several modalities. Cell The adherence to and penetration into the matrix

were assessed as early as 24 hours.

WJMSC were labeled with live cell calcein green stain (CGS), and their interactions post-

seeding with the DWJM scaffolds were followed by confocal microscopy. DWJM devoid of

live cells did not show any fluorescence although the media in the culture well was saturated

with calcein green. On the other hand, clusters of round cells were seen on the surface of

Fig 2. Quantification of DWJM. A) DNA quantification study performed on the matrix before decellularization and after decellularization.

DWJM showed significantly less DNA compared to the native WJ matrix before decellularization. B) Glycosaminoglycan content assessment

of the matrix before and after decellularization. (* Indicates statistical significance (p < .05)).

doi:10.1371/journal.pone.0172098.g002
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Table 2. Proteins identified in Decellularized Wharton’s Jelly Matrix (DWJM) by mass Spectrometry.

Protein name Accession number

(1)*
Sequence

coverage

MW

[kDa]

Theoretical.

pI

Peptides

number

Unique

Peptides

Collagen alpha-3(VI) 219521324 13.70 278.0 8.15 18 18

Collagen type I alpha-1 110349772 6.01 138.8 5.80 7 2

Collagen type I alpha 1 180392 9.13 98.5 6.83 7 2

Collagen, type VI, alpha 1 119629727 12.06 108.5 5.43 8 8

Human Serum Albumin 55669910 16.78 65.2 5.80 7 7

Collagen type I alpha 2 825646 6.49 72.2 7.96 4 4

Collagen type VI alpha-2 isoform 2C2 115527062 13.74 108.5 6.21 8 8

Fibronectin 1 219518912 5.38 239.5 5.88 5 5

G-gamma-hemoglobin 183851 31.68 11.0 6.68 2 2

Protein kinase, DNA-activated, catalytic

polypeptide

119607089 0.47 458.5 7.08 1 1

Tenascin C 156229767 4.93 210.4 4.98 4 4

TGFBI, beta-induced transforming growth factor 221044656 19.25 55.7 6.84 4 4

Lumican 4505047 15.68 38.4 6.61 3 3

Collagen, type III, alpha 1 119631314 2.66 106.3 8.10 2 2

Osteoglycin 55957237 13.06 30.4 8.34 3 3

TGFBI beta-induced transforming growth factor 37589544 3.00 75.1 7.23 1 1

Actin, alpha 119612724 12.50 30.3 5.00 2 1

Beta actin, gamma 1 194375299 10.21 37.3 5.71 2 1

HCG2044004 Human chorionic growth hormone 119628289 46.88 3.6 9.32 1 1

Collagen, type XII, alpha 1, isoform CRA_c 119569135 2.22 333.0 5.53 3 3

Hemoglobin alpha 2 13958153 59.21 8.4 7.14 2 2

Immunoglobulin heavy chain variable region 145911949 33.33 9.6 6.52 1 1

Ig G1 H Nie 229601 3.57 49.2 8.54 1 1

Decorin 119617856 14.29 28.0 8.13 2 2

Unnamed protein product 40036688 17.72 17.8 8.38 1 1

N6AMT2 Lysine N-methyl transferase 119628685 29.07 9.8 4.36 1 1

Dynein, axonemal, heavy chain 14 220732359 5.31 40.7 5.21 1 1

Chain D, Crystal Structure Of A Sparc-Collagen

Complex

215261061 36.36 3.0 11.00 1 1

Golgin subfamily A member 3 (GOLGA3) protein 38174254 4.63 93.0 5.05 1 1

Glyceraldehyde 3-phosphate dehydrogenase 134254708 14.46 17.3 8.60 1 1

Triacylglycerol lipase (EC 3.1.1.3), hormone-

sensitive—human

1082874 3.18 85.4 7.77 1 1

PLEKHG3 protein Pleckstrin homology domain

family G

120537866 3.32 80.8 5.40 1 1

OPK V Other protein kinase group, NimA family 38502049 4.01 67.9 8.98 1 1

Plexin D1, isoform CRA_c 119599646 1.09 193.4 6.96 1 1

CDH24 Cadherin 24 28375477 10.79 26.3 5.43 1 1

Beta IV spectrin isoform sigma3 11602888 1.76 148.5 6.37 1 1

FBLN1 Fibulin-1 22761800 3.61 70.5 5.91 1 1

Unnamed protein product 40035675 3.16 68.9 9.32 1 1

Immunoglobulin heavy chain variable region 13171510 52.73 6.2 8.76 1 1

Periostin isoform thy8 166343771 3.19 80.3 8.19 1 1

Transferrin receptor protein 2 33589848 3.37 88.7 6.11 1 1

H2AFJ histone 194382012 17.12 12.1 10.40 1 1

Large tumor suppressor, homolog 2 variant 62089380 1.95 101.4 9.22 1 1

(Continued )
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seeded DWJM scaffolds within 2 hours of seeding. (Fig 4A). Elongated spindle shaped cells

were noted inside DWJM within 48 hours. (Fig 4A).

Since, early interactions may not represent cell behavior at a later time point, we evaluated

WJMSC interaction with DWJM at 1 week following their seeding using FEI Versa 3D dual

beam imaging. DWJM fibers of varying diameters and pore sizes were stained purple (Fig 4B),

while we observed spindle shaped WJMSCs arranged along the fibers of DWJM (Fig 4C).

We performed live imaging after staining the matrix with cells to further evaluate WJMSC

interaction with DWJM. WJMSCs were observed migrating continuously in and out of the

matrix. Cell morphology changed with the cells in the matrix becoming spindle-shaped, and

developing cellular extensions while moving in and out of the matrix. Some WJMSCs could be

seen in stages of division and proliferation. As the cells migrated outside the matrix, it

appeared as though they were pulling part of the matrix material along with them (S1 Video).

Since DWJM is a three-dimensional structure, imaging DWJM at different z-planes demon-

strated that the WJMSCs were penetrating the matrix at various depths (S2 Video). WJMSCs

can be seen migrating on the surface of DWJM, within DWJM, and outside of DWJM. Thus,

these studies demonstrated that WJMSCs did penetrate into DWJM, continuously migrating

and proliferating throughout the spaces and dimensions DWJM scaffold.

3.3 Proliferation of WJMSCs seeded onto DWJM scaffolds

Next, we examined DWJM effects on WJMSC proliferation using the Alamar Blue cell viability

assay. WJMSCs cultured as a monolayer (2D) served as controls. After 1 week, WJMSCs cul-

tured in 3D had significantly lower fluorescence compared to WJMSCs cultured in 2D, indi-

cating that the cell-matrix interactions allowed 3D WJMSCs to proliferate, yet at a lower

extent compared to WJMSCs cultured in 2D (Fig 5A).

Table 2. (Continued)

Protein name Accession number

(1)*
Sequence

coverage

MW

[kDa]

Theoretical.

pI

Peptides

number

Unique

Peptides

Truncated beta-globin 58201131 47.50 4.5 9.47 1 1

Dermatopontin 27151769 39.8 24 4.82 4 4

Serum albumin preproprotein [Homo sapiens] 4502027 36.29 69.3 6.28 17 17

Ig kappa chain C region 125145 32.08 11.6 5.87 2 2

Fibrinogen beta chain 399492 26.68 55.9 8.27 6 6

Fibrillin-1 311033452 17.69 312 4.93 25 25

Apolipoprotein A-I isoform X2 [Homo sapiens] 530398069 15.73 30.8 5.76 3 3

Ig gamma-1 chain C region 121039 15.5 36.1 8.19 3 3

Mimecan isoform X2 [Homo sapiens] 530391203 11.74 33.9 5.63 2 2

Fibrinogen gamma chain 20178280 9.05 51.5 5.6 2 2

Keratin, type I cytoskeletal 9 239938886 8.35 62 5.24 2 2

Fibronectin isoform 6 preproprotein [Homo

sapiens]

47132549 6.8 239.5 5.88 9 9

Fibrinogen alpha chain isoform alpha pre-protein 11761629 6.52 69.7 8.06 3 3

Alpha-fetoprotein 120042 6.4 68.6 5.68 2 2

Keratin, type II cytoskeletal 1 238054406 5.59 66 8.12 3 3

Versican core protein 2506816 2.06 372.6 4.51 3 3

Fibrillin-2 238054385 1.03 314.6 4.86 2 2

* Accession number refers to the accession number in the National Center for Biotechnology Information (NCBI) protein database.

doi:10.1371/journal.pone.0172098.t002
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3.4 Cell migration assay

To understand early adherence of WJMSCs to DWJM, we performed an in vitro trans-well

migration assay using DWJM scaffolds as the cell attractant. Within 4 hours, a significantly

higher number of WJMSCs migrated across the trans-well when DWJM was present (Fig 5B)

thereby suggesting that DWJM acts as a cell attractant. This cell attractant quality of the matrix

was further investigated in our animal model.

3.5 Gene expression studies

A genetic approach was used to further explore the effects of DWJM on WJMSCs. Therefore;

we evaluated genes responsible for cell adhesion, (to study the effects of WJMSC adhesion to

DWJM), those for apoptosis, and those for proliferation (given the observed effects on

WJMSC proliferation using alamar Blue). Through examination of genes associated with

known types of MSC differentiation, we sought to determine the influence of DWJM on

WJMSC differentiation. Similar gene expression studies were performed on BMMSCs, which

served as controls.

Fig 3. MSC characterization by flow cytometry. A) Wharton’s jelly mesenchymal stem cell (WJMSCs) and, B) bone marrow mesenchymal stem cell

(BMMSCs). All MSCs stained positive for CD90 by fluoroscein isocyanate (FITC), CD105 by phycoerythrin (PE) and CD73 by allophycocyanin (APC);

and they were negative for hematopoietic markers CD45, CD34, CD14 or CD11b, and CD20 as analyzed by Cell Profiler (CP) software (Broad Institute).

doi:10.1371/journal.pone.0172098.g003
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A) Cell adhesion genes (Fig 6A and 6G). Expression levels of cell adhesion genes CD 44,

integrin subunit beta 1 (ITGB1) (CD 29), cell surface antigen (Thy1) (CD 90), activated leuko-

cyte adhesion molecule (ALCAM) (CD 166) and vascular cell adhesion molecule-1 (VCAM1)/

(CD106) were tested in WJMSCs and BMMSCs after culturing in DWJM for 7 days. There

was no significant change in the expression of ITGB1, while endoglin membrane glycoprotein

(ENG)/(CD105), THY1, ALCAM and VCAM1 remained below baseline levels in WJMSCS

cultured in DWJM. On the other hand, after 4 days, BMMSCs cultured in DWJM showed 0.5

fold reduction in the expression of ENG, ITGB1, THY1, ALCAM and VCAM1 genes.

Fig 4. Transplantation and culturing of WJMSCs on DWJM. A) Confocal microscopy images of DWJM and WJMSCs on DWJM after 2

hours (upper panel), 1 day (center panel), and 2 days (lower panel) post- cell seeding. The cells are labeled with calcein acetylmethyl (AM)

that stains the live cells in green. Dual beam imaging of B) DWJM and C) DWJM seeded with WJMSCs for 1 week. The Everhart-Thornley

detector (ETD) is a standard secondary electron detector used in scanning electron microscopy to study topography, while the circular

backscatter (CBS) is a backscatter detector that reveals lipid content when samples are stained with osmium tetroxide (OT) (red/orange).

Images have been pseudo-colored to enhance definition proportional to secondary electron signal for ETD. (Scale bar is 20 μm.) DWJM

appears to be a fibrous interpenetrating network with varying pore sizes, while WJMSCs were arranged along the fibers of DWJM.

doi:10.1371/journal.pone.0172098.g004
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However, by day 7 we observed an increase in expression of these genes, thus restoring their

expression to baseline levels in the case of ENG, ITGB1, and ALCAM.

B) Chondrogenic genes (Fig 6B and 6H). The expression of prechondrocyte and chon-

drocyte marker SOX9, chondrocyte markers aggrecan (ACAN), and collagen Type II alpha-1

(COL2A1) were examined in WJMSCs and BMMSCs when cultured in DWJM. ACAN and

COL2A1 were undetected in WJMSCs cultured in DWJM, while ACAN was down-regulated

over time in BMMSCs. SOX9 expression was up regulated in WJMSCs and BMMSCs as com-

pared to baseline value, with BMMSCs showing a 4-fold increase at day 4 and a 15-fold

increase at day 7. Hyaluronan synthase gene (HAS2) expression increased 3-fold at day 4 and

1-fold at day 7 for WJMSCs cultured in DWJM, while BMMSCs showed a decrease in HAS2

expression.

C) Adipogenic genes (Fig 6C and 6I). WJMSCs and BMMSCs demonstrated expression

of the adipogenic differentiation genes—fatty acid binding protein (FABP4) and Peroxisome

proliferator- activation receptor– γ (PPARγ). WJMSCs cultured in DWJM demonstrated a

decrease in the expression of FABP4 and PPARγ, while BMMSCs demonstrated increased

expression of both genes at one week as compared to baseline value. Though these differences

were statistically significant, their biological importance is unclear since the magnitude of

change is small in both cases.

D) Myogenic genes (Fig 6D and 6J). The expression of vimentin (VIM), byglycan (BGN),

desmin (DES), actin alpha 2 (ACTA 2) and collagenase 6 (COL6A1) were studied in WJMSCs

and BMMSCs cultured DWJM. At day 7 of culture, DES was down- regulated in WJMSCs,

while BMMSCs demonstrated no significant change from baseline. However, the decrease in

ACTA2 expression in both the cell lines was noteworthy.

E) Osteogenic genes (Fig 6E and 6K). The expression of runt-related transcription factor

(RUNX2), key to osteoblastic differentiation, was evaluated in WJMSCs and BMMSCs cul-

tured in DWJM. In WJMSCs, the expression of RUNX2 increased 4-fold above a normalized

baseline value of 1.0 at day 4 followed by a significant decrease at day 7. However, in the case

of BMMSCs, expression of RUNX2 increased by 0.5-fold and 1.5-fold over baseline values at

day 4 and 7, respectively. The expression of other osteogenic lineage markers alkaline phos-

phatases (ALPL) and COL1A1 were assessed over time, and it was observed that COL1A1 was

down-regulated in both cell types, while there was no significant difference seen in ALPL levels

Fig 5. Assessing WJMSC viability and proliferation when seeded on DWJM. A) Alamar blue assay to assess the viability of cells

seeded on the matrix and B) Cell migration assay performed using trans-wells with cells alone (control) and cells migrating towards DWJM,

(* Indicates statistical significance p < 0.05).

doi:10.1371/journal.pone.0172098.g005
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in BMMSCs. WJMSCs exhibited a transient 8-fold increase in secreted phosphoprotein 1

(SPP1) expression at day 4, while WJMSCs and BMMSCs demonstrated no significant change

in SPP1 expression at day 7 as compared to baseline value.

F) Apoptosis, proliferation, and other differentiation genes (Fig 6F and 6L). WJMSCs

and BMMSCs cultured in DWJM showed no significant change in the expression of apoptotic

regulator bcl-2-like protein (BAX) at day 7, while proliferation marker MKI67 exhibited signif-

icant decrease in gene expression when compared to the respective baseline values. WJMSCs

demonstrated a significant, albeit small, decrease proliferating cell nuclear antigen (PCNA)

expression at week 7.

3.6 Animal studies

Since our in vitro studies revealed several qualities such as cell attraction and survival, although

at a lower proliferation rate, we performed a set of experiments to demonstrate the ability of

Fig 6. Relative fold change in the mRNA levels of the indicated genes. Panel A-F are WJMSCs on DWJM with A) Cell adhesion genes,

B) Chondrogenic genes, C) Adipogenic genes, D) Myogenic genes E) Osteogenic genes, F) Apoptosis and proliferation genes. Panel G-L

are BMMSCs cultured on DWJM with G) Cell adhesion genes, H) Chondrogenic genes, I) Adipogenic genes, J) Myogenic genes K)

Osteogenic genes, L) Apoptosis and proliferation genes. Relative fold- change is represented on the y-axis and the genes were represented

along the x-axis. The horizontal line represents the gene expression of cells before seeding at Day 0. (* Represents statistical significance

p<0.05.)

doi:10.1371/journal.pone.0172098.g006
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DWJM to attract cells in vivo using a murine model using GFP labeled osteocytes. Mice with

defect alone (Fig 7A) were our control group, and mice with defect and DWJM served as the

treatment group (Fig 7B). To study the early and late migration of GFP positive cells into

DWJM, the mice were sacrificed at 24 hours and 14 days, respectively. Structural integrity of

DWJM was evaluated by visual inspection after removing the skin and exposing the defect at

the end of the experiment (Fig 7C). The matrix appeared intact 14 days after surgery (Fig 7C)

and histological examination revealed the presence of cells (Fig 7E, 7H and 7I), some of which

were also GFP positive (Fig 7F and 7J). GFP positive cells were observed in DWJM as early as

24 hours. Since these mice had GFP-labeled osteocytes, the presence of GFP positive cells by

immunohistochemistry suggests that osteocytes from the neighboring bone migrated into the

matrix in a diffuse pattern. Additionally, in vivo live animal imaging system (IVIS) was used to

track GFP-labeled cells (Fig 7D) and it was observed that mice with defect alone exhibited a

lack of GFP/green signal at the defect site. At 14 days, GFP signal was observed at the defect

site in mice with DWJM, while there was no signal in mice with defect only. Thus, the presence

of GFP signal in the area of cranial defect as evidenced by live imaging also shown by presence

Fig 7. WJMSCs transplantation into an in vivo animal model. A) Mice with cranial defect, B) mice with cranial defect and

DWJM, C) mice with cranial defect and DWJM 14 days post-surgery. Arrows in A represent the defect, B shows the DWJM

and C is the defect and DWJM 14 days post-surgery. D) IVIS imaging of the mice post—surgery—1) Mice with DWJM 24

hours post- surgery; 2–6) designates mice 14 days after the surgeries. D2 is mice without any intervention, D3 and D4 are

mice with the defect alone, and D5—D6 represent mice with defect and DWJM. The red circles indicate the defect sites and

the inset images are a higher magnification of the defect site in mice. The green fluorescence signal at the defect site signifies

the migration of the GFP positive cells into the defect. Images E-J represent the histology images of bone specimen with

DWJM 14 days post-surgery, with image E) hematoxylin-eosin stained (H&E) section of DWJM tissue specimen 24 hours

post-surgery, and image F depicts GFP immunohistochemistry staining of the same. Images G-J represent DWJM sample 14

days post-surgery with G, H and I being H&E stained sections of DWJM viewed at different magnifications as indicated in the

figure. J represents the GFP immunohistochemistry of the section in image I. The arrows in image F, J represent GFP positive

cells.

doi:10.1371/journal.pone.0172098.g007
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of GFP labeled cells focally distributed on histological sections of DWJM demonstrate that

DWJM acted as a chemo-attractive and biocompatible scaffold material.

4. Discussion

Although a wide variety of synthetic and natural scaffolds are readily available for tissue engi-

neering applications, natural polymers such as collagen, gelatin, silk, chitosan, and elastin pose

some difficulties with processing, purity, and protein denaturation. As for synthetic materials,

metal alloys are difficult to handle and are not biodegradable [2,3, 19]. Polymers such as poly

lactic-acid (PLLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly lactic acid-co-gly-

colic acid (PLGA) fit the properties of an ideal scaffold, but they are synthetic in origin and

lack biological properties. Therefore, increasing needs to develop an ideal natural scaffold

material [2–7, 20]. In lieu of the advantages and disadvantages of all the natural and synthetic

scaffolds, we believe that DWJM has desirable features since it is a natural scaffold material

that is both biocompatible and biodegradable, while promoting cellular adherence and

proliferation.

Accordingly, we have demonstrated that DWJM is a biocompatible matrix that promotes

WJMSC adhesion, penetration into the matrix in vitro while maintaining cell viability. The

decellularization process adopted in our work resulted in a novel 3D matrix completely devoid

of cells and dsDNA, consistent with current recommendations for tissue decellularization

[21]. In our experiments, we specifically focused on the WJ matrix with total removal of vascu-

lar tissues, allantoic duct, and amniotic epithelium, in contrast to other approaches such as

that proposed by Chan et al. [22].

Mass spectrometry analysis showed a significant residual of important extracellular matrix

proteins such as collagen, fibronectin, lumican, and tenascin. These proteins play an important

role in developing a scaffolding material for bone and cartilage tissue engineering applications.

For example, fibronectin has been shown to enhance the quality of scaffolding material used

for osteogenic differentiation [23]. Also, lumican is a matrix protein that has been correlated

with in vivo bone formation by transplantation of in vitro generated osteospheroids from

human mesenchymal stem cells[24]. TGF-β, identified in DWJM, also plays an important role

in regulating osteogenic differentiation [25] and chondrogenic differentiation of MSCs by

enhancing COL2A1 expression [26]. DWJM also contains sulfated GAGs, which are reported

to enhance chondrogenic [27] and osteogenic differentiation in addition to improving cell-

matrix interactions [28]. GAGs like chondroitin sulfate were also found to enhance the biolog-

ical activity of collagen I scaffolds in supporting chondrocytes [29].

When WJMSCs were uniformly seeded on DWJM, cellular condensations were observed in

some areas of the scaffold. This phenomenon of mesenchymal cell condensation is very similar

to the process observed in early chondrogenesis resulting from cell-cell and cell-matrix inter-

actions[30]. TGF-βI also plays a role in inducing pre-cartilage condensation [31]. Since our

mass spectroscopy identified that DWJM has retained TGF-β and other matrix proteins such

as collagen I, fibronectin, and tenascin,, we postulate that these proteins may have provided

critical cues resulting in the WJMSCs condensation in some areas of DWJM.

The difference in timing of proliferation between WJMSCs/BMMSCs when cultured in 2D

and on DWJM was consistent with an observed decrease in expression of proliferation marker

Ki-67 gene, thereby indicating that MSC proliferation slows down as cells interact with DWJM

scaffolds. Similar observations have been made by other researchers who also demonstrated

that 3D culture conditions were found to slow down cell proliferation [32].

CD 44 is a cell adhesion receptor involved in interacting with multiple ligands such as hya-

luronan, fibronectin and collagens [33]. Although BMMSCs physiologically do not express CD
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44 in human or mice, Qian et al demonstrated that in vitro culture of these MSCs could result

in CD 44 expression. [34–36]. In our study, we observed increased expression of CD 44 gene

in WJMSCs and BMMSCs when cultured in DWJM for 7 days. Since the decellularization pro-

cess adopted in this work abundantly retained hyaluronic acid in DWJM, the induction of CD

44 in both the MSCs cultured on DWJM could possibly be associated with anchoring of the

cells to hyaluronic acid in the matrix. Cell surface markers such as Thy1, endoglin, ALCAM,

CD 44 and VCAM have been used to isolate homogeneous MSC populations [34,37, 38].

When BMMSCs were cultured over DWJM, no significant changes in gene expression were

noticed for cell adhesion molecules Thy 1 and ALCAM, while WJMSCs showed decreased

expression of these genes. These subtle differences in the expression of the adhesion genes

between WJMSCs and BMMSCs could be attributed to WJMSCs being native to the Whar-

ton’s jelly matrix, while BMMSCs were introduced into a new environment.

Our gene expression studies show no clear differentiation pattern for WJMSCs when cul-

tured in DWJM. Though RUNX2 expression is increased in BMMSCs cultured in DWJM,

which is a marker of in MSC commitment to osteogenic differentiation [39, 40], SOX9 expres-

sion was also increased, which is an inhibitor of RUNX2, thus blocking osteoblastic matura-

tion; which typically occurs during chondroprogenitor fate determination [41]. In an attempt

to understand SOX9 and RUNX2 roles in osteogenesis in MSCs, Loebel et al. has shown that

the RUNX2/SOX9 ratio can be used to screen for osteogenesis during in vitro osteogenic dif-

ferentiation of MSCs [42]. In our experiments, the ratio of RUNX2/SOX9 showed the same

decreasing trend for WJMSCs and BMMSCs cultured over DWJM (WJMSCs: 3.26 at day 4 to

0.62 at day 7; BMMSCs: 0.34 at day 4 to 0.16 at day 7) thereby indicating non-commitment to

osteogenic lineage in either case. Several researchers have already demonstrated the potential

of WJMSCs differentiation into myogenic lineage both in vitro and in vivo [43, 44]. Biglycan

(BGN), a critical protein for collagen fibril assembly and muscle regeneration and alpha

smooth muscle actin 2 (ACTA 2), a protein essential for maintaining cell motility, structure

and integrity were significantly down-regulated in both types of MSCs. Accordingly, no line-

age specific differentiation towards osteogenic, chondrogenic, myogenic or adipogenic genes

was observed.

Thus, we demonstrate that DWJM is a biocompatible matrix with cell attraction properties.

This is further confirmed in our animal experiments, where we have demonstrated GFP

labeled osteocytes migration into the matrix as early as 24 hours by immunohistochemistry,

and at 2 weeks by in vivo live imaging. In addition to biocompatibility, DWJM has favorable

surgical characteristics like porosity, elasticity, and compressibility, which make it easy to con-

figure in irregular or curved shapes necessary for scaffold structure. Thus, based on all these

characteristics, we envision that DWJM scaffolds will have several potential applications

related to tissue engineering.

5. Conclusions

In this manuscript we have successfully isolated, decellularized, and fully characterized the

human WJ matrix. We have shown that this naturally obtained matrix can be made completely

devoid of cells, yet still comprised of glycosaminoglycans especially rich in hyaluronic acid and

several other key extracellular matrix proteins. We also have demonstrated that DWJM is a

biocompatible matrix that allows for cellular adherence, penetration, growth and proliferation

with suitable/acceptable mechanical properties in vitro and in vivo. In sum, this paper presents

DWJM as a novel and natural 3D scaffold that can be used for tissue engineering and regenera-

tive medicine applications.
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Supporting information

S1 Video. Time-lapse imaging of WJMSCs seeded on DWJM. Time-lapse imaging of

WJMSCs labeled in burgundy and DWJM labeled in green color (WJMSCs on DWJM are in

yellow). Panel on the top left represents bright field image of WJMSCs on DWJM, top right

represents labeled WJMSCs, bottom left are labeled DWJM, and bottom right shows labeled

WJMSCs on DWJM. WJMSCs can be seen proliferating and migrating inside and outside the

DWJM. Imaging was performed over 18 hours. (Scale bars represent 100 μm).

(AVI)

S2 Video. Time-lapse imaging of WJMSCs on DWJM in different Z planes. The three panels

represent WJMSCs at three different depths in the matrix as Z − 1, Z 0 and Z + 1. Scale

bar = 100 μm. The movies on the top panel are labeled WJMSCs on labeled DWJM, while the

videos on the bottom panel are bright field images of WJMSC on DWJM. The full Z volume

for the acquisitions was 225μ through 7 steps of 37.5μ per Z-step/plane.

(AVI)
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