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Abstract

Introduction: Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have
confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural
outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study
we examined protein expression in this region in adult rats exposed to DVD deficiency

Methods: Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to
give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8) were compared to control
male (n = 8). 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein
expression.

Results: There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of
these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being
21.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin) were
altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins.

Conclusions: Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus
accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of
the behavioural features associated with animal models of developmental vitamin D deficiency
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Introduction

Based on clues from epidemiology, we have proposed that low

prenatal vitamin D may be a risk factor for later development of

schizophrenia [1]. Many studies have shown that those born in

winter and spring have a significantly increased risk of developing

schizophrenia [2], and that those born at higher latitudes are also

at increased risk of schizophrenia [3]. Given that vitamin D levels

in the population fluctuate across the seasons and decrease across

higher latitude [4], low prenatal vitamin D ‘fits’ these key

environmental features and is therefore a plausible candidate risk

factor for this disease. In order to explore the biological plausibility

of this candidate, we have a rat model that we call the

Developmental Vitamin D (DVD) model.

Rats exposed to low prenatal vitamin D have a broad range of

neurobiological outcomes that are informative for schizophrenia

research. Briefly, DVD-deficient neonates had larger lateral

ventricles, increased cellular proliferation and reduced apoptosis,

altered neurogenesis, reduced density of neurotrophin receptor

(p75NTR), and reduced levels of nerve growth factor (NGF) and glial

cell line-derived growth factor (GDNF) compared to controls [5–7].

As adults these animals had larger lateral ventricles and reduced

NGF expression compared to controls [8]. Behaviourally, adult

DVD-deficient rats were more active than controls (i.e. showing

‘‘hyperlocomotion’’) [9,10]. 5) DVD-deficient rats also have altered

attentional processing indicated by impaired latent inhibition [11].

Some of the most robust and consistent findings in the DVD model

have emerged in behavioural pharmacological studies. For example,

we have shown that DVD-deficient rats have enhanced locomotion

in response to the psychomimetic agents such as NMDA antagonist

MK-801 [10,12]. The DVD adult rat is also more sensitive to

haloperidol, a dopamine (DA) D2 receptor antagonist [10], that is a

widely used antipsychotic medication used to treat schizophrenia.

Dysfunction of DA signalling has been strongly implicated in the

pathogenesis of schizophrenia [13]. Dopamine projections involve a

range of cortical and subcortical regions, however its role in the

nucleus accumbens has been of particular interest with respect to

neuropsychiatric disorders [14–16]. In the nucleus accumbens,

dopamine influences the integration of inputs from the ventral

hippocampus, the amygdala, and the prefrontal cortex. Grace and

PLoS ONE | www.plosone.org 1 June 2008 | Volume 3 | Issue 6 | e2383



colleagues have suggested that dopamine may modulate a range of

limbic and cortical functions relevant to the pathophysiology of

schizophrenia via the nucleus accumbens [17].

Previously we explored the genomic and proteomic character-

istics of frontal cortex and the hippocampus in the adult DVD rat

[18,19]. In particular, a proteomic study based on two cortical

regions of DVD-deficient rats (frontal cortex and hippocampus),

identified 36 dysregulated proteins. These proteins are associated

with several biological pathways including oxidative phosphory-

lation, cytoskeleton maintenance, calcium homeostasis, chaperon-

ing, synaptic plasticity and neurotransmission. A computational

analysis of these data revealed that many of the proteins

dysregulated in the DVD model have also been shown to be

altered in schizophrenia post-mortem brain studies [18].

In order to further explore the impact of DVD on brain

function, we undertook a proteomic study of the nucleus

accumbens.

Methods

To obtain vitamin D3 depletion, female Sprague-Dawley rats

(Herston Animal Facility, Queensland, Australia) were kept on a

vitamin D deficient diet (Dyets Inc., PA, USA). Animals were

housed on a 12-h light/dark cycle (lights on at 06:00 h) using

incandescent lighting, to avoid ultraviolet radiation within the

vitamin D3 action spectrum. These conditions were maintained for

six weeks prior to mating and throughout gestation. Control

animals were kept under similar conditions except they received a

vitamin D replete diet (Dyets, PA, USA and Specialty Foods, WA,

Australia) and were housed under standard lighting conditions.

Dams (and corresponding litters) were placed under control

conditions for the remainder of the experiment. The male pups

were weaned on postnatal day 21 and housed in groups of 3–6.

Female rats were not used in these experiments, because the

estrous cycle can introduce variability in protein expression in the

region of interest [20,21]. All procedures were performed with

approval from the Queensland University Animal Ethics Com-

mittee, under the guidelines of the National Health and Medical

Research Council of Australia.

Sample Preparation
Tissue was sampled from 8 control and 8 DVD deficient male

adult offspring. These animals were from four separate litters per

experimental group. The nucleus accumbens (NAc) were sampled

from all animals according to boundaries determined from a

standard rat brain atlas [22]. Sample preparation and two

dimensional gel electrophoresis (2DE) methodology was performed

according to Alexander-Kaufman et al [23]. Briefly, 0.04 g–0.07 g of

crude fresh frozen NAc tissue was placed in Buffer 1 (7M Urea, 2M

Thiourea, 1% C7bZO, 40 mM Tris). Sample suspensions were

sonicated 3610 sec at 40% intensity and centrifuged at 14,0006 g

for 20 min at 15uC. The supernatant was reduced and alkylated in

5 mM tributylphosphine (TBP) and 1M acrylamide monomer at

room temperature for 2 hr. The reaction was quenched by adding

10 mM DTT followed by 20 mg citric acid to adjust pH to

approximately pH 6.0. Samples were precipitated using 5 volumes

of room temperature acetone for 10 min and centrifuged at 3,5006g

for 15 min at 15uC. The pellet was air dried for 5 min and

resuspended in Buffer 2 (7M urea, 2M thiourea, 1% C7bZO).

Two Dimensional Gel Electrophoresis
Protein concentration was determined by the Bradford method

[24]. The 8 DVD deficient and 8 control sample tissues were used

to perform duplicate 2DE analyses, providing a total of 16 gels for

each group. Pre-cast immobilised pH gradient strips (IPG, 11 cm,

pH 3–10, Proteome Systems, North Ryde, Australia) were

passively rehydrated in 200 mg sample protein extract for 6 hr at

room temperature. In the first dimension, rehydrated strips were

focused using an ElectrophoretIQ3 isoelectric focusing system

(Proteome Systems) for a total of 120 kVh. IPG strips were

reduced, alkylated and detergent exchanged using SDS equilibra-

tion buffer (Proteome Systems, 20 min) and loaded onto pre-cast

SDS-PAGE gels (GelChipTM 2D, 6–15%, 10615 cm; Proteome

Systems) for second dimension molecular mass separation using

the ElectrophoreticIQ3 system (50mA/gel, 15uC for 90 min).

Image acquisition and analysis
Gels were fixed in solution containing 25% (v/v) methanol and

10% (v/v) acetic acid for 1 hr and stained using colloidal Coomassie

Blue for spot visualization. Gels were scanned using a transmissive,

flatbed scanner (UMAX) and analyzed using Phoretix 2D Expression

software (Nonlinear Dynamics, Newcastle-upon-Tyne, UK). Fol-

lowing background subtraction and volume normalization of all gels,

average gels were created for each group to assist comparison and

reduce within group variations. Averaging parameters were set at

70%, therefore for a protein spot to appear in the averaged gel it

must be present in 70% of all gels within a group. One-way Analysis

of Variance (ANOVA) statistical tests were used to reveal statistically

significant protein expression differences between the two groups

(p,0.05). Protein spots that were significantly altered were excised

for identification by mass spectrometry.

Mass Spectrometry
Excised spots were washed in 50 mM ammonium bicarbonate/

acetonitrile (60:40 solution) for 1 hr at room temperature. Spots

were dried in a Vacuum Concentrator (Eppendorf, Hamburg

Germany) for 25 min and rehydrated at 4uC in tryptic digest

solution (10 ng/ml porcine sequencing grade trypsin (Promega) in

50 mM NH4HCO3) for 1 h. Remaining tryptic digest solution was

removed and gel pieces suspended overnight at 37uC in 50 mM

NH4HCO3.

For protein identification, approximately 0.8 ml of the peptide

mixture was spotted onto a target plate and covered with the same

volume of matrix solution (a-cyano-4-hydroxy cinnamic acid

(Sigma), 8 mg/ml in 70% (v/v) acetonitrile/1% (v/v) formic acid)

and allowed to air dry. In several cases, peptides were

concentrated and desalted using C18 Perfect Pure Tips (Eppen-

dorf). Tips were activated with acetonitrile and washed with

5610 ml of 1% (v/v) formic acid. The peptide mixture was then

bound and aspirated 5 times through the column and bound

peptides washed with 5610 ml of 1% formic acid. Peptides were

eluted in 0.8 ml of matrix solution directly onto a MALDI-TOF

target plate. Peptide mass maps of tryptic peptides were generated

by matrix assisted laser desorption/ionisation time-of-flight mass

spectrometry (MALDI-TOF MS) using an Applied Biosystems Q-

STAR Pulsar with MALDI source (APAF, University of Sydney).

Mass calibration was performed using trypsin autolysis peaks,

2211.11 Da and 842.51 Da as internal standards.

Database searching and secondary analyses
Data generated from peptide mass mapping (PMM) of each spot

were used to perform searches of the SWISS-PROT, NCBI and

TrEMBL databases using the programs Aldente (www.expasy.ch)

and MASCOT (www.matrixscience.com). Identifications were

based on the observed pI and Mr (kDa) of the matched protein, the

number of matching peptide masses and the total percentage of

the amino acid sequence that those peptides covered, in

comparison to other database entries. Generally, a peptide match
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with at least 30% total sequence coverage was required for

confidence in identification, but very low and high mass protein,

and those resulting from protein fragmentation may not always

meet the criterion. For searches performed using MASCOT, E-

value and Score, as well as matching peptides and sequence

coverage, were used to determine matches.

Although many proteins were found to be significantly altered

in DVD-deficient adults, the fold-change level was insufficient for

confirmation analysis by western blot. Bioinformatics was

employed as secondary analyses. Depending of the size of the

fold changes, we planned to use western blot and/or bioinfor-

matics as secondary analyses. Significantly dysregulated proteins

were examined in bioinformatic pathways analysis (Ingenuity

Pathway Analysis [IPA]; Ingenuity Systems, Mountain View, CA).

This manually-curated database builds hypothetical networks

based on the candidate proteins and other potentially associated

proteins in the database. For each pathway, scores are calculated

as the negative base-10 logarithm of the P value, indicating the

likelihood that the dysregulated proteins would be found in a given

network by chance. Finally, proteomic analyses are prone to Type

I errors. While we did not adjust the p value for the number of

comparisons undertaken, we report the false discovery rate, which

provides an estimate of the proportion of significantly different

proteins (p,0.05) that may be truly null [25,26].

Results

We identified 637 spots in DVD deplete samples and 655 spots in

Control samples (see Figure 1 for a representative gel). These spots

were matched, normalized and quantified. For each animal, two gels

were averaged. There were 35 spots that were significantly altered

between the two groups, 22 were down-regulated and 13 up-

regulated (Table 1). These spots were mapped to 33 unique proteins.

The fold changes were uniformly small, with the largest FC being

21.67 (MEPD). Over half (27 of 49) of the significantly dysregulated

spots that were identified as a known protein had a fold change of less

than 1.3. Based on a False Discovery Rate of 28%, we predict that

nine of these spots would be false positives.

Ingenuity Pathway Analysis identified two major networks; (a)

Cellular Movement, cellular assembly and organization, cell

signaling; and (b) Protein synthsis, RNA Post-transcriptional

Modification, Cancer. These pathways had scores of 32 and 29

respectively (both highly significant). Figure 2 shows the first

pathway, annotated for functions related to calcium buffering.

Several of the components of the network converge on MAPK1, a

MAP kinase that serves to integrate multiple biochemical signals

(previously known as ERK2), that was found to be significantly

down-regulated in the proteomics study.

Discussion

Developmental vitamin D deficiency is associated with a subtle

alteration in the expression of protein involved in functions related

to calcium binding proteins, and mitochondrial functioning.

Calcium binding proteins have been of interest to schizophrenia

research for some time [27], in particular with respect to the

expression in cortical GABAergic interneurons [28]. This study

found that four calcium binding proteins were significantly altered

in the nucleus accumbens of the adult DVD-deficient rat

(calbindin, calbindin2, hippocalcin and calreticulin). Calcium

binding proteins are central to a wide range of cellular functions,

of which calcium sequestration and buffering are particularly

important for neurons. Amongst other functions, it is thought that

this family of diffuse cytoplasmic proteins provides a ‘sink’ allowing

Figure 1. Altered proteins in the nucleus accumbens in adult DVD-deficient and control male rats. Red circles indicate increased spots,
blue circles indicate spots reduced in the average gel in DVD animals.
doi:10.1371/journal.pone.0002383.g001
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cells to rapidly buffer intracellular calcium after actions potentials,

thus allowing the cell to rapidly repolarise for further firing.

Calbindin is strongly induced by vitamin D [29], and thus it is

feasible that the reduction in this protein may be a consequence of

the early life reduction in vitamin D. The potential links between

vitamin D and neuronal calcium binding proteins has been noted

in a recent review article [30]

Two members of the dynamin family (dynamin 1 and dynamin 1-

like proteins) were also significantly down-regulated. These proteins

are essential for clathrin-mediated endocytosis, a role of particular

importance in neurons for neurotransmitter release [31]. Apart from

this function, these proteins are essential for the insertion of

dopamine receptor 2 (DRD2) into the nonsynaptic membrane of

dopaminergic neurons [32]. Syntaxin-binding protein 1 was also

Table 1. Summary of differentially expressed protein spots in nucleus accumbens tissue from adult DVD-deficient and control rats

Fold
change p value Protein

Uniprot
Accession
Number

Mowse
score

Molecular
weight pH

Calcium Binding Proteins

1.14 0.031 Calreticulin CALR P18418 114 47966 4.33

-1.25 0.050 Calbindin (calretinin) CALB2 P47728 156 31384 4.94

-1.18 0.045 Calbindin CALB1 P07171 69 29975 4.71

1.17 0.032 Hippocalcin HPCA P84076 79 22413 4.87

General cellular metabolism proteins

1.47 0.026 L-lactate dehydrogenase B chain LDHB P42123 119 36589 5.70

1.23 0.004 Aldose reductase ALDR P07943 154 35774 6.26

-1.11 0.014 crystallin, mu CRYM Q9QYU4 96 33533 5.34

-1.09 0.030 Malate dehydrogenase, cytoplasmic MDHC O88989 69 36460 6.16

-1.35 0.030 Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic GPDA O35077 141 37428 6.16

-1.17 0.043 Glutathione S-transferase P GSTP1 P04906 78 23424 6.89

Mitochondria Proteins

-1.54 0.041 Hexokinase 1 HXK1 P05708 76 102342 6.29

-1.35 0.048 Dynamin 1-like protein DNM1L O35303 106 83856 6.64

-1.12 0.046 Ubiquinol-cytochrome-c reductase complex core protein 1, UQCR1 Q68FY0 145 52815 5.57

-1.14 0.033 Isocitrate dehydrogenase (NAD) subunit alpha, mitochondrial IDH3A Q99NA5 113 39588 6.47

1.16 0.037 IDH3A Q99NA5 117 . .

-1.37 0.011 NADH dehydrogenase 1 alpha subcomplex subunit 10, NDUAA Q561S0 219 40468 7.64

-1.10 0.039 Pyruvate dehydrogenase E1 component subunit beta, ODPB P49432 95 38957 6.20

-1.18 0.033 Voltage-dependent anion-selective channel protein 2 VDAC2 P81155 59 31726 7.44

Signal transduction and MAP-related proteins

-1.28 0.007 Mitogen-activated protein kinase 1 (ERK-2; MAPK 2) MK01 P63086 57 41249 6.50

-1.24 0.009 Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform PP2AB P62716 107 35552 5.21

1.23 0.036 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta 1 GBB1 P54311 64 37353 5.60

-1.15 0.031 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta 2 GBB2 P54313 74 37307 5.60

-1.24 0.029 Dynamin 1 DYN1 P21575 152 95867 6.32

-1.67 0.047 Thimet oligopeptidase MEPD P24155 112 78264 5.54

-1.22 0.006 Dihydropyrimidinase-related protein 2 (DRP-2; CRMP-2) DPYL2 P47942 101 62239 5.95

1.17 0.038 DPYL2 P47942 53 . .

1.24 0.007 DPYL2 P47942 85 . .

-1.21 0.024 Syntaxin-binding protein 1 STXB1 P61765 91 67526 6.49

-1.25 0.036 Adenosylhomocysteinase SAHH P10760 93 47507 6.07

1.31 0.013 Ras-related protein Rab-3C RAB3C P62824 64 25856 5.10

1.14 0.003 Beta-synuclein SYUB Q63754 56 14495 4.48

1.17 0.013 Myosin light polypeptide 6 MYL6 Q64119 54 16964 4.46

Proteins not otherwise classified

1.48 0.011 Eukaryotic initiation factor 4A-II IF4A2 Q5RKI1 90 46373 5.33

1.19 0.001 Glyceraldehyde-3-phosphate dehydrogenase G3P P04797 78 35805 8.14

-1.15 0.047 ADP-ribosylation factor 1 ARF1 P84079 128 20684 6.32

doi:10.1371/journal.pone.0002383.t001
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significantly down-regulated in the DVD-deficient rats. These

findings suggest that proteins involved in SNAP and SNARE

mediated vesicle release may be disrupted in the DVD model. In

addition, six mitochondrial proteins were down-regulated in DVD-

deficient rats (NDUAA, UQCR1, ODPB, IDH3A, HKK1,

VDAC2). These findings suggest that cellular energics may be

altered in this brain region in the DVD-deficient rat. Curiously, it has

recently been shown that dynamin 1-like protein is also important for

mitochondrial fission and general morphology [33].

It is known that down-regulation of calcium binding proteins shift

essential calcium buffering requirements to the mitochondrial

compartment, which, in turn, leads to compromised mitochondrial

energy production [34]. With respect to the nucleus accumbens,

calcium-binding proteins such as calbindin are often used to

demarcate discrete neuroanatomical boundaries, inferring that these

proteins confer selective functional properties to these cells [35].

Compromised calcium buffering in the nucleus accumbens could

disrupt adaptive and goal-directed behaviors. In the core region of

the nucleus accumbens, neurons have dense spines, which may

reflect the degree of synaptic plasticity required for the integrative

function of cells in this region [36]. Many of the dopaminergic cells

in this region also express neuropeptides such as bradykinan,

neurotensin and substance P. The protein with the greatest fold

change in this study was thimet oligopeptidase (down-regulated

1.67), which is involved in the degradation of these small proteins

[37]. Neuropeptides such as neurotensin can indirectly influence

dopaminergic transmission in the nucleus accumbens via glutamate

and GABA-ergic mediated processes [38]. Thus, these neuropep-

tides are of interest as potential targets for novel antipsychotic agents

[39,40]. Curiously, it has been shown that calcium concentration is

an important modulator of thimet oligopeptidase activity [41], thus

the disruption of this protein may also be down-stream consequence

of altered calcium buffering.

With respect to schizophrenia, several of proteins identified in

this study have also been reported to be disrupted in post-mortem

brain tissue from patients with schizophrenia. A range of studies

(proteomics, genomics, gene association studies) have linked

schizophrenia with alterations in malate dehydrogenase cytoplas-

mic (MDHC, now known as malic enzyme 2) [42–47]. Similarly,

mitogen-activated protein kinase 1, significantly down-regulated in

this study, has been found to be down-regulated at both the

mRNA and protein levels in post-mortem schizophrenia brain

tissue (thalamus) [48]

Like the previous proteomic study [18], we found no alterations

in proteins directly associated with DA signaling. This suggests

that baseline DA signaling may be normal in this model and

abnormalities only become unmasked in the presence of drugs that

alter DA/glutamate balance in the brain. It is conceivable that a

slight reduction in calcium buffering proteins may affect the ability

of neurons within the nucleus accumbens to repolarise in response

to psychomimetic agents. Alternately, any reduction in cellular

energetics within this region may delay the integration of cortical

and/or sub-cortical inputs.

Disappointingly, we found no overlap with the proteins

identified in the current study versus those in the previous

publication [18]. However, the previous study was based on

cortical and hippocampal tissue from adult female animals,

whereas the current study was based on tissue from the nucleus

accumbens in adult male animals. Interpretation of the current

study is also limited because of the lack of immunoblot

confirmation of the differentially expressed spots. The small fold

changes found in the study, while statistically significant, were too

Figure 2. Network analysis of the proteins assembled by Ingenuity Pathway Analysis. Proteins symbols in red were up-regulated, while
green were down-regulated. Hub proteins not significantly dysregulated in the study are shown as clear. The proteins with calcium-related functions
are annotated (Fx).
doi:10.1371/journal.pone.0002383.g002
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low to be reliably confirmed via immunoblot [49]. Based on the

behavioural findings in DVD-deficient rats, there is a case to

explore proteomic dysregulation in rats after exposure to drugs

known to disrupt dopaminergic and glutaminergic pathways. For

example, we have shown that while habituated DVD rats have

normal locomotion activity in the open field at baseline, they have

pronounced hyperlocomotion after exposure to MK-801 [10,12].

We plan to explore these issues in future experiments.

In conclusion, developmental vitamin D deficiency is associated

with subtle changes in a range of proteins in the nucleus

accumbens. These findings suggest that pathways involved in

calcium binding and mitochondrial function may underpin the

behavioural features associated with this particular animal model

of schizophrenia. Combined with other experimental findings, the

current study lends further credibility to the notion that

developmental vitamin D deficiency impacts adversely on normal

brain development [30].
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