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Abstract

In several areas of clinical research, it is common for trials to assign different sites of the participants’ bodies to different

interventions. For example, a randomized controlled trial comparing surgical techniques for correcting myopia may

randomize each eye of a participant to a different operation. Under such bilateral (‘split-body’) interventions,

the observations from each participant are correlated. It is challenging to account for these correlations at the meta-

analysis level, especially when the outcome is rare. Here, we present a meta-analysis model based on the bivariate

binomial distribution. Our model can synthesize studies on patients who received one intervention at one body site,

patients who received two interventions at different sites or a mixture of these two groups. The model can analyse

studies with zero events in one or both treatment arms and can handle the case of incomplete data reporting. We use

simulations to assess the performance of our model and to compare it with the bivariate beta-binomial model. In the case

of bilateral interventions, our model performed well and outperformed the bivariate beta-binomial model in all scenarios

explored. We illustrate our methods using two previously published meta-analyses from the fields of orthopaedics and

ophthalmology. We conclude that our model constitutes a useful new tool for the meta-analysis of binary outcomes in

the presence of split-body interventions.
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1 Introduction

Correlated outcome data can occur in trials when multiple related outcomes are measured, when a single outcome
is measured at multiple time-points or when patients receive more than one intervention. Typical examples of the
latter category are the cross-over trials and the within-person randomized trials.1 For example, outcomes from
patients receiving different surgical operations for myopia in each of their eyes or different carpal-tunnel release
methods in each of their arms are correlated. We will refer to this kind of interventions as ‘split-body’ or ‘bilateral’
interventions. At the meta-analysis level, disregarding the correlation induced by bilateral interventions and
analysing observations as if they belong to different patients may affect the precision of the pooled estimates.2–6

For the case of binary outcomes, if studies with bilateral interventions report the full, ‘cross-classified’
information (number of events by patients and treatments) one can readily account for the correlations.
This cross-classified information is, however, usually unavailable to the meta-analysts. If not available, an
assumed value of the correlation between the arm-specific effects (e.g. the log-odds) can be imputed and the
data can be synthesized using a bivariate normal likelihood.
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While this approach might be reasonable for efficacy outcomes, it is problematic for safety outcomes. Safety
outcomes are often rare and in this case, the normal approximation performs poorly while the estimation of the
between-study variance (heterogeneity) becomes challenging.7 Moreover, the normal approximation of the log-
odds or log risks cannot be readily used in the presence of studies with zero events in one (‘single-zero’ studies) or
both arms (‘double-zero’ studies). Such studies are frequently encountered in meta-analyses: in a sample of
500 Cochrane reviews, 30% included at least one single-zero, while 34% of these reviews included at least one
meta-analysis with a double-zero study.8,9 In such cases, researchers usually resort to performing a ‘continuity
correction’ i.e. they add a factor in each cell of the corresponding two-by-two table. The choice of the factor,
however, may heavily affect the meta-analysis estimates10,11 and might lead to paradoxical results.12 Double-zero
studies are typically excluded from meta-analysis.8

Alternative meta-analysis models that do not require a continuity correction and do not exclude studies have
been suggested. These include generalized linear mixed models,13 using the arcsine difference,14 a Poisson-Normal
model,15 a zero-inflation model,16 a Poisson-Gamma model,17 Firth’s logistic regression model18 and a bivariate
beta-binomial model19–21 (sometimes called Sarmanov beta-binomial model). Kuss8 reviewed and compared
10 different methods for meta-analysing rare events in a simulation study and recommended the use of the
beta-binomial model for the meta-analysis of rare events. None of the aforementioned methods, however, can
account for correlations induced by bilateral interventions.

Although there are methods available for meta-analysing correlated binary outcomes, it is not clear whether
they are appropriate when the outcome is rare and when reporting is incomplete. In this paper, we propose a new
model fitted within a Bayesian framework that can be used to meta-analyse studies of unilateral design (each
patient received one intervention in one body part), bilateral design (all patients received two interventions in
different body parts) or a mixed design (where some patients received one intervention and some patients both).
Our model uses a bivariate binomial likelihood that explicitly accounts for the correlations induced by the
presence of bilateral interventions without employing the normal approximation. Our model can accommodate
a meta-analysis in the presence of rare events, without excluding single- or double-zero studies from the dataset
and can handle the case of incomplete reporting in the original studies, i.e. when cross-classified information is
not provided.

The paper is structured as follows. In section 2, we describe the datasets from orthopaedics and ophthalmology
we use to exemplify our methods. We chose these particular examples because they include studies of different
designs and they cover both the case of rare and common outcomes. In section 3, we present our model and discuss
how it can be applied for the case of studies of different designs. In section 4, we present results from simulations
that we conducted in order to assess the performance of our model and to compare it with the previously
recommended beta-binomial model. In section 5, we present results from the examples. Finally, in section 6,
we highlight our main findings, summarize the strengths and weaknesses of our approach and discuss
possible extensions.

2 Example datasets

2.1 Two surgical treatments for carpal tunnel syndrome

Our first example comes from a Cochrane review22 that compared the endoscopic release vs. any other open
surgical intervention for carpal tunnel syndrome (CTS). CTS is a painful compression of a nerve at the root of the
hand. One of the safety outcomes was the occurrence of minor complications (such as numbness around
the incision or superficial infection) reported in 24 studies. Minor complications were rare: five out of 24
studies were single-zero and four were double-zero. In section 1.1. of the online Appendix, we provide a
detailed description of the data. We categorize the 24 studies in four different types, depending on their design
and reporting:

. Unilateral design (studies 1–12): patients received one intervention in one of their arms. Studies report number
of patients and number of events per intervention group.

. Bilateral design (studies 13–15): each patient received both interventions in different arms. In the CTS example,
these studies reported number of patients and number of events per intervention group. They did not report
cross-classified information (e.g. number of patients with events in both of their arms, with events in none of
their arms, with events in one of their arms).

. Mixed design (studies 16–22): some patients received one intervention in one of their arms, and some patients
received both in different arms. In the CTS example, these studies reported the corresponding number of
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patients in each group (or we calculated them from the reported data). No cross-classified information
was reported.

. Unknown design (studies 23–24): these studies only report number of events and number of treated arms, per
intervention group. They do not provide information on how many patients (if any) received both interventions
in both of their arms.

2.2 Two surgical techniques for correcting myopia

Our second example comes from a Cochrane review for the comparison of laser-assisted in-situ keratomileusis
versus photorefractive keratectomy for myopia.23 The outcome of interest is the proportion of eyes with
uncorrected visual acuity (UCVA) of 20/20 or better, at six months after treatment. Ten studies reported
this outcome. Two studies had a unilateral design, five studies had a bilateral design and did not report
any cross-classified information and three studies had an unknown design, i.e. they did not report the exact
number of unilateral and bilateral interventions. We present the data for this example in section 1.2
of the online Appendix. Table 1 summarizes the type of data that were available for each example and
introduces notation.

3 Methods

In this section, we present our random effects meta-analysis model that can be fit within a Bayesian framework.
Methods for estimating and summarizing treatment effects from studies of unilateral and bilateral design are
established and we start by revising them. However, the number of events per patient and intervention (the cross-
classified information) is required for a proper analysis of studies of bilateral design. Such information is often not
available. We introduce a model that bypasses this problem, and then we extend it for the analysis of studies
of mixed and unknown design. In section 3.6, we discuss approaches for formulating prior distributions for all
model parameters. We only consider the case of a binary outcome, i.e. each patient can only have up to one event
per intervention.

3.1 Unilateral design

Let’s assume that a study i compared interventions A and B, and that it applied only unilateral interventions.
Let us assume Ni,A (Ni,B) patients received intervention A (B), and that we observed ri,A (ri,B) events. Given that
each patient only received one intervention, the events are independent and we can assume two univariate binomial
distributions. The estimated probabilities of event in each intervention group of each study can be used to estimate

Table 1. Summary of the type of data available for the CTS and myopia examples.a

Design

Data provided in

the studies

No. of studies

available

Unilateral design: Only one body part per patient was treated rA, NA,
rB, NB,

N ¼ NA þ NB

CTS: 12

Myopia: 2

Bilateral design: Each patient received both interventions in different body parts rA, rB,

N ¼ NA ¼ NB

CTS: 3

Myopia:5

Mixed design: Mixture of unilateral and bilateral interventions; some patients

received one intervention in one body part, some received both interventions in

different body parts

rA, NA,

rB, NB, N

max NA,NBð Þ � N

N5NA þ NB

CTS: 7

Myopia: 0

Unknown design: No information on whether any patients received both

interventions

rA, NA

rB, NB

CTS: 2

Myopia: 3

CTS: carpal tunnel syndrome.
arA (rB) denotes the number of events and NA (NB) the number of patients who received intervention A (B). With N, we denote the total number of

patients included in each study.
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study-specific intervention effects, with their corresponding standard errors. These study-specific estimates can be
synthesized at a second stage, under a usual meta-analytical model. This corresponds to a two-stage meta-analysis
model. The drawback of two-stage models is that in the second stage, the study-specific intervention effects are
assumed to follow a normal distribution, and that the variances are assumed to be exactly known.24 This implies
that a two-step approach is generally suboptimal for the case of binomially distributed data, and even more so
when the data are sparse.

Alternatively, we can do the meta-analysis in a single step using a hierarchical model. A one-step model can be
written as follows

ri,A � Bin pi,A,Ni,A

� �
, ri,B � Bin pi,B,Ni,B

� �
logit pi,A

� �
¼ ui þ

�i
2
, logit pi,B

� �
¼ ui �

�i
2

�i �Nð�, �
2Þ

ui,�, � � . . .ð prior distributionsÞ

ð1Þ

where �i is the study-specific log-odds ratio (OR), � is the summary log-OR and �2 the heterogeneity variance.
ui is a nuisance parameter that corresponds to the log-odds of the mean event rate in both intervention
groups (we will refer to this quantity as ‘average risk’ throughout this paper). For ui, � and � prior
distributions are required. An alternative, one-stage model can be formulated by assuming exchangeability
on the average risk

ri,A �Bin pi,A,Ni,A

� �
, ri,B � Bin pi,B,Ni,B

� �
logit pi,A

� �
¼ ui þ

�i
2
, logit pi,B

� �
¼ ui �

�i
2

ui � N �u, �
2
u

� �
, �i � Nð�, �2Þ

�u,�, �, �u � . . . ð prior distributionsÞ

ð2Þ

The advantage of model (equation (2)) is that in the case of rare events, it facilitates the estimation of the
parameters by ‘borrowing strength’ for the average risk across studies. The price to pay is that the model makes an
additional assumption, i.e. the exchangeability of average risk across studies. Note that one can write alternative
one-stage models, e.g. by assigning a prior to pi,A or pi,B instead of ui. We discuss this assumption more in
the Discussion.

3.2 Bilateral design: studies providing cross-classified information

Let us assume that study i compared interventions A and B and that each patient received both interventions.
Let us also assume that the study reports the full cross-classified information, as shown in Table 2. For simplicity,
in what follows, we drop the study index.

From this table, we can estimate the probability of an event in each treatment. E.g. by maximizing the
likelihood, we estimate p̂A ¼ rA=N, p̂B ¼ rB=N, and also p̂k ¼ nk=N, where k ¼ 1, 2, 3, 4. If we choose odds-ratio

as an effect size, we have dlogOR ¼ logit p̂A
� �
� logit p̂B

� �
. Observations (rA and rB) belong to the same patients,

Table 2. ‘Contingency’ table for a study of bilateral design with N patients,

providing the full cross-classified information.a

Bþ B� Total

Aþ n1 n2 rA

A� n3 n4 N� rA

Total rB N� rB N

aAþ(A�) denotes events (non-events) in intervention A; likewise for treatment B. n1

denotes the number of patients with events for both interventions. n2 is the number of

patients with an event for A and a non-event for B, the opposite is n3. n4 denotes the

number of patients with no events in any intervention.
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which means that the estimates for the two probabilities p̂A and p̂B are correlated within each study. The estimated

cvar dlogOR
� �

should thus include a covariance term

cvar dlogOR
� �

¼ cvar logit p̂A
� �� �

þ cvar logit p̂B
� �� �

� 2dCovðlogit p̂A� �
, logit p̂B

� �
Þ ð3Þ

This covariance term can be written as a function of Pearson’s ’ coefficient,25 which is a measure of the
correlation between two binary variables of a 2 � 2 table26

’̂ ¼
p̂1p̂4 � p̂2p̂3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂A 1� p̂A
� �

p̂Bð1� p̂BÞ
q ð4Þ

If we ignore the cross-classifications (n1, n2, n3 and n4) and use only the margins of Table 2, we treat the two
intervention groups as if they were independent. In that case, the variance of the effects will not account for any
covariance. This, in turn, will lead to the precision of the estimated relative effects being either inflated or deflated,
depending on the underlying correlation between rA and rB. In most clinical examples, we would expect a positive
correlation, so ignoring this correlation is generally expected to lead to less precise results.

In order to correctly account for this covariance, we need to use the full information and to employ a
multinomial likelihood

n1, n2, n3, n4ð Þ �Multinomial ðp1, p2, p3, p4;NÞ ð5Þ

We can then estimate p̂1, p̂2, p̂3 and p̂4, and we can identify p̂A ¼ p̂1 þ p̂2 and p̂B ¼ p̂1 þ p̂3 and calculate their
covariance. At the meta-analysis level, we can use model (equation (2)) with a multinomial instead of a binomial
likelihood.

For this analysis, one would need to have the cross-classified information of Table 2. Alternatively, if the study
has performed an appropriate analysis, one could use the reported results (e.g. standard error or p value) to
reverse-engineer equation (3) so as to calculate the entries of Table 2 and then use the correct multinomial
distribution of equation (5). To our experience, published studies rarely report the information needed for such
back-calculations. To make matters worse, some of the studies may include a mixture of unilateral and bilateral
interventions, often without reporting the corresponding numbers. In the following sections, we show how to
correctly analyse the data in such circumstances. We start by the simplest cases of data availability and move on to
more complex situations.

3.3 Bilateral design: studies that do not provide cross-classified information

Let us assume a bilateral study where only the margins of Table 2 are reported (i.e. rA, rB and N). The exact
likelihood of the marginal data (i.e. rA, rB and N) is given by Gonin and Aitken in the form of a bivariate binomial
distribution.27–29 More specifically, the probability of having rA events in intervention group A and rB events in B,
in a total of N patients that received both interventions is given by

P rA, rBð Þ ¼
XminðrA, rBÞ

n1¼maxð0, rAþrB�NÞ

N!

n1! rA � n1ð Þ! rB � n1ð Þ! N� rA � rB þ n1ð Þ!
� pn11 p

rA�n1
2 prB�n13 pN�rA�rBþn14 ð6Þ

where p1, p2, p3 and p4 ¼ 1� p1 � p2 � p3 are the probabilities corresponding to each cell of Table 1.
Equation (6) runs through the total number of different set-ups of the contingency table that gives rise to the

same margins rA and rB. One could in principle assume an uninformative prior for p1, p2, p3 and p4 (e.g. through a
uniform Dirichlet distribution) and then use the likelihood of equation (6) to obtain the posterior distribution for
these four probabilities. As discussed in the previous section, the estimation of the relative effects between the two
interventions would use p̂A ¼ p̂1 þ p̂2 and p̂B ¼ p̂1 þ p̂3. This would induce a correlation between the estimates of
pA and pB.

However, this approach would result to an average of all possible values for this correlation. It might be the
case, however, that having an event in A is highly correlated with having an event in B. This could happen when
for instance events are induced by the presence of a certain characteristic in the patient, irrespective of intervention
received. In the CTS example, it might be the case that patients with manual labour professions are more prone to
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having a minor complication in both arms. In such cases, there would be a strong underlying correlation, which
would not show in this approach. A hypothetical example to clarify this point is presented in Figure 1, where a
study of 100 bilateral interventions reports 60 events in intervention A and 70 in B, but no information on the
cross-classification. The likelihood of equation (6) sums across all possible contingency tables: from those that
correspond to a high correlation, like the one with n1 ¼ 60 in Figure 1 (’ ¼ 0:80Þ, up to those that correspond to a
strong negative correlation like the bottom configuration in Figure 1 (where ’ ¼ �0:53Þ. I.e. equation (6)
incorporates a correlation of pA and pB based on the average of all possible values of ’. Essentially, the
estimates for pA and pB are correlated in a study of a bilateral design, but one cannot estimate this correlation
using only the margins of the 2� 2 table.

In order to use an informed account of the correlations while employing the correct likelihood of the data
described in equation (6), we instead utilize external information for ’. In section 3.6, we discuss how to formulate
prior distributions for this quantity based on external data or expert opinion. Given pA, pB and ’, we calculate
p1 ¼ pA pB þ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA 1� pAð ÞpBð1� pBÞ

p
, p2 ¼ pA � p1, p3 ¼ pB � p1 and p4 ¼ 1� p1 � p2 � p3. This method allows

for an informed reconstruction of the full contingency table. This is performed in a stochastic way: more plausible
configurations (according to the prior) are given a higher probability. Note that given a set of values for pA and pB,
’ is bounded between a minimum and a maximum value.30,31 Thus, after drawing values for the model’s
parameters from the corresponding prior distributions, values the prior distribution for ’ need to be
appropriately truncated. Finally, note that when one (or more) of the margins is 0, then the contingency table
can be reconstructed with certainty. For the reader’s convenience, we provide the full likelihood of the model in the
online Appendix, section 2.

An alternative method for reconstructing the 2� 2 table uses the odds-ratios of the cross-classified information
instead of ’. The advantage of this method is that it does not require any truncation. The disadvantage is that it is
less easy to formulate clinically meaningful priors for the parameters. Details on this alternative approach are
presented in section 3 of the online Appendix.

3.4 Mixed design

We now move on to the situation where a study includes a mixture of bilateral and unilateral interventions (mixed-
design studies). For including this type of studies in the analysis, we will make one extra assumption. We will
assume that in each such study, the probability of having an event when receiving a specific intervention is the
same in patients receiving unilateral interventions (patients receiving only that intervention) and bilateral

Figure 1. Three possible configurations of the 2� 2 table of a study of 100 bilateral interventions reporting only the margins of the

contingency table. The first configuration corresponds to a large positive correlation (�¼ 0.80), the second to no correlation (�¼ 0),

the third to a large negative correlation (�¼ –0.53).
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interventions (patients receiving both interventions): punilA ¼ pbilat AþjBþ
� �

pbilat Bþð Þ þ pbilat AþjB�ð Þpbilat B�ð Þ � pA.
This assumption might not hold if there is an interaction between the two interventions, for patients who received
both. In such case, additional assumptions would be needed. Note that for the case of zero correlation, we would
have pbilat AþjBþ

� �
¼ pbilat AþjB�ð Þ.

In what follows, we suppress the study index. Let us start by assuming that such a study provides all relative
information, i.e. the number of patients who only received intervention A, the number of patients who only
received B, as well as the number of patients who received both A and B; also, the number of events for each
of these three patients groups, and the full cross-classifications for the bilateral interventions. We can estimate
relative effects from such a study by employing the methods described in the previous sections, namely two
independent binomial likelihoods for the unilateral interventions in A and B, and a multinomial likelihood as
in equation (5) for the bilateral ones. If no information on the cross-classifications is available, likelihood
(equation (6)) needs to be used instead, together with some external information on the correlation coefficient.
According to our assumptions, these three groups inform only two probability parameters, pA and pB.

Let us now focus on an even more complicated scenario, which also corresponds to the seven mixed-design
studies in the CTS example. More precisely, let us assume that such a study provides information on the events
on each intervention (rA, rB), the total number of patients receiving each intervention (NA,NBÞ and the total
number of patients in the study (N). The number of events and the number of patients with a unilateral
intervention (A and B), and the number of events and patients with a bilateral intervention are not reported.

We first need to calculate the number of patients who received unilateral and bilateral interventions, using the
reported data. Let us keep in mind that each patient can have a maximum of one event per intervention. Let us
denote Nu

A (Nu
B) the number of patients who received only intervention A (B). Let Nb denote the bilateral

interventions, i.e. the number of patients who received both A and B. Obviously Nu
A þNu

B þNb ¼ N. It also
holds that Nu

A þNb ¼ NA and Nu
B þNb ¼ NB. By solving this set of equations, we find the number of patients

in each group, i.e. Nu
A ¼ N�NB, N

u
B ¼ N�NA and Nb ¼ NA þNB �N:

We do not have information on how the rA events in intervention A are divided among the Nu
A patients who

received only A and the Nb patients who received both A and B. Let us assume that x out of these rA events were in
the Nu

A patients; the rest rA � x were in the Nb bilateral cases. Obviously, it should hold that x5Nu
A. Also

rA � x5Nb, i.e. the number of events in the bilateral interventions group must be smaller than the total
number of patients in that group. Of course x � 0 and also x � rA. All these constraints are summarized in the
following double inequality: max 0, rA �Nb

� �
� x � minðNu

A, rAÞ. Likewise, if we denote by y the number of
patients who only received intervention B and had an event, it holds that max 0, rB �Nb

� �
� y � minðNu

B, rBÞ.
We also do not know how the rA � x and rB � y events observed in patients who received bilateral interventions

are cross-classified in a 2� 2 contingency table, like the one in Table 1. In Figure 2, we give a graphical analysis of
the possible ways that the observed events may be distributed in each category of patients.

Quantities x, y and n1 of Figure 2 are not reported. In order to write the exact likelihood of the reported data
(rA, rB, NA,NB and N), we will combine the likelihoods of all possible configurations that lead to these
observations, as presented in Figure 2. Since x and y correspond to events in different groups of patients, they
follow independent binomial distributions i.e. x � BinðpA,N

u
AÞ and y � BinðpB,N

u
BÞ. For the events in the group of

patients with bilateral interventions, we follow the analysis of section 3.3 and we can write the likelihood after
carefully adjusting equation (6). The full, exact likelihood of the observed data (rA, rB) can be written as

P rA, rBð Þ ¼
XminðNu

A
, rAÞ

x¼max 0,rA�Nbð Þ

XminðNu
B
, rBÞ

y¼max 0,rB�Nbð Þ

Nu
A

x

� �
pxA 1� pAð Þ

Nu
A
�x Nu

B

y

� �
p
y
B 1� pBð Þ

Nu
B
�y

�
XminðrA�x, rB�yÞ

n1¼maxð0, rA�xþrB�y�NbÞ

Nb!

n1! rA � x� n1ð Þ! rB � y� n1ð Þ! Nb � rA � rB þ xþ yþ n1ð Þ!

� pn11 p
rA�x�n1
2 p

rB�y�n1
3 p

Nb�rA�rBþxþyþn1
4

ð7Þ

This likelihood is a generalization of the cases described in sections 3.1 (unilateral interventions only) and 3.3
(bilateral interventions only). It is easy to see that this likelihood decomposes into a simple product of two
independent binomials if we set Nb ¼ 0 (in which case x ¼ rA, y ¼ rB and n1 ¼ 0): this corresponds to the case
where there are no bilateral interventions. It is also straightforward to see that if we set Nb ¼ N then
Nu

A ¼ Nu
B ¼ x ¼ y ¼ 0 and the likelihood of equation (7) reduces to the one of equation (6), as expected.

A more detailed description of this model can be found in section 4 of the online Appendix.
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The joint posterior distribution for pA and pB includes their correlation. The extent of this correlation depends
on (1) the number of patients who received bilateral interventions in the studies, where zero bilateral interventions
will mean zero correlation and (2) the prior distribution used for ’.

3.5 Unknown design

A study of this type reports rA, rB, NA and NB, but does not provide any information on the total number of
patients. This implies that there is no (exact) information on how many of the included patients received unilateral
and how many bilateral interventions; but meta-analysts might have reasons to suspect that at least some of the
patients in these studies received both interventions.

The lack of more information from these studies means that researchers cannot use the methods described in the
previous sections to take into account correlations in the estimation of relative intervention effects, unless some
strong assumption is employed, i.e. on the percent of bilateral interventions in the study. The simplest approach
for the analysis is to assume two independent binomials. As we discussed, this may lead to over- or under-precision
in the estimated relative intervention effects if the correlation is non-zero.

The two extreme cases for such a study are (1) there are no bilateral interventions and (2) there are a maximum
number of bilateral interventions (¼ maxðNA;NBÞÞ. Given that information on this number is unavailable, when
analysing such a study researchers may want to use the most conservative estimate. This means that if pA and pB
are expected to be positively correlated in bilateral interventions, the analyst should analyse a study of unknown
design as if all patients received only one intervention, i.e. as if the study was unilateral. If instead researchers are
interested in obtaining the most liberal estimates, they should assume that a large number of interventions might
be bilateral (maximum value is max NA,NBð Þ). These considerations need to be reversed for the (perhaps less
relevant) case of having a negative correlations. In any case, a sensitivity analysis is warranted to explore the
effect of the (unknown) study design in the overall, pooled effect.

In section 5 of the online Appendix, we provide a summary table of how to choose the likelihood for each study,
depending on its design and on the information it provides.

3.6 Formulating informative prior distributions

In what follows, we discuss how meta-analysts can augment the information included in the studies using external
information in the form of informative prior distributions for the model parameters. We focus on one-step meta-

Figure 2. Graphical analysis of the different ways in which the observed events can be distributed among different categories of

patients in a mixed-design study. x, y and n1 are not reported.
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analysis models. We discuss the following parameters: the heterogeneity variance, the mean and variance of the
average risk and the correlation (’ coefficient).

3.6.1 Heterogeneity

In a recent meta-epidemiological study by Turner et al.,32 the authors re-analysed data from around 15,000 binary
outcome meta-analyses from the Cochrane Database of Systematic Reviews. Results were used to create
informative predictive distributions for �2.33 These prior distributions cover 80 different settings, categorized by
the outcome being assessed, the types of interventions being compared, etc.

3.6.2 Average risk

The optimal source of information for this parameter would be to use eligible randomized controlled trials that
were excluded from the original meta-analysis due e.g. to inadequate reporting of effect sizes. This would allow
researchers to obtain a realistic estimate of the mean and variance of the (logit-transformed) average risk in order
to formulate priors that can be included in the model. Alternatively, one could use observational studies (such as
registries or large cohort studies). Note, however, that in order to formulate a prior distribution for the variance
(parameter �u in equation (2)), one would need to include multiple studies. If no external source of information is
readily available, then a prior distribution can be elicited from the experts, following a method described in
Efthimiou et al.25 and Garthwaite et al.34 In section 6 of the online Appendix, we discuss the details of this
method, i.e. how researchers can elicit information and how they can synthesize information obtained from
multiple experts (after possibly weighting each expert’s opinion, e.g. for the years of experience on the field or
the number of studies he/she has been involved in).

3.6.3 Correlation

If some of the studies report full, cross-classified information (as described in section 3.2), then the corresponding
estimates of the correlation coefficients can be used to formulate an informative prior distribution for the analysis
of the rest of the studies. Alternatively, one can formulate priors by eliciting information from expert clinicians.
In a previous work, we describe how to elicit information on correlation indirectly, using a conditional
probability.25 Here, we propose a more straightforward method. As shown empirically by Clemen et al.,35

directly asking for the correlations is a reasonable approach, often more accurate than indirect methods.
More detail on how to synthesize information from multiple experts in order to construct a prior distribution
for ’ can be found in section 7 of the online Appendix. The method uses the Fisher transformation to synthesize

information, � ¼ 1
2 log

’þ1
1�’

� �
. If there is no usable external information for ’, researchers can use a minimally

informative prior ’ � Uð0, 1Þ if the correlation is generally expected to be positive (and conversely ’ � Uð�1, 0Þ
if it is expected to be negative).

It is unclear whether the choice of the prior distribution for the different parameters of our model is equally
important, and whether researchers should focus on obtaining informative priors for some of the parameters
rather than others. It is also unclear what would be the impact of using misspecified prior distributions to our
model estimates. Lambert et al.36 showed that in general the choice of scale parameters (such as standard
deviations) is more important than the choice of location parameters in Bayesian analyses with sparse data.
As we will see in the next section, this agrees with the findings of our simulations. There we discuss that
heterogeneity is the most influential parameter in our model. Using an informative prior for heterogeneity can
greatly increase precision and enhance the power of the model. As we will also see, using minimally informative (or
even misspecified) priors for the rest of the parameters may have a smaller impact on the model’s performance.

4 Simulations

4.1 Data generation procedure and description of the scenarios

We performed a small-scale simulation study to assess the performance of the model we proposed in this paper.
We limited the simulations to the case of studies with bilateral design where only the marginal numbers of events
are reported, and among which there is variability (heterogeneity). We explored a range of different scenarios.
For each scenario, we simulated 100 datasets, with each dataset corresponding to an independent meta-analysis.

Scenarios 1–20 aimed to compare our model with the bivariate beta-binomial model. This model has been
previously recommended for meta-analysing rare events.8 For these scenarios, we simulated 20 studies for each
meta-analysis. Two additional scenarios (21 and 22) aimed to explore the importance of specifying informative
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priors for the parameters of our bivariate binomial model. For these scenarios, we simulated 10 studies for each
meta-analysis, aiming to increase the impact of the prior distributions.

To generate data, for each scenario, we first defined the true relative treatment effect on the log-OR scale (�),
the log-odds of the average risk of event and its standard deviation ð�u, �uÞ and also the correlation between the
events (’). For each independent meta-analysis, we sampled the variance of random effects from a log-normal
distribution: �2 � LNð�2, 1:5Þ.33 Suppressing the study index for clarity, for each study, we sampled the study-
specific treatment effects, � � Nð�, �2Þ and the log-odds of the average risk, u � Nð�u, �

2
uÞ. We simulated the

number of patients (N) in each study by drawing from a uniform distribution, Uð50, 100Þ.
Using �, u and ’, we calculated the probabilities p1, p2, p3 and p4 (corresponding to n1, n2, n3 and n4 of Table 2).

Using these four probabilities and the number of patients per study, we generated the number of events of the 2� 2
cross-classified table by drawing from a multinomial distribution. We then calculated rA, rB; together with N,
these are the only data that were supposed to be available from the study.

We explored scenarios using the following values for the simulation parameters:

. � ¼ 0, 0:5.

. ’ ¼ 0:30 ð� ¼ 0:31, low correlation) and ’ ¼ 0:60 ð� ¼ 0:69, high correlation).

. �u ¼ �1:5, �u ¼ 0:5: in these scenarios, there were almost no single- and double-zero studies (<1%).
�u ¼ �3:0, � 3:5 and �u ¼ 1:0: these scenarios have some single- and double-zero studies (0 – 30% in total).
�u ¼ �4:0, �u ¼ 1:0 and �u ¼ �3:0, �u ¼ 3:0: these scenarios have many single- and double-zero studies (more
than 30% in total).

We generated all data in R,37 code is provided in the online Appendix, section 8.

4.2 Analyses of the simulated datasets

The simulated datasets were analysed using the bivariate binomial model discussed in section 3.2. The model is
also presented in more detail in section 2 of the online Appendix. We performed our analyses in OpenBUGS,38,39

the code is available in section 9 of the online Appendix. For each analysis, we simulated a single chain of 20,000
samples, and we discarded the first 5,000 samples. This was deemed to be sufficient based on some initial runs and
also after visually inspecting the posterior distributions.40

For the analysis of scenarios 1–20, we chose between using weakly informative prior distributions centred near
the true value of the parameters, vague priors and misspecified priors for the correlation. These choices are
described in detail in Table 4 of the online Appendix (section 10.1). In addition, these scenarios were analysed
using the bivariate (Sarmanov) beta-binomial model, which accounts for correlations in the 2� 2 tables.21 For this,
we used a routine in R37 provided by Chen et al.21 We also checked results by comparing with results obtained
from the mmeta package in R, which also implements the beta-binomial model.41 We compared our model with
beta-binomial in terms of (a) mean bias; (b) mean squared error (MSE) (the mean of the squared bias);
(c) empirical coverage (the percent of meta-analyses that included the true effect in their 95% credible interval
(CrI)); (d) empirical power (percent of meta-analyses that rejected the null hypothesis of no treatment effect, when
the true treatment effect was non-zero); and (e) the gain in precision (bivariate binomial model over beta-binomial
model). This was calculated as the percentage reduction of the mean width of the 95% CrI obtained from our
model as compared to the 95% confidence interval from the beta-binomial model. The datasets generated under
scenarios 21 and 22 were analysed multiple times, using only the model presented in this paper. Each dataset was
analysed using first vague priors for all parameters, and then using vague priors for all model parameters except
for one at a time. Details can be found in Table 5, section 10.2 of the online Appendix.

4.3 Results from the simulations

The results from the analyses of scenarios 1–20 are presented in Table 3. Regarding the interpretation of results,
and taking scenario 1 as an example, we can see that our model had a slightly larger mean bias for the logOR than
the bivariate beta-binomial (0.012 vs. 0.001), and also a slightly larger MSE (0.024 vs. 0.018). However, the CrIs
obtained from our model were narrower than the confidence intervals obtained from the bivariate beta-binomial
model. Thus, coverage for the former model was 95% while for the latter it was 99%. By comparing the precision
of the two models (quantified by the width of the corresponding credible/confidence intervals), we calculated a
29% increased precision of our model as compared to the bivariate-binomial.
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Simulations showed that our model performs markedly better than the beta-binomial model in most scenarios
we explored. In almost all cases, our approach led to smaller mean bias and similar MSE. Coverage probability
was closer to the nominal 95% in our approach for most scenarios. Our model led to an increased precision of the
estimates. This increase in precision, quantified as the percentage reduction of the width of the 95% CrI, ranged
from 29 to 44% in all scenarios. Our approach performed much better in scenarios with many single- and double-
zero studies, when we assumed non-zero log-ORs. In these settings, the beta-binomial model had very low power
to detect a relative treatment effect. Our simulations showed that in the presence of bilateral interventions, even
when the prior distributions are only mildly informative or misspecified, the bivariate binomial model performs
better than the bivariate beta-binomial (Scenarios 13–16).

Another interesting finding in our simulations was that for the case of non-zero relative treatment effects and
large heterogeneity in the average risk (Scenarios 17–20), the beta-binomial model was very inefficient. In these
scenarios, this model showed excessive bias, and in all cases, the bias was towards zero treatment effects.
Moreover, there was large MSE, insufficient coverage and minimal power. This was the case even under zero
correlation scenario, i.e. for the usual unilateral design (Scenario 20). This finding comes in contrast with the
recommendations by Kuss,8 i.e. to use the beta-binomial model for all meta-analyses of rare events. But, in his
simulations,8 Kuss did not explore the scenario of large heterogeneity in the average risk of an event. In a
somewhat different context (meta-analysis of proportions, not relative effects), Ma et al. showed that the beta-
binomial model performs worse when the event rates are relatively large (e.g. >5%).42

Table 3. Results from 20 scenarios, comparing the proposed bivariate binomial model to the bivariate beta-binomial model.a

Bivariate binomial bivariate beta-binomial

# Scenario description

Mean

bias MSE Coverage Power Mean bias MSE Coverage Power

Precision

gained

l¼ 0

1 �¼ 0.3 No SZ/DZ 0.012 0.024 95% - 0.002 0.018 99% - 29%

2 Some SZ/DZ 0.006 0.044 96% - 0.000 0.030 100% - 30%

3 Many SZ/DZ 0.031 0.059 96% - 0.017 0.055 98% - 29%

4 �¼ 0.6 No SZ/DZ 0.000 0.022 98% - 0.007 0.010 100% - 27%

5 Some SZ/DZ 0.006 0.032 95% - 0.008 0.029 99% - 41%

6 Many SZ/DZ 0.002 0.031 95% - 0.004 0.024 99% - 38%

l¼ 0.5

7 �¼ 0.3 No SZ/DZ 0.017 0.024 96% 90% 0.043 0.013 98% 53% 31%

Some SZ/DZ and: 0.042 0.056 100% 16%

8 Informative priors 0.022 0.054 95% 69% 39%

9 Vague priors 0.037 0.069 97% 56% 22%

10 Misspecified priors 0.014 0.050 97% 59% 36%

11 Many SZ/DZ 0.026 0.079 91% 59% 0.005 0.077 97% 13% 34%

12 �¼ 0.6 No SZ/DZ 0.006 0.016 98% 90% 0.052 0.015 100% 49% 43%

Some SZ/DZ and: 0.040 0.047 98% 12% 44%

13 Informative priors 0.008 0.054 95% 82%

14 Vague priors 0.035 0.062 97% 75% 32%

15 Misspecified priors 0.017 0.048 98% 67% 33%

16 Many SZ/DZ 0.076 0.066 91% 71% 0.033 0.064 99% 17% 43%

l¼ 0.5. Assumed large ru (variability in the average risk)

17 �¼ 0.3 Many SZ/DZ 0.000 0.063 97% 44% 0.258 0.103 81% 1% 18%

18 �¼ 0.3 Some SZ/DZ 0.024 0.028 98% 77% 0.221 0.071 95% 1% 39%

19 �¼ 0.6 Many SZ/DZ 0.040 0.071 96% 60% 0.242 0.112 86% 2% 29%

20 �¼ 0.0 Many SZ/DZ 0.011 0.046 100% 45% 0.260 0.101 87% 0% 25%

CrI: credible interval; MSE: mean squared error.
aAll scenarios are analysed using informative priors on � for the bivariate binomial model, except otherwise noted. SZ (DZ): single (double)-zero

studies. ‘Some SZ/DZ’ denotes scenarios with 0–30% SZ/DZ studies. ‘Many SZ/DZ’ denotes scenarios with >30%. l denotes the true log-odds ratio, �

the true correlation in each scenario and ru the standard deviation of the log-odds of the average risk. Large heterogeneity in average risk corresponds

to ru> 2. Gain in precision corresponds to the percentage reduction in the width of the 95% CrI of our model vs. the beta-binomial.
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In Table 4, we present the results from the analysis of data simulated under scenarios 21 and 22, using different
priors for the model’s parameters. Results suggested that the most influential prior is the one for heterogeneity.
Using an informative prior distribution for �2 instead of a vague one greatly enhanced the performance of the
model in terms of bias, precision, coverage and power. Using informative priors for the other model, parameters
had a smaller impact in all scenarios explored.

5 Applications

In this section, we show results from applying our methods to the two examples presented in section 2. We used the
following models for the analysis:

(1) Univariate fixed-effects meta-analysis, i.e. we used model in equation (2), but omitting the random effects
distribution. This analysis ignores the correlations due to bilateral interventions. We fitted this model in a
Bayesian as well as a frequentist setting, using maximum likelihood estimation (MLE).

(2) Univariate random effects meta-analysis (UNI-RE), using the model in equation (2). This analysis ignores the
correlations due to bilateral interventions. We fitted this model in a Bayesian as well as a frequentist setting,
using MLE.

(3) Bivariate binomial, fixed-effects meta-analysis: we used the model described in this paper accounting for the
correlations due to bilateral interventions, as discussed in sections 3.3 and 3.4. We omitted random effects.

(4) Bivariate binomial, random effects meta-analysis (BB-RE): the same as in model 3, but also including random
effects

(5) The bivariate beta-binomial model. Note that this is by definition a random effects model.

We provide the OpenBUGS code in section 11 of the online Appendix. In section 12 of the online Appendix, we
provide codes for fitting the model in R using the R2WinBUGS package,43 and for fitting the model of equation
(2) in a frequentist setting. We performed 20,000 iterations, and we discarded the first 5000 samples. We fitted the
bivariate beta-binomial model in R.21 We fitted all models using a conventional laptop computer. The run-time
required for fitting our bivariate binomial model was around 23min for the CTS example and less than a minute
for the myopia example.

5.1 Surgical operations for CTS

Two studies in this dataset had unclear design. We analysed these studies as if they were of unilateral design
following the arguments presented in section 3.5 as we expect a positive correlation between complications in two
arms of the same patient.

For models 1 to 4, we assume a vague prior �u � Uð�6, 0Þ for the log-odds of the mean event rate, �u � Uð0, 3Þ
for the corresponding variance and � � Uð�2, 2Þ for the log-OR. For the random effects models (models 2 and 4),
we use informative priors from the empirical distributions for a safety outcome for non-pharmacological

Table 4. Results from analysing scenarios 21 and 22, for different choices of priors for the model parameters.a

No. Scenario

Informative

priors used for Mean bias MSE Coverage Power

Increase in precision

compared to non-informative

priors

21 l¼ 0.5, �¼ 0.3

Many SZ/DZ

– 0.067 0.250 94% 25% (reference)

�2 0.016 0.210 90% 41% 30%

� 0.055 0.227 97% 21% 0%

lu and ru 0.056 0.227 95% 27% 5%

22 l¼ 0.5, �¼ 0.6

Many SZ/DZ

– 0.094 0.146 96% 25% (reference)

�2 0.046 0.114 90% 55% 29%

� 0.078 0.132 98% 21% 0%

lu and ru 0.068 0.124 96% 26% 5%

MSE: mean squared error.
al denotes the log-odds ratio and � the correlation. lu and ru denote the mean and standard deviation of the average risk.
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interventions log �2
� �
� Nð�1:43, 1:452Þ provided in Turner et al.33 For the bivariate models (3 and 4), we perform

two analyses: one assuming a low correlation between the outcomes, � � Nð0:2, 0:12Þ, and one assuming amoderate-
high correlation, � � Nð0:5, 0:12Þ. Results are in Figure 3. The BB-RE model with moderate-high correlation was
assumed to be our primary model, the rest of the models can be seen as sensitivity analyses. For the primary model,
the posterior median estimate for �u was –3.41 (–4.35, 2.56) and for �uwas 1.93 (1.33, 2.80).

The endoscopic surgical operation was found to be more safe than the open in all analyses. When switching
from the univariate to the bivariate model, the increase in precision was rather small, especially when a low
correlation was assumed. This should come as no surprise, as only 13% of the patients in this meta-analysis
received bilateral interventions. One interesting observation was that when we increase the assumed correlation in
the BB-RE scenario, the estimate and CrI for the OR remained unchanged. This is because the increased precision
in study-estimates is accompanied by an increase in the estimated heterogeneity. All implementations of the
bivariate binomial model were more precise than the beta-binomial model. Comparing the Bayesian and
frequentist implementations of the UNI-RE model, we see some differences, which reflect the impact of the
prior distributions. E.g. the MLE estimate for � in the UNI-RE (F) model was 0.83, while for UNI-RE (B),
the median of the posterior median for � was 0.75. This difference was due to the impact of the informative prior
distribution, which has median 0.48, thus pulling the MLE estimate towards lower values. The estimate for
the ORs was also slightly different (0.50 for the Bayesian implementation vs. 0.52 for the frequentist).
This difference can be attributed to the prior used for logOR, which was centred at 0, thus pulling the MLE
estimate to lower values.

In order to assess the impact of the prior distributions in our results, we did a sensitivity analysis for model 4
(BB-RE) with low correlation. Assuming vague priors for �, �u and �u had an immaterial impact on the results.
However, a less informative prior for the heterogeneity (�2 � Uð0, 2Þ) considerably increased imprecision in the
treatment effects. This highlights once more the importance of using informative prior distributions specifically for
the random effects variance parameter.

Figure 3. Meta-analysis for minor events, endoscopic vs. open surgical operation for CTS, using a range of alternative models: UNI-

FE (B/F): univariate fixed-effect (Bayesian/Frequentist), UNI-RE (B/F): univariate random effects (Bayesian/Frequentist), BB-FE: bivariate

binomial fixed-effect (Bayesian), BB-RE: bivariate binomial random effects (Bayesian). For all Bayesian models, we present the median of

the posterior distribution.

CrI: credible interval; CTS: carpal tunnel syndrome; OR: odds ratio.
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Finally, as we argued in section 3.3, the only information the data carries for the correlation coefficient z is
the range of the allowed values within each study determined by the marginal total counts (as also depicted in
Figure 1). As a result, the posterior estimates for z are entirely determined by their prior distributions.

5.2 Surgical techniques for correcting myopia

Two studies in this dataset had unclear design. We analysed these studies as if they were of unilateral design. We
used the following prior distributions for the model parameters: �u � Uð�5, 5Þ; �u � Uð0, 5Þ and � � Uð�2, 2Þ.
For heterogeneity, we use an informative prior distribution log �2

� �
� Nð�1:69, 1:682Þ based on the empirical

evidence.33 We explore two options for correlation, � � Nð0:2, 0:12Þ (low correlation), and � � Nð0:5, 0:12Þ
(moderate-high correlation). Results are presented in Figure 4. For our primary model, the posterior median
estimate for �u was 1.35 (–0.16, 2.99) and for �u was 2.20 (1.34, 3.90).

Accounting for correlations using our approach led to an increase in precision of the pooled estimates. For the
case of random effects model, some of the increase in precision was again counterbalanced by an increase in the
estimates for �2, as in the CTS example. There are some differences between Bayesian and frequentist
implementations of the UNI-RE model, particularly for �. Heterogeneity was estimated to be 0 in the
frequentist implementation, while in the Bayesian approach, the median posterior � was 0.29. This difference is
again due to the effect of the informative prior distribution (which had a median of 0.43).

The OR estimated from the beta-binomial model was 1.00 (0.94, 1.06). This finding was markedly different to
the results from all bivariate binomial models. It was also in disagreement with the frequentist analysis performed
in the original publication; the authors performed a Mantel-Hanszel fixed-effects meta-analysis resulting into
OR¼ 1.40 (1.00, 2.00), which is in broad agreement with bivariate binomial models.

One explanation for this important discrepancy between beta-binomial and the other approaches lies in the
distribution of the average risk in the included studies. The average event risk ranged from 8 to 97% in the
included studies, despite the fact that the relative treatment effect was not very heterogeneous (see online
Appendix, section 1.2). In such situations, the bivariate beta-binomial model may be heavily biased towards

Figure 4. Meta-analysis for uncorrected visual acuity (UCVA) of 20/20 or better, at six months after treatment, LASIK vs. PRK for

myopia. Model abbreviations as per Figure 3.

BB-FE: bivariate binomial fixed-effect (Bayesian), BB-RE: bivariate binomial random effects (Bayesian); CrI: credible interval; LASIK:

laser-assisted in-situ keratomileusis; OR: odds ratio; PRK: photorefractive keratectomy; UNI-FE (B/F): univariate fixed-effect (Bayesian/

Frequentist), UNI-RE (B/F): univariate randomeffects (Bayesian/Frequentist).
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zero, as shown in the simulations (section 4, scenarios 17–20). Additionally, the bivariate beta-binomial model was
shown to perform well when the event rate is small; here it is on average 70%.42

6 Discussion

In this paper, we have presented a Bayesian meta-analysis model for synthesizing binary data obtained from
collection studies of different designs: studies of the usual parallel design, studies of a bilateral (split-body) design
and studies including a mixture of unilateral and bilateral interventions. Our model uses a bivariate binomial
distribution that accounts for the correlations induced due to bilateral operations and has several distinct
advantages. It uses the exact likelihood of the data; it does not employ the normal approximation; it respects
the randomization of the studies; it includes in the analysis data coming from studies with zero events in one or
even both interventions, without a need for imputation. Our model has similarities with the bivariate beta-
binomial (Sarmanov) model for meta-analysis (e.g. as described by Chen et al.21). The two models differ,
however, in the model parametrisation and the assumption of random effects. The bivariate beta-binomial
model assumes random effects for the arm-specific event probabilities while the mean log-OR is not a
parameter of the model. In our approach, random effects are assumed for study-specific log-ORs, and the
mean log-OR is a parameter directly estimated in the model. This feature allows us to assume an informative
prior distribution for the log-OR, based on available empirical distributions.

The bivariate beta-binomial model has been previously suggested as the optimal approach for meta-analysing
rare events.8 Our simulations showed that our model may lead to significant increase in precision, coverage and
power, and a decrease in bias, as compared to the bivariate beta-binomial model. Moreover, according to our
simulations, the bivariate beta-binomial model was found to perform very badly when the baseline risk was very
variable in the included studies, even when no correlation was assumed. This was also demonstrated in one of the
two real data-sets we used to illustrate our methods. The increase of precision in our model is more pronounced in
fixed-effects meta-analyses. In the random effects regime, increasing the precision of the study estimates by
accounting for correlations can be partly counterbalanced by an increase in the estimate for heterogeneity.

We set our model in a Bayesian framework. This allows the inclusion of external information for the model
parameters. However, for the case of rare events, inferences from Bayesian meta-analyses may heavily depend on
the choice of prior distribution for the parameters – even when these are thought to be uninformative.36 Due to
this fact, the use of frequentist approaches instead of Bayesian approaches is sometimes advocated. We understand
the reasoning behind this view; in this paper, however, we argue in favour of a Bayesian approach. We think that
the scarcity of information due to the rarity of events should not be seen as an argument against the use of
Bayesian methods. On the contrary, we think that meta-analysts should opt for using Bayesian methods when they
have the opportunity to include high quality, trustworthy external evidence in the analysis.

The major limitation of our model lies on its complexity. The software code we provide might be
computationally heavy when studies have very large sample sizes. This may be especially true if there are large,
mixed-design studies in the dataset. Moreover, embarking into this complicated modelling will only make a
difference in the estimates if the corresponding correlation is large. If the correlation is expected to be small
(e.g. ’5 0:2), then researchers can safely treat observations from patients that received both interventions as if
they corresponded to different patients.

In our model, we assumed exchangeability on the average risk. This might be a very strong assumption to make,
e.g. if there are large differences in the randomization ratio across studies. Alternatively, researchers can assume
exchangeability in the probability of having an event in one of the interventions, pi,A or pi,B in equation (2).
Choosing between the two, however, might be important when the data are sparse. Thus, the choice should be
ideally guided by the availability of trustworthy external information that can be used to formulate informative
priors. Another limitation of our model is that it does not account for the ordering and timing of the treatments.
E.g. there might be studies where the treatments were administered simultaneously and there might be studies
where treatment A is given first and treatment B later, or vice versa, first B then A.

One additional limitation of our model is that it cannot correctly account for correlations induced by patients
that received the same intervention in multiple sites of their bodies i.e. a classical cluster design (e.g. the same
intervention in both hands, both eyes, multiple teeth, multiple people in a household, etc.). This situation requires
an extension of the approach described in this paper. Other possible extensions of our bivariate binomial meta-
analysis model relate to the case of two correlated outcomes (for studies of the usual, parallel design) and for the
meta-analysis of twin studies. Also, our model can be extended for the meta-analysis of the accuracy of multiple
diagnostic tests. Finally, it would be interesting to explore the use of the non-central hypergeometric
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distribution15,44 for bilateral interventions, and compare it with the bivariate binomial approach described in this
paper.

Dimou et al.45 discuss an alternative method that can be used to fill the (unknown) cross-classified information
in the contingency tables of studies that do not report it. Their method uses information from studies that report
the full tables. When no studies report the full tables, the authors suggest the use of the iterative proportional
fitting algorithm,46 which is, however, based on strong assumptions. Both these methods do not account for
uncertainty in the (unobserved) missing values of the contingency tables. Moreover, the methods described in
that paper are not suitable to use in the case of rare events.

A different approach to synthesizing data from studies with bilateral design is to only use information on the
number of discordant pairs,2 i.e. the number of patients with an event in A but not in B, and the number of
patients with an event in B but not in A. This approach, however, could not be used for the case where some
studies in the meta-analysis are of a unilateral design, and/or some studies are of a mixed design. E.g. this
approach could not have been used in the examples presented in this paper.

To summarize, we think that the model we presented constitutes the best available method for meta-analysing
binary outcomes in the presence of bilateral (split-body) interventions, and that its implementation is in practice
straightforward.
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