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ABSTRACT
Viewshed analysis is a GIS tool in standard use for more than two decades to perform
numerous scientific and practical tasks. The reliability of the resulting viewshed model
depends on the computational algorithm and the quality of the input digital surface
model (DSM). Although many studies have dealt with improving viewshed algorithms,
only a few studies have focused on the effect of the spatial accuracy of input data.
Here, we compare simple binary viewshed models based on DSMs having varying
levels of detail with viewshed models created using LiDAR DSM. The compared DSMs
were calculated as the sums of digital terrain models (DTMs) and layers of forests
and buildings with expertly assigned heights. Both elevation data and the visibility
obstacle layers were prepared using digital vector maps differing in scale (1:5,000,
1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects
vectorized on an orthophotomap. All analyses were performed for 104 sample locations
of 5 km2, covering areas from lowlands to mountains and including farmlands as well
as afforested landscapes. We worked with two observer point heights, the first (1.8 m)
simulating observation by a person standing on the ground and the second (80 m)
as observation from high structures such as wind turbines, and with five estimates of
forest heights (15, 20, 25, 30, and 35m). At all height estimations, all of the vector-based
DSMs used resulted in overestimations of visible areas considerably greater than those
from the LiDAR DSM. In comparison to the effect from input data scale, the effect
from object height estimation was shown to be secondary.

Subjects Ecosystem Science, Spatial and Geographic Information Science
Keywords LiDAR, Spatial uncertainty, Digital surface model, Viewshed, Data quality

INTRODUCTION
Defining the visibility of objects in the landscape has been important for historical studies
(e.g., Ogburn, 2006; Sevenant & Antrop, 2007) and has found application also in a number
of areas of current interest, such as seeking locations to place objects potentially harming
scenic beauty like photovoltaic power plants or wind farms (Fernandez-Jimenez et al., 2015;
Sklenicka & Zouhar, 2018), coastal aquaculture sites (Falconer et al., 2013), and ski areas
(Geneletti, 2008); placing military structures (Smith & Cochrane, 2011); tagging landscape
photographs (Brabyn & Mark, 2011); analyzing the effects of introducing animal species
(Kizuka et al., 2014); and modelling predation risk in animal ecology (Alonso, Álvarez
Martínez & Palacín, 2012; Olsoy et al., 2015). The basic algorithm implemented in most
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GIS software produces a binary detection of areas that are visible or nonvisible from a point
of observation or identifies areas from which a given object in the landscape is or is not
visible. Combining several such binary viewsheds created frommultiple observation points
or from all cells in the raster of the study area creates a cumulative viewshed describing
the visual exposure of the study area. As a number of factors may play roles in visibility
modelling and using only a binary attribute (0 or 1) constitutes a drastic simplification
(Fisher, 1992), other algorithms have been under development for a number of years, such
as fuzzy viewshed and visual magnitude (Chamberlain & Meitner, 2013; Fernandez-Jimenez
et al., 2015; Fisher, 1992; Fisher, 1993; Fisher, 1994; Fisher, 1995; Fisher, 1996; Ogburn,
2006), as well as visibility indices such as the Vertical Visibility Index (Nutsford et al., 2015),
which enrich the model with further parameters and so are used to bring it closer to reality.
Due to their simplicity and implementation in common GIS software, however, binary and
cumulative viewsheds are still used in a number of studies (e.g., Alonso, Álvarez Martínez
& Palacín, 2012; Falconer et al., 2013; La Rosa, 2011; Olsoy et al., 2015; Schirpke, Tasser &
Tappeiner, 2013).

In addition to the computational algorithm, the reliability of the resulting visibilitymodel
also depends on the quality of the input digital surface model (DSM) (Klouček, Lagner &
Šímová, 2015; Lake et al., 2000; Sander & Manson, 2007), and Fisher (1992) previously
noted that it would be an error to assume the input DSM to be accurate. Although many
studies have dealt with improving algorithms, only a few studies have focused on the effect
the spatial accuracy of input data has on the reliability of results from visibility analyses,
even though, as can been seen in older visibility studies (Fisher, 1992;Huss & Pumar, 1997)
and spatial uncertainty research in other areas (for review see Barry & Elith, 2006; Moudrý
& Šímová, 2012), it is highly probable that decreased data quality correlates with decreased
quality of results. DSMs for visibility analyses are mostly created as combinations of digital
terrain models (DTMs) depicting the bare earth surface plus layers of objects on that
surface, particularly structures and vegetation. As such layers rarely contain the attribute
object height, the height for creating the DSM is estimated based on knowledge of the area
or such sources as published works on vegetation in the location, as was done by Schirpke,
Tasser & Tappeiner (2013). The accuracy of this estimate represents an additional potential
source of DSM inaccuracy beyond the scale of elevation and planimetric data. In extreme
cases, objects are entirely omitted from the surface and visibility is modelled based only
upon a DTM, even though Dean (1997) has already demonstrated the logical expectation
that using DSM results in higher-quality visibility models.

Examples of rare studies dealing with input data precision have been presented by Lake et
al. (2000) and Sander & Manson (2007), who focused upon modelling structures as vertical
obstacles to visibility. Some authors have focused on modelling vegetation for visibility
analysis, but they did not evaluate the effect of such models’ precision on the precision
of the visibility model (e.g., Domingo-Santos et al., 2011). Problems with implementing
vegetation and structures into DSMs do not arise when using LiDAR-based surface models,
which already contain objects on the surface and are considered by many authors to be
currently the most accurate data input for visibility analyses (see Castro, García-Espona &
Iglesias, 2015; Lake et al., 2000; Murgoitio et al., 2014). Using the example of wind turbine
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visibility and comparing modelled visibility with actual visibility in the field, Klouček,
Lagner & Šímová (2015) demonstrated that use of a LiDAR-based DSM can result in an
approximately 90% match rate with reality while the use of DSMs based on vector layers
of various scales resulted in only 50–80% match rates. Unfortunately, LiDAR-based DSMs
cannot yet be used for all study areas due to their high prices, because of the difficulty in
processing a point cloud into a raster DSM, and not least for the reason that LiDAR data
is not yet available for a number of areas. For these reasons, it is necessary to know how
visibility models based on other data differ from LiDAR-based models and whether these
differences depend on the quality of the vegetation height estimation and other variables.

The aim of our study was to evaluate the effect of the quality of DSMs (which are
conditioned by the quality of DTM data and by tree heights expertly assigned during DSM
construction) on the accuracy of a simple binary viewshed analysis. We hypothesized that
models with lower resolution will lead to higher overestimations of the viewshed.

METHODS
Sampling locations
We analyzed visibility at 104 sampling locations in the Czech Republic. One location
corresponded to a single page of a national map at a scale of 1:5,000 (i.e., a rectangle of 2.5
× 2 km). Selecting locations in this manner provided sufficient areas for visibility analyses
at a detailed scale while still enabling acquisition of input data for a sufficient number of
locations. The locations (map pages) were selected by stratified random sampling from
that section of the Czech Republic which had available DTMs as well as DSMs created
from airborne laser scanning data. This section forms a north–south band in the center
of the country (Fig. 1) covering elevations ranging from lowlands to mountains (141 to
928 m a.s.l.) and various landscape types from agricultural to forest. Random sampling
of locations was stratified so that it would include as equally as possible combinations
of variously forested areas (three categories according to the proportion of forest at the
location: 0–9%, 10–24%, and 25–60%; the proportions were computed from vector map at
a 1:25,000 scale) and various terrain configurations (three categories according to elevation
differences in the area expressed as the standard deviation of elevation in the location: <10,
11–30, >30 m; the values were computed from MAP25). Another condition was excluding
selection of adjacent map pages.

Input data and GIS processing
All GIS analyses were conducted using ArcGIS 10.2 software (ESRI, CA, USA). For all
viewshed analyses, we used five input DSMs varying in scale and accuracy (see Table 1
for overview). The most accurate was the 1st Generation LiDAR-based DSM of the Czech
Republic (hereinafter LiDAR). It was also the only dataset that was available directly
as a DSM for the sampling locations. The remaining DSMs were created as sums of
rasters comprising the terrain (DTMs) and objects on the terrain (digital object models
[DOMs]). Working in this manner, one of the inputs combined a LiDAR-based DTM with
a vectorization of forests and built-up areas on the actual orthophotomap (hereinafter
LidOrth). The remaining DSMs were based on vector topographic maps at scales of
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Figure 1 Sampling locations.
Full-size DOI: 10.7717/peerj.4835/fig-1

1:5,000 (hereinafter MAP5), 1:25,000 (MAP25), and 1:500,000 (MAP500) (see Table 2 for
overview). In all these datasets, elevation was depicted by contour lines and topography
by polygons representing the footprints of individual objects on the ground. DTMs were
calculated by interpolating contour lines using the topo to raster method. To create
DOM rasters, we added estimated values of heights to polygons of visual obstacles and
rasterized the layers. Inasmuch as forests were the most important visual obstacles within
the locations, we tested five values of forest height (15, 20, 25, 30, and 35 m) to evaluate the
effect of the DOMs’ height estimates on viewshed results. These values represent a range
of mature forest types under various ecological conditions in the Czech Republic. Other
woody vegetation types, such as young forests and orchards, were assigned the height of
5 m. We assigned the height of 8 m to buildings and built-up areas as an estimate of the
average height of rural structures within the locations.

The ArcGIS Viewshed tool, which creates simple binary layers distinguishing between
visible and nonvisible areas, was employed for GIS visibility analyses and the process was
automatized using a Python script. Within each sampling location, we generated one
random point outside of the forested areas as the observer location. We processed a set of
viewshed analyses with all of the DSMs and with two heights assigned to the observer point
as the OFFSETA parameter within the Viewshed tool (the OFFSETA parameter simulates
observer’s height—it is a vertical distance that is added to the vertical value of the cell.
The height of 1.8 m simulated observation of the landscape by a person standing on the
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Table 1 Description of input datasets.

Acronym
within
study

Czech
acronym

Scale Year of last
update

Elevation
accuracy

Planimetric
accuracy

Contour
interval

Data
description

LiDAR DMP 1G Density of
elevation point
cloud is 1–2
points/m2

2009–2013 0.4–0.7 m 0.4–0.7 m No contour Digital surface model
represented by eleva-
tion point cloud from
data acquired by aerial
LiDAR covering part of
the Czech Republic

LidOrth DMR 5G Density of
elevation point
cloud is 1–2
points/m2

2009–2013 0.18–0.3 m Only elevation
dataset

No contour Digital terrain model
represented by eleva-
tion point cloud from
data acquired by aerial
LiDAR covering part of
the Czech Republic

Orthophotomap Pixel resolution
=0.5 m

2013 Only planimetric
dataset

0.25–0.5 m Orthophotomap cover-
ing the entire Czech Re-
public

Map5 SM 5 1:5,000 2001–2014 0.7–5 m 0.5–1 m 1, 2, or 5 m
depending on the
character of the
terrain

Large-scale vector
database covering part
of the Czech Republic

Map25 DMU 25 1:25,000 1998 5–10 m 0.5–20 m 5 m Medium-scale vector
database covering the
entire Czech Republic

Map500 ArcCR 500 1:500,000 2014 25–50 m Up to 200 m 50 m Small-scale vector
database covering the
entire Czech Republic

Table 2 Creation of five digital surface models (DSMs) from input datasets.

DSM DTM—source elevation
data

DOM—source planimetric data

LiDAR = elevation point cloud = elevation point cloud
LidOrth = elevation point cloud + vectorization on actual orthopho-

tomap: forest (15–35 m), orchard
(5 m), built-up area (8 m)

MAP5 = MAP5 (contour lines) + Map5: forest (15–35 m), orchard (5
m), built-up area (8 m)

MAP25 = MAP25 (contour lines) + Map25: forest (15–35 m), orchard
(5 m), built-up area (8 m)

MAP500 = MAP500 (contour lines) + MAP500: forest (15–35 m), built-
up area (8 m)

ground (ground variant—1.8 m above terrain). The second variant used the height of 80
m, which can be interpreted as visibility from an observation tower or as visibility from a
tall structure such as a wind turbine in the landscape (approximately, disregarding height
of the observer; tower variant). In this way, we created 2× 21 viewshed models, i.e., binary
rasters (visible-not visible) for each sampling location.
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Statistical analysis
We used an R (R Core Team, 2015) script for the nonparametric Friedman’s ANOVA
with repeated measures design and post-hoc test (available from http://www.r-
statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code/) to analyze potential
differences among visibilities modelled with different forest heights. The response variable
was the amount of visible area as a percentage of the location obtained from the viewshed
models for each dataset and the forests heights were designed as repeated measures at the
same location. The identical procedure was used to analyze differences among visibilities
obtained from individual datasets. In this case, the response variable was the percentage of
visible area modelled with the forest height of 25 m and the datasets were taken as repeated
measures at the location. Similarly, we used this design and the Friedman test to test the
significance of spatial differences among modelled visibilities. In accordance with previous
studies (Castro, García-Espona & Iglesias, 2015;Klouček, Lagner & Šímová, 2015; Lake et al.,
2000;Murgoitio et al., 2014), we considered the model based on the LiDAR DSM to be the
most accurate (as best matching reality). Hence, the response variable was calculated as the
spatial difference (Symmetrical Difference Tool in ArcGIS) between LiDAR visibility and
visibility modeled with an individual dataset (LiDAR vs. LidOrth, LiDAR vs. MAP5, LiDAR
vs. MAP25 and LiDAR vs. MAP500). In comparison with a simple numerical subtraction,
spatial difference reflects also the cases, when visible areas are numerically similar but their
shape and location differ.

RESULTS
As can be seen in Table 3, using a tower as the observation point or observed object leads,
as expected, to larger viewsheds modelled based on each dataset in comparison to the
area visible to a ground-level observer, although the trend of differences among datasets is
similar for both observer point heights. The smallest average size of visible area in sampling
locations came from LiDAR model, while all of the remaining datasets led to considerable
overestimations in the resulting viewshed (see Fig. 2 for an illustration). For both observer
point heights, the viewshed size resulting from LiDAR model (on average 6.76% of the
location when observing from the ground and 51.40% from 80 m) clearly differed from
the sizes calculated using the other datasets. For the ground-level variant, the results closest
to those of the LiDAR model were achieved by the model based on LidOrth, followed
by the models based on MAP25 and MAP5, which had average visibility similar to one
another. For the observer point height of 80 m, there were minimal differences among
results acquired using LidOrth, MAP5, and MAP25. For both variants, the model based on
MAP500 produced the largest viewshed overestimations. For ground-level observation, the
LidOrth model produced visible areas approximately 70% larger than those produced by
the LiDARmodel. TheMAP5- andMAP25models resulted in visible areas more than twice
as large and the MAP500-based model more than five times as large as those produced
by the LiDAR model. Although the differences in visible area did not come to such large
multiples for the tower variant, the visibility modelled based on various datasets differed by
more percentage points and the differences therefore concerned a larger proportion of the
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Table 3 Sizes of visible area as a percent of the sampling location standard deviation modelled on basis of individual datasets for observation
from ground level (ground) and from a height of 80 m (tower).

Forest height
DSM Level 15 m 20m 25m 30m 35m

LiDAR Ground – – 6.76± 6.88 – –
tower – – 51.40± 16.89 –

LidOrth ground 12.04± 10.07 11.75± 9.90 11.50± 9.77 11.32± 9.68 11.29± 9.64
tower 71.46± 15.64 69.80± 15.80 68.16± 16.03 66.56± 16.31 65.01± 16.66

MAP5 ground 16.35± 12.85 16.01± 12.76 15.72± 12.73 15.49± 12.71 15.34± 12.66
tower 73.59± 15.57 71.92± 15.74 70.27± 16.02 68.65± 16.34 67.06± 16.71

MAP25 ground 16.18± 13.92 15.48± 13.71 14.97± 13.63 14.56± 13.53 14.24± 13.41
tower 72.36± 15.94 70.12± 16.26 67.95± 16.74 65.89± 17.25 64.00± 17.56

MAP500 ground 37.33± 22.61 36.74± 22.53 36.20± 22.47 35.74± 22.43 35.36± 22.41
tower 86.37± 14.60 85.29± 14.97 84.22± 15.49 83.18± 16.13 82.25± 16.65

Table 4 Significance of size differences among visible areas modelled based on individual datasets us-
ing a forest height of 25 m for ground and tower variants. Friedman test with repeated measures design
and post-hoc test. Significant values are in bold.

LidOrth MAP5 MAP25 MAP500

ground tower ground tower ground tower ground tower

LiDAR <0.002 <1e−9 <1e−16 <1e−16 <1e−11 <1e−16 <1e−16 <1e−16

LidOrth <2e−5 <0.0002 <0.01 0.051 <1e−16 <1e−16

MAP5 0.554 0.455 <1e−9 <1e−9

MAP25 <5e−14 <1e−14

area. The LidOrth-, MAP5-, and MAP25-based models produced visible areas almost 20
percentage points larger than did the LiDAR-based model, and the MAP500-based model
produced visible areas about 30 percentage points larger (Table 3). This simple overview of
percentages also corresponds to the results of the Friedman test for models using a forest
height of 25 m (Table 4). Significant differences in visibility modelled based on the MAP5
and MAP25 datasets were not recorded for any of the observer point heights. In addition,
there was no significant difference for the tower variant between the LidOrth-based and
MAP25-based models. All remaining differences among datasets were significant, and
frequently very highly so (see Table 4).

Spatial differences between visibilities based on individual datasets and LiDAR-based
visibility (see Table 5) were larger than the differences acquired through numerically
subtracting visible areas, although numerical and spatial differences displayed the same
trend (the Spearman correlation coefficient for numerical and spatial differences varied
between 0.845 and 0.957). In terms of spatial differences, the LidOrth-based model differed
in resulting visibility from the LiDAR-based model by 8.05 percentage points in the ground
variant and by 25.75 percentage points in the tower variant. The spatial differences between
other models and the LiDAR-based model were significantly greater than was that for the
LidOrth-based model (see Table 6 for p-values). The differences between the remaining

Lagner et al. (2018), PeerJ, DOI 10.7717/peerj.4835 7/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.4835


Figure 2 Overestimation of visible area depending on input DSM scale and observer point height—an
example of one sampling location (A) Digital surface model. (B) Visibility model—ground variant. (C)
Visibility model—tower variant.

Full-size DOI: 10.7717/peerj.4835/fig-2

Table 5 Overestimations by individual models when compared to LiDAR results.

Model based on: LiDAR LidOrth MAP5 MAP25 MAP500

Difference Ground (1.8 m) 0 8.05 12.52 12.44 32.5
Difference Tower (80 m) 0 25.75 26.56 26.62 35.29

Table 6 Significance of spatial differences amongmodelled visibilities. The response variable was
calculated as the spatial difference between LiDAR visibility and the visibility modeled by an individual
dataset. Friedman test with repeated measures design and post-hoc test. Significant values are in bold.

MAP5 MAP25 MAP500

ground tower ground tower ground tower

LidOrth <5e−8 <0.005 <5e−7 <0.0001 <1e−16 <1e−16

MAP5 0.998 0.852 <5e−16 <1e−16

MAP25 <1e−16 <5e−15

datasets and the LiDAR-based model expressed as percentage points were (Model: ground,
tower): MAP5: 12.52, 26.56; MAP25: 12.44, 26.62; and MAP500: 32.5, 35.29. Similarly as
for the analyses focused on total visible area (Table 4), the spatial difference analysis also
resulted in no significant differences from the LiDAR-basedmodel for visibilities calculated
based on MAP5 and MAP25 (Table 6). Visibility based on MAP500 again very significantly
differed from that based on all of the others.

In general, it can be concluded from the analysis as to effect of dataset used on resulting
visibility that viewshed models calculated using a combination of a LiDAR-based DTM
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Table 7 Significance of size differences among visible areas for LiDAR-based DSM and different forest heights for ground and tower variants.
P-values are presented for one of those datasets with similar results (LidOrth) and the most different dataset (MAP500). Friedman test with repeated
measures design and post-hoc test. Significant values are in bold.

15 m 20m 25m 30m 35m

ground tower ground tower ground tower ground tower ground tower

LiDAR LidOrth <1e−16 <1e−16 <1e−16 <1e−16 <5e−11 <1e−16 <1e−4 <5e−12 <0.05 0.005
MAP500 <1e−16 <1e−16 <1e−16 <1e−16 <1e−16 <1e−16 <1e−16 <1e−16 <5e−14 <5e−7

15 m LidOrth 0.524 <0.01 <5e−4 <5e−12 <5e−12 <1e−16 <1e−15 <1e−16

MAP500 0.219 <0.05 <5e−4 <5e−9 <5e−10 <1e−16 <5e−16 <1e−16

20 m LidOrth 0.127 <0.005 <5e−7 <5e−12 <5e−10 <1e−16

MAP500 0.257 <0.05 <5e−4 <5e−9 <5e−9 <1e−16

25 m LidOrth <0.05 <0.005 <0.001 <5e−12

MAP500 0.238 <0.05 <5e−4 <5e−10

30 m LidOrth 0.931 <0.005
MAP500 0.322 <0.01

with vectorization on an orthophotomap (LidOrth) provide similar results as do models
created based on maps at scales 1:5,000 to 1:25,000, although modelled visibility is strongly
overestimated in comparison to models based on LiDAR-based DSMs.

Looking at the effect of forest height (Table 3), it is apparent that the visible area
decreases with taller forest height, although the effect is much smaller than that caused
by the quality of the terrain model. Other effects of forest height are demonstrated in the
LidOrth dataset, representing datasets giving similar visible area values (LidOrth, MAP5,
and MAP25), and the MAP500 dataset as the dataset giving the most different results (see
Table 7). For the ground variant, visible area extent was in most cases significantly different
when the forest height was changed by 10 m, while a change of 5 m was sufficient in the
tower variant. All of the heights produced results significantly different from those of the
LiDAR-based model. The significance of all of the differences had a decreasing tendency
with coarser scale and tended to be lower for the ground variant than for the tower variant.
For the combination of all effects, the difference from the LiDAR-based model was least
apparent for the ground model with MAP500 as the input dataset and forest height of
35 m (p= 0.048). Given the overall overestimation of visibility by all datasets, however, it
cannot be stated that the tallest forest height estimate is the most suitable for calculating
viewshed. Despite their statistical significance, percentage differences in visible area size
caused by changes in forest height were minimal in comparison to those caused by input
data accuracy. It can therefore be stated that the effect of data detail on modelled visibility
is dominant and that when using surfaces not based on LiDAR object height accuracy has
only a secondary effect on the accuracy of the result.

How spatial differences between the visibility modelled with a given dataset and LiDAR-
based visibility depended on terrain configuration and number of obstacles cannot be
generalized, because individual datasets in combination with the ground and tower variants
produced varying results.
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DISCUSSION
This study compares the results of visibilitymodels based on data of various spatial accuracy
with models based on a LiDAR-based dataset, the latter of which most closely matches
reality according to the field comparison ofmodelled visibility byKlouček, Lagner & Šímová
(2015). We expected that the models would be overestimating the LiDAR-based viewsheds
as Lidar provides a full digital surface model including all low vegetation or obstacles that
cannot be properly captured when using any of the other models. We also expected that
the LidOrth model would be the best of the composite models as the terrain model is very
accurate and is not subject to generalization as in the case of MAP-based models. Our
results confirmed that assumption, all of the other models considerably overestimated
visibility in comparison to the LiDAR-based model.

We had also expected that, with the exception of the LidOrth dataset combining a
LiDAR-based DTM with objects digitized on an actual orthophotomap, the smallest
difference would appear in visibility modelled on basis of the most detailed vector data
(i.e., MAP5). Surprisingly, however, MAP5 provided similar results as didMAP25, whether
working with numerical or spatial differences in visible areas. In addition to the fact that
MAP5 is at a more detailed scale than is MAP25, MAP5 is the only tested dataset that
depicts individual buildings and not just outlines of built-up areas. In accordance with the
results of Sander & Manson (2007), who stated that generalizing building locations has a
significant effect on the resulting viewshed model and that this effect is more important
than is that from imprecise building height determination, we predicted that MAP5 would
produce a more precise viewshed model. However, Sander & Manson (2007) analyzed
visibility in cities and our results indicate that in locations in the countryside, where
buildings occur to a lesser extent and are predominantly part of smaller municipalities
as in our study, then generalizing buildings does not have a significant effect on visibility
modelling results. For all variants evaluated, visibility modelled on the basis of MAP500
differed the most from the other visibility models. This result corresponds to the low
reliability of visibility models based on this dataset (48.1–63.9%) found by Klouček, Lagner
& Šímová (2015). Data generalized to such an extent as is found in maps at a scale of
1:500,000 therefore cannot be used at such a detailed scale (areas of 5 km2) for modelling
visibility, not even when objects on the surface are included from the planimetric layers of
such a map. The fact that even LidOrth, which utilizes the same terrain as LiDAR model,
showed overestimation, leads to a conclusion that the expertly assigned tree heights were
indeed the principal source of the error. In some observer points, however, even omission
of taller herbaceous vegetation could have caused an overestimation for the ground variant
as it might have partly obstructed the ‘‘observers’’ view.

In relation to the findings of this study and those of Klouček, Lagner & Šímová (2015),
it can be difficult to understand the results of studies that do not describe in detail the
input data used to model visibility. This is a problem for certain applied studies that
do not have as their primary objective to study the effect of geodata on the results. For
example, Geneletti (2008) modelled the visibility of ski areas in a range of 5 km, which
means within the zone of greatest visual effect (e.g., Betakova, Vojar & Sklenicka, 2015),
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based on a DSM, but that author did not state how and from what data the DSM was
assembled. Etherington & Alexander (2008) stated the scale of the digital elevation model
(1:20,000) and the resolution of the raster (30 m) used for their viewshed model, but it
is not clear whether this raster included vegetation. Given that the scale of data used has
a dominant effect on visibility results, all future studies should describe the input data so
that the applicability of the study results can be evaluated.

According to our results, it cannot be stated unequivocally that the rate of spatial
overestimation by datasets would be, say, higher in flat or mountainous terrain or in areas
that are more or less forested. Our work considered obstacles to visibility to be opaque.
This is not necessarily the case, however, and particularly not in the case of forest stands.
Therefore, searches are underway for techniques to model forests more realistically than
as solid polygons with uniform tree height (e.g., Domingo-Santos et al., 2011; Liu et al.,
2010). Such forest models work with individual trees and thereby take into account both
stand density and set crown height, with stands having crown height set higher being more
transparent. Our results indicate, however, that at the given evaluation scale (locations of
5 km2) such labor-intensive modelling of stands is not significant for the results, as the
effect of input data scale is dominant. This can be seen in the fact that all of the datasets
used produced overestimations in comparison to the LiDAR-based model. Making forest
stands transparent would result in a higher percentage of visible area at a given location
(i.e., even greater overestimations) and thus increasing the accuracy of obstacle models
would paradoxically further add to viewshed model inaccuracy.

The LiDAR-based DSMs used in this study originate from nationwide imaging which
did not have as its primary objective to create DSMs in non-built-up areas. The fact that
the imaging took place also outside of the growing season can, together with the low
point cloud density, lead to inaccuracy in the DSMs, particularly in places with broadleaf
vegetation. It is therefore possible that use of more detailed LiDAR captured during the
growing season would reveal even greater spatial overestimation of visibility by all tested
datasets.

CONCLUSIONS
This comparison of visibilities modelled using the LiDAR-based DSM and DSMs based
on vector datasets or on a combination of the LiDAR DTM and an orthophotomap
indicates that all of the other models considerably overestimated visibility in comparison
to the LiDAR-based model. The overestimation rate was greater in absolute numbers
with a higher observer point, although trends in overestimations were identical in models
simulating observation from the ground and those simulating observation from a tower. In
both cases, it can be stated that none of the other datasets with any set height for obstacles
to visibility approached the accuracy of the LiDAR-based visibility model and that the
established obstacle height had a minor effect on resulting visibility in comparison to the
effect of the dataset.
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