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Camel milk is traditionally considered to have medicinal characteristics that it has potential health benefits
and could help to treat several illnesses. Particularly, it is closest to human breast milk and has high levels of
nutrients and bioactive components. The aim of this study was to explore the antioxidant peptides derived
from protein fractions of camel milk. Camel milk proteins (CMP) were fractionated into camel casein protein
(CCP) and camel whey protein (CWP), which were hydrolyzed with pepsin to produce peptic digests P-CCP
and P-CWP, respectively. RP-HPLC was used for fractionation of the peptides from the P-CCP and P-CWP. The
antioxidant activities were evaluated using superoxide anion generating system of xanthine oxidase (XOD)
and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. Active peptides were analyzed using matrix-
assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) whereas a number of
antioxidant peptides, with masses ranging from 913 to 2,951 Da, derived mainly from alpha-casein, lac-
tophorin and lactoferrin, were identified. When yeast cells are used as a system for modeling mitochondrial
disease, the peptides in caseins and whey fractions significantly enhanced the tolerance of yeast cells
against peroxide-induced oxidative stress. The results show that both caseins and whey proteins of camel
milk possess bioactive peptides with significant radical-scavenging activities and thus herald a fascinating
opportunity for their potential as nutraceuticals or therapeutic peptides for prevention and treatment of
oxidative stress-associated diseases.

© 2018, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Milk proteins received increasing attention as they are often
precursors of various biologically active peptides within the
sequence of proteins which are released by enzymatic actions. They
exert multifunctional activities, such as immune-modulatory, anti-
inflammatory, antimicrobial and anti-cancer properties (Chen et al.,
2014; Zimecki and Kruzel, 2007). In contrast to the milk of other
dairy animals, camel milk has been reported to cure severe food
allergies in children and diabetes (Abdulrahman et al., 2016;
Ehlayel et al., 2011a,b; Shori, 2015; Zibaee et al., 2015). Further-
more, camel milk is suggested to exert a number of therapeutic
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activities (Hailu et al., 2016; Mihic et al., 2016). Numerous studies
suggest that camel milk has distinct therapeutic benefits, such as
anti-diabetic (Korish, 2014; Korish et al., 2015; Mirmiran et al.,
2017), anti-toxic (Al-Asmari et al., 2017; Khan, 2017), anti-viral
(el Agamy et al., 1992; El-Fakharany et al., 2017; Lee et al., 2016),
antibacterial (Cardoso et al., 2013; Rahimi and Kheirabadi, 2012;
Soliman et al., 2015), anti-rheumatoid arthritis (Arab et al., 2017),
anticancer (Ayyash et al., 2017; Chen et al., 2014; Korashy et al.,
2012), and wound healing (Ebaid et al., 2015, 2017) activities. In
addition, camel milk has been used for centuries in the Middle East,
Asian and North African cultures as a natural remedy for many
common health problems (Agrawal et al., 2011a,b; Al-Ayadhi and
Elamin, 2013; Ehlayel et al., 2011a,b; Mohamad et al., 2009, 2015;
Shori, 2015).

Reactive oxygen species is an aspect of oxidative stress which
are associated with many diseases such as rheumatoid arthritis,
diabetes, inflammation, atherosclerosis and cancers (Collins, 2005;
Halliwell, 1994). Thus, the need for naturally occurring antioxidants
is of crucial importance. Some biopeptides derived from natural
proteins have significant therapeutic activities, including anti-
oxidative, anti-inflammation, antimicrobial and antihypertensive
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
nses/by-nc-nd/4.0/).
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actions (FitzGerald et al., 2004; Korhonen and Pihlanto, 2007; Lee
et al., 2004; Silva and Malcata, 2005). The interesting feature of
bioactive peptides as nutraceuticals or therapeutics is that they
display little side effects in human. Some studies reported the
antioxidant effects of camel milk; however, these studies were
performed on fermented milk (Ayyash et al., 2017, 2018), whole
milk (Al-Ayadhi and Elamin, 2013; Zhu et al., 2016), total protein
hydrolysate (Al-Shamsi et al., 2018), or specific protein such as
lactoferrin (Habib et al., 2013). There is little information available
in the literature about the study on the antioxidant action of the
isolated protein fractions of camel milk or their peptides. Thus, the
assessment of the peptides from camelmilk protein (CMP) fractions
for their abilities to scavenge free radicals to prevent oxidative
stress would be highly rewarding, has yet to be investigated and is
crucially needed. Therefore, this study is to explore the antioxidant
activities of the protein fractions, casein and whey, of camel milk as
well as their peptides released by peptic digestion.

2. Materials and methods

2.1. Materials

Pepsin (porcine), xanthine, xanthine oxidase (XOD), nitroblue
tetrazolium (NBT) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were
from SigmaeAldrich (Tokyo, Japan); TSK gel ODS-120T columnwas
from TOSOH (Tokyo, Japan); a-cyano-4-hydroxy-cinnamic acid (a-
HCCA) was from Bruker Daltonik (Bremen, Germany).

2.2. Fractionation and peptic hydrolysis of proteins

As shown in Fig. 1, fats were removed from raw camel milk by
centrifugation at 5,000 � g for 30 min at 10 �C, and the super-
natant was passed through 3 layers of gauze and referred to as
CMP. A portion of CMP was lyophilized and the rest was adjusted
to pH 4.6 with acetic acid (10%) and centrifuged at 5,000 � g for
10 min at 30 �C. The re-suspended pellet (caseins) and the su-
pernatant (whey proteins) were dialyzed, using 1000 MWCO
tubes. These fractions were lyophilized and referred to as camel
Fig. 1. Outline of the fractionation of milk proteins into caseins an
casein protein (CCP) and camel whey protein (CWP). Protein in
HCl solution (pH 3.0) was mixed with pepsin to give 50:1 (wt/wt)
protein to pepsin. After incubation at 37 �C for 2 h, pepsin was
inactivated by heating at 85 �C for 5 min. The reactions were
centrifuged at 3,000 � g for 10 min at room temperature, and the
supernatants were adjusted to pH 7.0 and freeze-dried. The de-
gree of hydrolysis in the peptic digests of caseins (P-CCP) and
whey (P-CWP) was analyzed on reducing sodium dodecylsulfate
polyacrylamide gel electrophoresis (SDS-PAGE) according to
standard protocols (Laemmli, 1970). Protein bands were visual-
ized with Coomassie Brilliant Blue (CBB). The hydrolysates (P-
CWP and P-CCP) were purified by RP-HPLC on C18 column
(7.5 mm � 25 mm) with linear gradient of 1% to 40% acetonitrile
over 180 min. Elution of peptides was monitored at 214 nm.
Peptides were collected, vacuum dried and re-suspended at the
desired concentration in distilled water.

2.3. Antioxidant activity assay

Antioxidant activity was evaluated by 2 methods: superoxide
(O2

��)-scavenging and DPPH-mediated reduction assays. Superox-
ide generated during the conversion of xanthine into uric acid by
XOD in the presence of nitro-blue tetrazolium as a probe was
employed to assess superoxide-scavenging activity (Ahmed et al.,
2015; Ibrahim et al., 2017). The scavenging capacity is expressed
as the degree of NBT reduction by superoxide and measured
spectrophotometrically at 562 nm. A 100 mL reaction mixture
containing NBT (40 mmol/L), xanthine (5 mmol/L) and various
concentrations of protein or peptides in 10 mmol/L Na-phosphate
buffer, pH 8.0, in a 96-well plate. Control (Ctrl) lacked test sam-
ple. Upon addition of a 100-mL of 5 mU XOD, the kinetics of the
reaction was monitored at 562 nm (37 �C) for 20 min by an
Ultrospec Biotrak II microplate reader (Amersham Biosciences,
Uppsala, Sweden). Two blanks were prepared without XOD or both
sample and XOD. Blank values were subtracted from samples, and
the results represented as absorbance change, by subtracting the
reading at 0 time from the subsequent readings. Results are
representative of 2 experiments with 3 wells per sample.
d whey proteins as well as peptic hydrolysis of the fractions.



Fig. 2. Electrophoretic patterns of camel milk proteins (CMP), camel whey proteins
(CWP), and camel casein proteins (CCP) before and after peptic digestion on 15%
polyacrylamide gels of reducing sodium dodecylsulfate polyacrylamide gel electro-
phoresis (SDS-PAGE). Mr ¼ molecular weight marker; P-CMP ¼ pepsin digested CMP;
P-CWP ¼ pepsin digested CWP; P-CCP ¼ pepsin digested CCP.
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The DPPH-scavenging activity was measured by spraying DPPH
solution over protein spotted on a thin layer chromatography (TLC)
sheet (Nia et al., 2004). A 6 mL proteins or peptides were spotted on
a 5 cm� 7.5 cm TLC sheet (silica gel 60 F254; Merck, Germany) and
air-dried. The sheets were sprayed with ethanol solution of DPPH
(1.8 mmol/L). White spots will appear within the purple back-
ground when spots contain DPPH-scavenger.

2.4. Yeast model for oxidative stress

Yeast Saccharomyces cerevisiae, which displays a moderate
sensitivity to oxidative stress induced by H2O2, was used as a system
for modeling mitochondrial disease. Briefly, S. cerevisiae (YNN27)
cells, grown in yeast extract peptone dextrose (YPD) broth, were
suspended in the same broth at absorbance (600 nm) of 0.1. Peptides
(200 mg/mL) were incubated at 28 �C with yeast suspension for 1 h.
An oxidizing agent (H2O2) was added (2 mmol/L), and the incuba-
tion was extended for 48 h. A 10 mL portion of serially diluted cul-
tures in 2 mmol/L H2O2 was spotted on YPD agar plates containing
2 mmol/L H2O2. Plates were incubated for 72 h at 28 �C and the
colony forming units of yeast was estimated after incubation of the
agar plates at 28 �C for 72 h. Data was presented in cfu/mL.

2.5. Peptides identification

Matrix-assisted laser desorption ionization time of flight mass
spectrometry (MALDI-TOF-MS) was employed for the identification
of the peptides in the RP-HPLC peaks. Peptide solution (2 mL) was
mixed with 2 mL of a saturated solution of a-HCCA matrix, a-cyano-
4-hydroxy-cinnamic acid (Bruker Daltonik, Bremen, Germany),
onto a target plate and air-dried. The analysis was performed using
an Autoflex Speed mass spectrometer (Bruker Daltonik GmbH,
Germany) in positive reflector mode with mass range of 1,000 to
3,200 Da. Peptides calibration standard (700 to 4,000 Da) was used
for calibration according to instructions of the manufacture (Bruker
Daltonik GmbH, Germany). The sequences of peptides were iden-
tified by subjecting themajor precursor ions in each peak toMS/MS
analysis, using a de novo routine and an automated application to
MASCOT and SEQUEST database.

3. Results

3.1. Peptic hydrolysis of camel milk proteins

As shown in Fig. 1, total proteins (CMP) caseins (CCP) and whey
(CWP) protein fractions of camel milk were separately hydrolyzed
with an aspartic acid protease pepsin for 2 h, and then dialyzed
before lyophilization. The hydrolysates were analyzed on reducing
SDS-PAGE (Fig. 2). It is evident CWP and CCP were adequately
separated from each other. All protein fractions (CCP, CWP and CMP)
were completely hydrolyzed into peptides with molecular masses
less than 8 kDa. The intact proteins as well as the hydrolysates were
assessed for their abilities to scavenge superoxide anion and the
chemical radical DPPH (Fig. 3). The intact proteins (CMP, CWP and
CCP) remarkably reduced the formation of blue diformazan, indi-
cating superoxide-scavenging capacity, with CWP being the stron-
gest superoxide-scavenger (Fig. 3A). The results of DPPH reduction
(Fig. 3A upper) paralleled those of the superoxide-scavenging ac-
tivity (Fig. 3A). However, the hydrolysate of caseins (P-CCP)
exhibited greater superoxide-scavenging activity than its intact
proteins, while the scavenging capacity of whey protein (P-CWP)
paralleled its intact proteins (Fig. 3B). The hydrolysates of the whole
proteins (P-CMP) and protein fractions (P-CWP and P-CCP) exhibited
significant DPPH reduction, as produced more intense white spots
(Fig. 3B, upper) than their undigested proteins (Fig. 3A, upper). The
results demonstrate that the peptic hydrolysates of CMP fractions
not only can scavenge oxygen superoxide but also have the ability to
donate electron to reduce the chemical radical DPPH.

3.2. Fractionation of the antioxidant peptides

Peptides in P-CMP, P-CWP and P-CCP were separated into 4
peptide sub-fractions, designated P1 to P4, using an RP-HPLC
equipped with a C18 column (Figs. 4A, 5A and 6A ). Peaks of sub-
fractions P1 and P2 are referred to as fast-eluting peptides (hydro-
philic), whereas P3 and P4 are slow-eluting peptides (hydrophobic).
The peptide fractions were tested for superoxide scavenging activity
at a concentration of 40 mg/mL (Figs. 4B, 5B and 6B). All peptide sub-
fractions of P-CMP showed much stronger scavenging activity than
their total hydrolysates, indicating that the peptic hydrolysis can
produce powerful superoxide-scavenging peptides from CMP
without fractionation into caseins and whey proteins (Fig. 4). How-
ever, peptides of thewhey (P-CWP) showed the strongest scavenging
activities regardless of the elution time (Fig. 5), while peptides of total
proteins P-CMP (Fig. 4) and P-CCP (Fig. 6) hydrolysates exhibited
variable activities ranging from strong (P1 and P3) to moderate (P2
and P4) activities. In all protein types, the fast-eluting peptides (P1
and P2) exhibited more potent DPPH reducing capacities than the
slow-eluting peptides (Fig. 7). The peptides fractions P1, P2 and P3 of
the whole proteins (P-CMP) and whey protein (P-CWP) exhibited
much more significant DPPH reduction than those of P-CCP (Fig. 7).
The results demonstrate that the hydrophilic peptides (fast-eluting
peptides) are more potent antioxidants than the hydrophobic pep-
tides (slow-eluting peptides).

3.3. Peptides impact on the tolerance of yeast cells against oxidative
stress

To examine the ability of peptides to induce acquisition of
tolerance of yeast cells to oxidative stress, the eukaryote Saccharo-
myces cervisiae cells were incubated with peptides followed by
exposure to the oxidative H2O2 (2 mmol/L). The survival of the
treated cells was determined by spotting on agar plates containing
2 mmol/L of H2O2 (Fig. 8). Peptide sub-fractions from all protein
types (whole proteins, whey or caseins) showed remarkable in-
crease in the survival (log cfu/mL) compared with the mock-treated



Fig. 3. Superoxide-scavenging activities of (A) camel milk protein (CMP) fractions and (B) their peptic hydrolysates measured in xanthine/XOD/NBT reduction assay at 100 mg/mL
protein. The rate of O2

�� accumulation measured in real-time kinetics was presented as the rate of absorbance change at 562 nm due to NBT reduction at 37 �C for 20 min. The 2,2-
diphenyl-1-picrylhydrazyl (DPPH) reduction of the fractions are shown above the panels. XOD ¼ xanthine oxidase; NBT ¼ nitroblue tetrazolium; CWP ¼ camel whey proteins;
CCP ¼ camel casein proteins; P-CMP ¼ pepsin digested CMP; P-CWP ¼ pepsin digested CWP; P-CCP ¼ pepsin digested CCP.

Fig. 4. RP-HPLC pattern on a C18 column of (A) the pepsin digested camel milk proteins (P-CMP) hydrolysate and (B) superoxide-scavenging capacities of the peptide peaks. (A)
Elution was achieved with a 1% to 40% linear gradient of acetonitrile, and absorbance was monitored at 215 nm. The RP-HPLC patterns represent 4 peptide peaks (P1 to P4). (B) The
rate of O2

�� accumulation measured in the real-time kinetics of non-stopped xanthine/XOD/NBT reduction assay, and was presented as the rate of absorbance change at 562 nm due
to NBT reduction. XOD ¼ xanthine oxidase; NBT ¼ nitroblue tetrazolium.
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cells (Ctrl). However, fast-eluting peptides of whey (P-CWP) were
more efficient than the slower ones (Fig. 8B), while slow-eluting
peptides of whole proteins (P-CMP) and caseins (P-CCP) were
more potent (Fig. 8A and C). The results indicate that pepsin releases
different antioxidant peptides from CMP whereas many of them act
as intracellular antioxidant peptides. It can be concluded that some
antioxidant peptides have the ability to modulate the intracellular
redox state and thus impart tolerance against oxidative stress in live
cells. Likely, treatments with the peptides can lead to the transient
induction of protection against subsequent oxidative conditions.

3.4. Sequences of the active peptides

Peptides in the peaks of RP-HPLC were identified using MALDI-
TOF-TOF analysis. Casein hydrolysate (P-CCP) contained 14 pep-
tides in the active peak fractions (P1, P2 and P3)withmasses ranging



Fig. 5. RP-HPLC pattern on a C18 column of (A) the pepsin digested camel whey proteins (P-CWP) hydrolysate and (B) superoxide-scavenging capacities of the peptide peaks. (A)
Elution was achieved with a 1% to 40% linear gradient of acetonitrile, and absorbance was monitored at 215 nm. The RP-HPLC patterns represent 4 peptide peaks (P1 to P4). (B) The
O2
�� scavenging activity is presented.

Fig. 6. RP-HPLC pattern on C18 column of (A) the pepsin digested camel casein proteins (P-CCP) hydrolysate and (B) superoxide-scavenging capacities of the peptide peaks. (A)
Elution was achieved with a 1% to 40% linear gradient of acetonitrile, and absorbance was monitored at 215 nm. The RP-HPLC patterns represent 4 peptide peaks (P1 to P4). (B) The
O2
�� scavenging activity is presented.
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from 913.12 to 2,951.68 m/z (Table 1). The hydrolysate of whey (P-
CWP) contained 8 peptides in active peak fractions (P1 and P2)
ranging in masses between 1,168.52 and 1,861.14 m/z (Table 2). In
caseins, few peptides were from as1-, as2- and k-casein, but b-ca-
seins produced many peptides (Table 1). In the whey, few peptides
originated from lactophorin and cysteine-rich protein, but the
peptides were mainly generated from lactoferrin (Table 2).

4. Discussion

Oxidative stress is a state characterized by increased levels of
free radicals which cause damages to vital biomolecules, such as
lipids, proteins and DNA. Oxidative stress is generally linked to
numerous chronic diseases including atherosclerosis, cancer, di-
abetics, rheumatoid arthritis, cardiovascular diseases, chronic
inflammation and other degenerative diseases in human (Fridovich,
1999; Uttara et al., 2009). Thus, antioxidants are vital in scavenging
of radicals and prevention of the oxidative stress and the associated
diseases. This study demonstrates that the peptic hydrolysates of
CMP contain several peptides with antioxidant activities. A large
number of peptides were obtained from caseins (Fig. 6B, P1 to P3),
but the most active peptides were originated from whey proteins
(Fig. 5B). The active peptides characterized by their hydrophilic
nature as they eluted faster from C18 column in RP-HPLC. However,



Fig. 7. DPPH radical-scavenging capacities by pepsin hydrolysates of P-CMP, P-CWP, P-
CCP and their RP-HPLC peptide peaks (200 mg/mL). Thin layer chromatography (TLC)
blot assay on a silica gel TLC plate stained by spraying with 1.8 mmol/L DPPH solution
in ethanol, and visualized for the presence of whitish spots, indicating anti-oxidant
activity. DPPH ¼ 2,2-diphenyl-1-picrylhydrazyl; P-CMP ¼ pepsin digested camel
milk proteins; P-CWP ¼ pepsin digested camel whey proteins; P-CCP ¼ pepsin
digested camel casein proteins.

Fig. 8. Toleranceof yeast cells to H2O2-induced oxidative stress by RP-HPLC peptide peaks of (A)
yeast extract peptone dextrose (YPD) broth. Cells treatedwith peptide peaks then H2O2 was add
serially diluted in YPD containing the same concentration of H2O2, spotted onto YPD agar cont
represented in log cfu/mL. P-CMP ¼ pepsin digested camel milk proteins; P-CWP ¼ pepsin dige

Table 1
Peptides identified by MALDI-TOF-MS in the RP-HPLC active fractions of camel milk casei
flight mass spectrometry

Fraction Mass, m/z

Signal1 Predict

P-CCP P1 913.12 913.44
1,091.59 1,092.63
1,168.5 1,168.62
1,861.12 1,862.93
2,001.96 2,000.89

P-CCP P2 1,059.76 1,059.51
1,092.70 1,092.63
1,140.48 1,139.57
1,321.06 1,322.66
1,416.94 1,416.71
2,006.91 2,009.06

P-CCP P3 2,169.84 2,170.19
2,304.72 2,305.2
2,951.68 2,947.68

P-CCP ¼ pepsin digested camel casein proteins.
1 De novo peptide sequencing of the major RP-HPLC peaks of camel casein hydrolysat
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antioxidant peptides are characterized with high contents of the
hydrophobic residues (D�avalos et al., 2004). The results of this
study argue in favor of high contents of hydrophobic residues, such
as Tyr, Leu, Phe and Ile, of the identified peptides, particularly
peptides from camel caseins (Table 1). Peptides fromwhey proteins
were rather amphiphilic in nature, due to the presence of hydro-
philic residues, such as Lys, Asp, Glu and Ser, scattered along the
peptides with the hydrophobic residues (Table 2). The presence of
certain amino acid sequence makes contribution to the antioxidant
activity of a peptide, particularly GlueTyr, GlueTrp, AsnePro and
ProeTyr sequence motifs (Zou et al., 2016). Peptides from camel
milk whey proteins found in this study are rich in thesemotifs, such
as GlueTyr, GlueTrp, and AspePro pairs in peptides with masses of
1,421.84, 1,544.61 and 1,758.37 m/z, respectively of P-CWP P2
fraction (Table 2). In caseins derived peptides, the sequences
ProeTry, AsneTyr, AspePro and TyrePro pairs were confirmed in
peptides with masses of 913.12, 1,091.59, 1,059.76 and 1,092.70 m/z,
respectively, of P-CCP P1 and P-CCP P2 (Table 1). The importance of
P-CMP, (B) P-CWPand (C) P-CCP. Cellswere pre-cultured to the exponential growth phase in
ed in YPD to a final concentration of 2mmol/L and cultured for 48 h at 28 �C. Cultures were
aining 2 mmol/L H2O2, and then incubated at 28 �C for 48 h before colony count. Data are
sted camel whey proteins; P-CCP ¼ pepsin digested camel casein proteins.

n hydrolysates. MALDI-TOF-MS ¼matrix-assisted laser desorption ionization time of

Sequence Protein identity (fragment)

FIPYPNY k-casein (55 to 61)
RPKYPLRY as1-casein (1 to 8)
TLTDLENLHL b-casein (127 to 136)
QIPQCQALPNIDPPTVE k-casein (72 to 88)
MDQGSSSEESINVSQQKF as2-casein (4 to 21)
FFQLGDYVA as1-casein (159 to 167)
RPKYPLRY as1-casein (1 to 8)
QDKIYTFPQ b-casein (47 to 55)
LHQGQIVMNPW as2-casein (78 to 88)
MVPYPQRAMPVQ b-casein (178 to 189)
PFQEPVPDPVRGLHPVPQ b-casein (193 to 210)
VRNIKEVESAEVPTENKISQ as2-casein (45 to 64)
SISSSEESITHINKQKIEKF b-casein (15 to 34)
QPKVMDVPKTKETIIPKRKEMPLLQ b-casein (90 to 114)

es in MALDI-TOF-MS was performed by manual interpretation of the ion series.



Table 2
Peptides identified by MALDI-TOF-MS in the RP-HPLC active fractions of camel milk whey hydrolysates. MALDI-TOF-MS ¼ matrix-assisted laser desorption ionization time of
flight mass spectrometry.

Fraction Mass, m/z Sequence Protein identity (fragment)

Signal1 Predict

P-CWP P1 1,168.52 1,167.67 ATTLEGKLVEL Lactophorin B (79 to 89)
2,001.99 1,999.98 KCLQDGAGDVAFVKDSTVF Lactoferrin (197 to 215)

P-CWP P2 1,059.77 1,059.57 KADAVTLDGGL Lactoferrin (53 to 63)
1,321.07 1,321.73 KFGRGKPSGFQL Lactoferrin (277 to 288)
1,421.84 1,422.69 TVVSNNGNREYGL Lactalbumin (40 to 52)
1,544.61 1,543.83 CGSIVPRREWRAL PGRP (7 to 19)
1,758.37 1,760.73 SSCAMRCLDPVTEDSF Cys to rich Protein (101 to 116)
1,861.14 1,861.88 ENTMRETMDFLKSLF Lactophorin A (113 to 127)

P-CWP ¼ pepsin digested camel whey proteins; PGRP ¼ peptidoglycan recognition protein.
1 De novo peptide sequencing of the major RP-HPLC peaks of camel whey hydrolysates in MALDI-TOF-MS was performed by manual interpretation of the ion series.
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these sequences for antioxidant activity has been documented that
the carboxyls of acidic residues (Glu or Asp) possess excess elec-
trons while the phenolic hydroxyls of Tyr can release hydrogen thus
display high reducing abilities (Zou et al., 2016). It is noteworthy
that the peptides from whey have generally Leu residue or Phe at
the C-terminal (Table 2), which has been documented to be
essential in many antioxidant peptides whereas hydrophobic res-
idue at the C-termini of the peptide are essential for radical scav-
enging activity (Saito et al., 2003). In addition, there are evidences
that intact peptides are absorbed in the upper part of human
digestive tract, in the duodenum and jejunum through the tight
junctions between epithelial cells, and the amphiphilic peptides
and those containing Pro residues are readily absorbed (Warren
et al., 2014). Thus, the use of pepsin as the hydrolyzing enzyme of
CMP can be an effective approach to the production of potent
antioxidant peptides and likely for the enhancement of their in-
testinal absorption. This should await further investigation.

In conclusion, our data highlight that variable anti-oxidative
peptides could be released through peptic hydrolysis of CMP frac-
tions. Although casein hydrolysates produced a larger number of
peptides (Table 1) with variable antioxidant capacities, all the
peptides from whey hydrolysate exhibited higher superoxide
scavenging potencies (Fig. 5) than those from caseins (Fig. 6). But
casein peptides particularly in peak 1 (P1) were more efficient in
reducing DPPH than those from the whey (Fig. 7). The amphiphilic
characteristics of peptides of CMP seem to be important for the
observed antioxidant potency, most likely as they enhance the
solubility of the peptides and participate in protons exchange with
radical species. Our study found that peptides from both caseins
and whey hydrolysates exhibited remarkable protective effects on
H2O2-stressed yeast cells (Fig. 8). Although other proteases could be
effective, the peptides generated by pepsin from camel milk caseins
and whey proteins could be excellent candidates for the develop-
ment of novel therapeutic peptides for the treatment of oxidative
stress and the associated diseases.
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