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Abstract

Target identification is a core challenge in chemical genetics. Here we use chemical similarity to 

predict computationally the targets of 586 compounds active in a zebrafish behavioral assay. Of 20 

predictions tested, 11 had activities ranging from 1 to 10,000nM on the predicted targets. The role 

of two of these targets was tested in the original zebrafish phenotype. Prediction of targets from 

chemotype is rapid and may be generally applicable.

Chemical genetics seeks to identify the targets responsible for phenotypes responding to 

organic small molecules, just as genetic screens identify the molecular players involved in 

cellular processes. Since the chemical perturbation is non-genetic, this must be done 

biochemically,1 proteomically,2,3 or by phenotypic pattern recognition.4,5 Such approaches 

can be laborious and many low-abundance proteins are outside of their purview. Several 
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investigators thus have turned to inference-based methods that combine experiment and 

computation. Multidimensional screening of hundreds of cell lines by tens of thousands of 

molecules has led to patterns that can illuminate target identity,6,7 as can matching the 

transcriptional patterns provoked by an organic molecule to those provoked by molecules 

with known mechanisms.8,9

Less explored are purely computational methods for target identification, especially those 

motivated by ligand structure, the basis of target identification in classical pharmacology.10 

With the advent of large ligand-protein databases, hundreds of thousands of ligands 

annotated to thousands of molecular targets are available. This has enabled a redrawing of 

receptor relationships based on both shared ligands,11 and ligand-disease associations,12 

which in turn has been exploited to predict previously unknown targets for drugs.13,14 By 

the same logic, such an approach might be used to predict the targets of organic molecules 

active in phenotypic screens.

We thus sought to identify the targets of 681 neuroactive molecules from a 14,000 

compound phenotypic screen in zebrafish embryos, measuring the modulation of 

characteristic movement responses to a series of light flashes (a photomotor response, 

PMR).15 For each compound, patterns were observed for eight to ten embryos, and 14 

behavioral features of the PMR were compared to untreated animals (Supplementary 

Results, Supplementary Fig. 1 and Supplementary Methods).15 Of the 681 actives, 162 were 

drugs, chemical probes or naturally occurring molecules, 61 of which had one or more 

targets annotated in ChEMBL, leaving a total of 620 compounds unannotated. We 

computationally screened these against the ChEMBL database (https://www.ebi.ac.uk/

chembldb/) using the Similarity Ensemble Approach (SEA).13,16 In the filtered version we 

used, ChEMBL annotates over 167,000 organic molecules for activities against over 2,000 

molecular targets. SEA scores shared patterns of chemical functionality between the “bait” 

molecules and all of the ligands annotated to a target (the ligand-target set), using one of 

several topological, bit-string fingerprints.17,18 Similarity values are measured by Tanimoto 

coefficients (TC),19 which range from 0 (no bits in common) to 1 (all bits shared). The 

similarities between a bait molecule and a ligand-target set were summed and compared to 

those expected at random. Using the statistical machinery developed for BLAST sequence 

comparisons, this led to expectation values (E-values) for the similarity versus a random 

background.13,16,20 In a variation introduced here, bait molecules that bore formal charges 

that were atypical for a ligand-target set were excluded (Supplementary Fig. 2).

The method is limited to those targets with known ligands. Still, most target categories are 

covered, all of which are “ligandable”. For instance, using the widely-used ECFP4 

fingerprint,17 473 of the 681 molecules were predicted to be active on 945 targets with E-

values better than 10−5 (Fig. 1); at a more stringent E-value of 10−20, 284 molecules were 

predicted to be active on 404 targets. Similar results were obtained for the other fingerprints, 

resulting in combined predictions for 586 compounds with E-values < 10−5. Targets with 

strong predictions included G Protein-Coupled Receptors (GPCRs), ligand-gated ion 

channels, nuclear hormone receptors, transporters, and soluble enzymes (Supplementary 

Table 1).
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We emphasized targets that were predicted with strong E-values, that were previously 

unknown for the phenotypically active molecules, and that were experimentally accessible 

to us. For this study, we investigated GPCRs, ion channels, transporters, and kinases. Many 

target predictions were unknown in ChEMBL but were subsequently were found on 

literature search (Supplementary Table 2). Since we were interested in novel predictions, we 

focused on 20 compounds predicted against unknown targets. Of these, 11 were active at 22 

of the 31 targets against which they were predicted (Table 1, Supplementary Fig. 3); 9 

compounds had no measurable activity on their predicted targets and these associations are 

considered falsified (Supplementary Table 3). Potencies, measured in full concentration-

response, ranged from about 10 µM to low nanomolar (Table 1, Supplementary Fig. 3). As 

noted previously14 there was little correlation between potency and SEA E-value. Potency is 

ignored in weighting the ligand similarities in SEA; E-values only indicate the likelihood 

that the compound will be active at a relevant concentration.13,16

It is appropriate to consider the accuracy and the novelty of the predictions. Arguably, any 

method that used a library of ligand-target sets, such as ChEMBL, and a metric of chemical 

similarity could have predicted targets for some of these molecules. For instance, pair-wise 

compound similarity alone, or one of the more sophisticated methods now 

available,7,11,12,21,22 may well have suggested that compounds 6 and 7 targeted the Kv1.2 

potassium channel, or that 8 targeted vasopressin receptors. Any such approach must 

confront the problem of what level of chemical similarity usefully identifies likely targets; if 

one’s similarity cut-off is too permissive it will capture too many targets, and if too stringent 

many likely targets will be missed. For instance, the pair-wise similarity of 2 for βAR 

ligands and of 3 for α2AR ligands never rose above a Tanimoto coefficient (TC) of 0.61 

(Daylight fingerprints) or 0.43 (ECFP4 fingerprints), respectively. At these relatively low 

similarities, a simple 2D similarity search of ChEMBL predicts 217 targets for 2 and 57 

targets for 3, many of which will be false positives. SEA attempts to address this problem by 

comparing similarities to those expected at random, and by comparing any bait molecule to 

an entire ligand-target set.13,16 This at once increases the number of targets addressable, 

ranks the predictions by confidence level, and eliminates many predictions that hang by a 

bait’s association with one or two ligands in a target set that might annotate hundreds of 

molecules. Because SEA is model-free and uses all information represented in a fingerprint, 

without weighting, it can interrogate any ligand-target set for similarity to any bait molecule 

without defining warheads or pharmacophores.

A key challenge, for us and for the field, is linking the targets for which in vitro affinity is 

measured to the in vivo phenotype that was originally observed. One way to investigate this, 

is to test another molecule, known to be active on the target but structurally dissimilar to the 

active compound from the phenotypic screen, for its ability to phenocopy the original “bait” 

molecule in the animal or cell.23 The voltage-gated potassium channel Kv1.2 is attractive for 

this purpose in that it is modulated by structurally diverse molecules. Psora-4 (12), for 

instance, has low- to mid-nanomolar activity at members of the Kv1 family, including 

Kv1.2, but is structurally orthogonal to compounds 6 and 7. Consistent with the prediction 

that compounds 6 and 7 exert their excitatory phenotype by blocking this family of ion 
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channels, the photomotor response (PMR) induced by the chemically unrelated compound 

12 closely resembled that of compounds 6 and 7 (Fig. 2, Supplementary Fig. 4).

A second pharmacological test for a target-based effect is to use the screening compound to 

compete against the function of a known ligand for the target of interest. We tested the 

ability of compound 1 to reverse the activity of the β-adrenergic agonist isoproterenol (13), 

an excitatory ligand in the PMR assay. Consistent with the prediction and in vitro 

observation of activity on the β-adrenergic receptors, compound 1 reversed the 

isoproterenol’s excitatory PMR, doing so as well as the well-known β-adrenergic antagonist 

bopindolol (Fig. 2, Supplementary Fig. 5). Meanwhile, 1 did not reverse the excitatory 

phenotype of drugs acting on other receptor classes, such as the digitoxigenins, nor did 

sedative drugs from other classes reverse the excitatory activity of isoproterenol 

(Supplementary Fig. 6). These results are consistent with the zebrafish phenotype of 

compound 1 being mediated via β-adrenergic receptors.

A chemoinformatic approach to target identification in phenotypic screens has important 

advantages and may complement empirical approaches: it is rapid, has a relatively high 

success rate, and can address both high- and low-abundance targets. Admittedly, there are 

important cautions: the approach is limited to liganded targets, and even for these almost a 

half of the predictions that were tested were falsified, as was true in earlier studies.13,14 Still, 

this success rate seems high enough to be useful for target prioritization for testing. 

Especially when a purely empirical screen is laborious, and when low-abundance targets 

will be missed, this and related methods11,12,22,24 will usefully complement purely 

experimental approaches. Although establishing that a molecule is active against a particular 

target does not establish the role of that target in the phenotype, it does provide a testable 

molecular hypothesis. Whereas the method is restricted to the targets for which ligand 

information is available, one can at least be sure that these are “ligandable”, and that small 

molecule probes already exist within that small part of chemical space that has been 

explored.25 Within this set, the method is systematic and comprehensive enough to suggest 

testable targets for most of the ligands active in even a diverse ligand library, such as tested 

here (Table 1). It may thus find broad application to target identification in phenotypic 

screens; to this end we have developed a public website from which the method may be 

accessed by the community (http://sea.bkslab.org/ and http://sea.bkslab.org/search/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The number of compounds for which at least one target is predicted as a function of 
expectation value vs. random (E-value)
Higher E-values are less stringent. Only E-values below (better than) 10−5 were considered 

in this analysis.
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Figure 2. Testing target relevance by phenocopy and functional competition. Compounds 6 and 7 
phenocopy the known Kv inhibitor psora-4 (12)
The PMR phenotypes of animals treated with (a) DMSO, (b) compound 12, (c) compound 

6. The same phenotype was obtained for compound 7 (see Table 1). (d) Bar plot showing 

the mean number of motor activity spikes in animals treated with DMSO, compound 12, 

compound 7, and compound 6. Activities during background, excitation and refractory 

phases of the PMR are shown. Compound 1 suppresses β-AR agonist-induced motor 
excitation. The PMR phenotypes of animals treated with: (e) compound 13 (isoproterenol), 

(f) compound 13 and the known β-AR antagonist compound 14 (bopindolol) together (g) 

compounds 13 and 1. (h) Bar plot showing the mean number of motor activity spikes in 

animals treated with DMSO, compound 13, compounds 13 and 14, and compounds 13 and 

1. Activities during background, excitation and refractory phases of the PMR are shown. 

Bars in panels d and h represent mean values ± s.d.
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