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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Microbes are constantly evolving. Laboratory studies of bacterial evolution increase our

understanding of evolutionary dynamics, identify adaptive changes, and answer important

questions that impact human health. During bacterial infections in humans, however, the

evolutionary parameters acting on infecting populations are likely to be much more complex

than those that can be tested in the laboratory. Nonetheless, human infections can be

thought of as naturally occurring in vivo bacterial evolution experiments, which can teach us

about antibiotic resistance, pathogenesis, and transmission. Here, we review recent

advances in the study of within-host bacterial evolution during human infection and discuss

practical considerations for conducting such studies. We focus on 2 possible outcomes for

de novo adaptive mutations, which we have termed “adapt-and-live” and “adapt-and-die.” In

the adapt-and-live scenario, a mutation is long lived, enabling its transmission on to other

individuals, or the establishment of chronic infection. In the adapt-and-die scenario, a muta-

tion is rapidly extinguished, either because it carries a substantial fitness cost, it arises within

tissues that block transmission to new hosts, it is outcompeted by more fit clones, or the

infection resolves. Adapt-and-die mutations can provide rich information about selection

pressures in vivo, yet they can easily elude detection because they are short lived, may be

more difficult to sample, or could be maladaptive in the long term. Understanding how bacte-

ria adapt under each of these scenarios can reveal new insights about the basic biology of

pathogenic microbes and could aid in the design of new translational approaches to combat

bacterial infections.

Introduction

The study of microbial evolution has profound implications for improving public health.

Understanding the genetic changes that enable pathogens to adapt and persist in their hosts

uncovers fundamental biology and leads to new therapeutic interventions. For example, moni-

toring antibiotic resistance among circulating bacterial populations enables the rational selec-

tion of empiric antibiotic therapy, as well as prioritization of research that aims to develop

novel interventions [1]. On an individual level, tracking within-host evolution, or the genetic

changes within a microbial population infecting a single patient, also leads to critical insights.
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One prominent example of this, which occurred prior to the advent of modern DNA sequenc-

ing, was the development of multidrug regimens to treat tuberculosis to combat the predict-

able emergence of phenotypic drug resistance during therapy [2]. Now, with greater

accessibility of next-generation DNA sequencing technologies and modern analytical tools,

our understanding of the evolutionary dynamics underlying these processes is expanding.

Within-host evolution can now be studied at high resolution, and, potentially, in real time [3].

This provides a window into the in vivo evolutionary dynamics that underlie the emergence of

antimicrobial resistance, as well as a wider range of traits important for pathogenesis, persis-

tence, and transmission. With minimal modifications, the same analytical principles applied

to in vitro microbial evolution experiments can also be employed in in vivo studies. Indeed,

clinical infections can be viewed as naturally occurring experiments in microbial evolution.

In this review article, we discuss the similarities and differences between studying bacterial

evolution in vivo versus in vitro, as well as the challenges and opportunities presented by

studying within-host bacterial evolution during infection in humans. We begin by discussing

some of the major differences between studying bacterial evolution in vitro versus in vivo.

Then, we present 2 different ways of thinking about adaptive mutations in vivo, which we have

termed “adapt-and-live” and “adapt-and-die.” Finally, we offer practical considerations for

conducting studies of bacterial evolution in vivo during human infection. Our goal is to per-

suade researchers and clinicians that it is feasible to study bacterial evolution in vivo, and that

much can be learned from conducting such studies.

Evolutionary dynamics during experimental microbial evolution

In vitro experimental microbial evolution has proven to be a powerful tool to understand the

evolutionary dynamics within a bacterial population as it adapts to a new environment [4]. In

a typical experiment, a bacterial strain is subjected to serial passaging, where it is exposed to a

defined selective pressure, setting the process of evolution in motion. To gain information

about the reproducibility of evolution, experiments are conducted with multiple replicates.

The bacterial population can be sampled frequently throughout the experiment and, in the

present era, subjected to whole genome sequencing (WGS) to track the fates of mutations that

rise and fall in frequency through time. Samples of the population can be cryopreserved indefi-

nitely and resuscitated at any time for additional characterization. The classic example of in

vitro microbial evolution is the Escherichia coli long-term evolution experiment (LTEE),

which was initiated by Richard Lenski more than 30 years ago [5], continues to this day, and

has now exceeded 75,000 bacterial generations. More commonly, however, in vitro evolution

experiments occur on timescales spanning days to weeks. The technique has also been applied

to a growing number of different microbes, including yeasts [6], viruses [7], and bacterio-

phages [8,9]. Importantly, experimental conditions can be adjusted to explore specific pheno-

types. For example, plastic beads can be used as a surface for biofilm formation, which enables

specific transfer of the biofilm population into fresh media during serial passaging. This

method has been used to study pathogens such as Burkholderia cenocepacia [10,11] and Pseu-
domonas aeruginosa [12] to uncover biofilm-specific signatures of evolution.

Evolution is extraordinarily dynamic, even when studied in a static, well-controlled envi-

ronment. In the LTEE, the glucose-limiting growth medium and the passaging procedure

remained constant, yet dramatic changes in bacterial biology still occurred. By 20,000 genera-

tions, the bacteria could grow 70% faster in culture [13]. After 30,000 generations, one of the

12 replicate populations gained the ability to import citrate from the culture medium and use

it for aerobic growth [14]. Six populations acquired defects in DNA repair, elevating their

mutation rates by approximately 100-fold [15]. Finally, fitness measurements from the most
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recent analysis, after 60,000 generations and more than 25 years, showed that the bacteria con-

tinued to enhance their ability to grow in the media [16,17]. Thus, even in a stable environ-

ment, spontaneous mutations provide an ample supply of genetic diversity to continuously

fuel the successive evolution and refinement of new traits. Furthermore, because the E. coli
population chosen for the LTEE is asexual, meaning that the bacteria lack plasmids or bacteri-

ophages that could mediate horizontal gene transfer (HGT), evolution occurs solely by muta-

tion, genetic drift, and natural selection. In the absence of HGT, mutations cannot be shared

between different clones. This results in an especially strong linkage disequilibrium of muta-

tions and a high degree of clonal interference. Clonal interference occurs when beneficial

mutations that arise in different clones compete against each other, which can cause a benefi-

cial mutation present in one clone to be extinguished from the population as it is outcompeted

by a different, more fit clone [18]. In sexual bacterial populations, some mutations can be

shared. In this case, the population size and the rate of gene exchange become important fac-

tors that determine the adaptive advantage of HGT [19]. Notably, HGT is a pervasive mecha-

nism in the evolution of antibiotic resistance in clinical settings [20].

Experimental conditions greatly influence the timescale of evolution. The identical citrate uti-

lization pathway that evolved after 30,000 generations during the LTEE can be selected for in

just 12 to 100 generations if the population is subjected to prolonged selection during nutrient

starvation [21]. Similarly, DNA repair defects that elevated the mutation rates in the LTEE can

be evolved by chemically mutagenizing an E. coli population and immediately applying 2 rounds

of different selective antibiotics [22]. The conditions of these experiments differ from the LTEE

because they enable the bacterial population to survey much greater genetic diversity, while also

being subjected to stronger selective pressure. The effect of population size (N) on evolution is

also a critical parameter. First, it determines the minimal effect size of a mutant allele (i.e., the rel-

ative fitness advantage conferred) that natural selection can detect, with small effect sizes requir-

ing largerN in order to be selected [23]. Second, due to spontaneous mutations, N greatly

contributes to the amount of genetic diversity available for selection, with diversity increasing in

proportion toN. Although stochastic phenomena have a greater influence in small populations

and can occasionally lead to big leaps of adaptation across a fitness landscape, the greater sensi-

tivity to selective forces and the more genetic diversity that is present within large populations

tends to favor adaptive potential [24]. These basic principles of population genetics are critical

considerations for investigating evolutionary phenomena, both in vitro and in vivo.

Bacterial evolution in vitro versus in vivo

Human infections occur in a complex environment. This in vivo complexity is evident when

considering the numerous tissue microenvironments that can be accessed by a bacterial popula-

tion within a single individual. Bacteria may colonize different anatomical sites without causing

disease (e.g., skin surface and gut lumen), and then invade a variety of different tissue compart-

ments (e.g., soft tissue, blood, bone, joints, and lungs) within an individual host. Each tissue type

represents a distinct microenvironment, and a unique fitness landscape, for the infecting bacte-

ria. If an infection spreads within an individual, the bacteria are likely to experience population

bottlenecks at tissues interfaces. Bottlenecks also occur during transmission between individuals,

since relatively few bacteria initiate infection or colonization of new hosts. Due to the small N of

initial founder populations, the statistical phenomenon of genetic drift will have a strong influ-

ence on mutant allele frequencies early during infection. As the population expands, however,

spontaneous mutations supply genetic diversity for the production of new traits. Mutant alleles

associated with beneficial traits can then rise in frequency due to positive selection from new tis-

sue microenvironments, immune responses, and antibiotic treatments.
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Although many infecting populations can be expected to evolve rapidly, studying this pro-

cess can be difficult due to several practical constraints. First, an infection must either be per-

sistent or chronic to allow for serial sampling of the bacterial population over time. Sampling

should also start early enough in the infection so that the population can be assessed before

substantial selection has occurred. Second, the sampling method must capture sufficient

genetic diversity to be able to detect genetic changes through time. Outside of a dedicated clin-

ical trial, however, sampling is usually limited to clinical specimens collected for diagnosis dur-

ing the routine care of the patient, which may be limiting. A third challenge is that the

parameters that govern the evolutionary dynamics of the infecting population, such as popula-

tion size, rates and sources of mutation, and the nature of the selective pressures, must be

expected to produce detectable mutations within the timescale of the infection. Finally, the

infection must be common enough to accrue a sufficient number of independent individuals

and infections for study, so that evidence for parallel or convergent evolution can be pursued

and more general conclusions about evolutionary signals can be made. Due to these con-

straints, not all bacterial infections are suited to this type of study.

Beyond the practical limitations, the primary differences between in vitro and in vivo sys-

tems are that (i) the amount of genetic variation and (ii) the nature of the selective pressure(s)

are much more dynamic in vivo (Fig 1). In vitro, bacterial population size, growth rate, muta-

tion rate, and mobile genetic element movement can all be determined. Whereas, in vivo,

these parameters can often only be estimated, and they can also be variable between patients.

Perhaps the most important difference between in vitro and in vivo settings, however, is the

nature of the selective pressures. In vitro, environmental conditions are experimentally

defined, such as the concentration of an antibiotic, the specifics of the growth medium, and

even the spatial structure of the microbial population. For example, a recent in vitro study of

Acinetobacter baumannii compared the evolution of antibiotic resistance between cells grow-

ing in planktonic cultures with cells growing in biofilms [25]. Due to the ability to precisely

define all other experimental variables, this study was able to conclude that the differences

observed in the evolution of antibiotic resistance were due to the spatial structures of the bacte-

rial communities. Such control is not possible in vivo, where selection is almost certainly due

to a combination of factors (Fig 1). Patient infections occur in a variety of different tissue

microenvironments and commonly involve implanted medical devices, such as prosthetic

joints, central venous catheters, or cardiac pacemakers. Each site of infection is likely to differ

in terms of available nutrients, antibiotic exposures, immune responses, spatial structure, and

microbial community structure (Fig 1). Some of these features have been explored by in vitro

studies, for example, through the use of synthetic media that more accurately mirrors in vivo

nutrient conditions [26], variable antibiotic selection regimens [27], or in vitro studies of poly-

microbial interactions [28]. Despite these advances, however, the complexity of many in vivo

environments is unlikely to ever be perfectly mirrored in vitro. Nonetheless, we do not view

the many unknowns of the in vivo environment described above as a hindrance for discovery.

Quite to the contrary, studying bacterial evolution in vivo poises investigators to make novel

discoveries. We believe that studying within-host evolution can serve as the starting point for a

discovery pipeline that produces important insights into the causal mechanisms underlying

bacterial pathogenesis, persistence, and transmission.

Adapt-and-live versus adapt-and-die mutations

Many in vivo microbial evolution studies are focused on identifying mutations; more specifi-

cally, de novo mutations, which confer an adaptive advantage. Because sampling of bacterial

populations is nearly always limiting, there is an inherent detection bias toward high-
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frequency mutations that are long lived. This bias poses a practical barrier to identifying short-

lived and low-frequency mutations that are still of great interest. With this in mind, here, we

categorize de novo adaptive mutations into 2 groups, using the timescale in which a mutation

persists after its inception as the distinguishing feature between groups:

AdaptAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif Adapt � and � livemutationsinthesentenceAdapt � and � livemutationsarelonglivedðmonthstoyearsÞ:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:-and-live mutations are long lived (months to years) and are associated with chronic

infections or asymptomatic colonization. They may or may not be transmitted to other peo-

ple, but the opportunity for transmission is higher given that they persist for longer time-

scales. Some mutations may even enhance pathogen transmission.

AdaptAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif Adapt � and � diemutationsinthesentenceAdapt � and � diemutationsareshortlivedðdaystoweeksÞ:shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:-and-die mutations are short lived (days to weeks). They arise due to their selective

advantage but are then rapidly extinguished. In acute infections, this is often because the

infection resolves, or it is at an anatomic site that represents an evolutionary “dead-end”

(see below). During chronic infections, the demise of these mutations is primarily due to

the evolutionary dynamics of fitness trade-offs, epistatic effects, clonal interference, or sto-

chastic elimination due to a sudden drop in population size. These mutations are much less

likely to be transmitted to other hosts, meaning that they arise independently in each newly

infected host.

Adapt-and-live mutations: Evolution of beneficial traits that persist

When bacteria cause infections in humans, they often encounter environments that are quite

different from the natural environmental niches to which they are well adapted. For example,

bacteria that naturally reside in soil or water can cause opportunistic infections in humans,

where they will experience large differences in temperature and available nutrients, as well as

the presence of antibiotic and immune selective pressures. If the bacteria are able to adapt to

these new conditions, they will be able to divide more rapidly, persist longer before dying, and

survive long enough to find a new home within the same or a different host. As researchers, we

want to understand how bacteria evolve during human infections. We frequently do this by

identifying and characterizing mutations that occur in bacterial populations during the course

of infection. Chronic bacterial infections offer the opportunity to study these adaptations on

timescales from months to decades. In this section, we focus on 2 primary examples of adapt-

and-live mutations, in which genetic adaptations that occur during infection prolong bacterial

survival, either through transmission to new hosts or through the establishment of chronic

infection.

One example of an adapt-and-live scenario is the evolution of antibiotic resistance during

active pulmonary infection withMycobacterium tuberculosis. After reactivation of a latent

tuberculosis infection, active disease can last for many years; this long timescale, combined

with intrinsic tolerance to many antibiotics and poor antibiotic permeability, allows the bacte-

ria to evolve resistance [29]. In contrast to many other bacteria, where antibiotic resistance can

be acquired through HGT,M. tuberculosis evolves resistance de novo through the accumula-

tion of mutations in genes encoding antibiotic targets, regulators of those targets, as well as the

up-regulation of efflux pumps [30]. Numerous studies have described the development of anti-

biotic resistance duringM. tuberculosis infection in humans, first using molecular typing and

more recently using WGS [31–33]. One of the more troubling features of antibiotic resistance

inM. tuberculosis is that resistant bacteria can be transmitted from infected to uninfected

Fig 1. In vitro versus in vivo bacterial evolution. Comparison of parameters that differ between bacterial evolution in

vitro (flasks) and in vivo (people). HGT, horizontal gene transfer; PK/PD, pharmacokinetics/pharmacodynamics.

https://doi.org/10.1371/journal.ppat.1009872.g001

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009872 September 9, 2021 6 / 19

https://doi.org/10.1371/journal.ppat.1009872.g001
https://doi.org/10.1371/journal.ppat.1009872


hosts [34] (Fig 2). While antibiotic resistance mutations frequently carry fitness costs, inM.

tuberculosis, these costs can be mitigated by compensatory mutations [35], which enable the

bacteria to propagate through human populations even in the absence of ongoing antibiotic

selection.

A second example of an adapt-and-live scenario is chronic pulmonary infections with P.

aeruginosa and Burkholderia species, which have been most intensely studied in patients with

cystic fibrosis (CF). Similar toM. tuberculosis infections, patients with CF are often infected

for years to decades with a population of bacteria in which genetic and phenotypic diversity

arise over time [36–38]. Selection on this population drives a gradual process of pathoadapta-

tion, ultimately resulting in a chronic and antibiotic-resistant infection [39] (Fig 2). WGS

offers an opportunity to observe how this process unfolds on both short and long timescales

[40,41]. A recent study of over 400 P. aeruginosa isolates sampled longitudinally from 39

young CF patients over 10 years found that pathoadaptation in the CF lung involves an initial

2- to 3-year period of rapid adaptation, followed by a transition to persistent infection [40].

During the initial period, bacterial growth rate was found to slow and antibiotic resistance

increased through accumulation of ciprofloxacin resistance–associated mutations in gyrA/B

Fig 2. Bacterial evolution during chronic infection. Pulmonary infection is shown as an example. Infection starts with a population of bacteria entering a new

environment, such as the lung. Antibiotics, immune responses, and other pressures exert selection on the bacterial population, causing the emergence of bacterial

variants possessing antibiotic resistance and other adaptive traits in a process referred to as pathoadaptation. Bacteria from the adapted population can be

transmitted to other individuals or can continue to adapt and cause chronic infection, lasting months to decades.

https://doi.org/10.1371/journal.ppat.1009872.g002
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and mutations in the efflux pump repressor nfxB. Infections were then able to persist long

term via both convergent evolution [42], as well as through the maintenance of a genetically

diverse population [43,44]. These populations remodel their regulatory and metabolic net-

works (largely through mutations in transcriptional regulators), gain the ability to adhere

more proficiently (driven by biofilm-increasing mutations and loss of flagella), develop

mucoid and/or hypermutator phenotypes, produce fewer extracellular virulence factors, and

acquire antibiotic resistance [45,46]. These prior studies have shown that even among different

patients and genetically diverse P. aeruginosa populations, evolution is relatively predictable in

this setting.

Many of the above themes are repeated when considering the adaptation of Burkholderia to

the lungs of CF patients. A landmark 2011 paper described a retrospective study of 112 Bur-
kholderia dolosa genomes from 14 individuals with CF that were isolated over 16 years [47].

The authors identified parallel adaptive mutations in antibiotic resistance genes (DNA gyrase

subunits gyrA/B, ribosomal protein rpl4, and others), genes involved in outer membrane syn-

thesis (such as glycosyltransferases wbaD andmtfA), and the two-component system fixLJ,
which senses oxygen tension and governs biofilm formation, motility, and persistence within

macrophages [48]. A similar study of Burkholderia pseudomallei evolution during chronic

infection in 7 CF patients identified parallel mutations in genes conferring antibiotic resis-

tance, genes in the type 3 and type 6 secretion systems that were predicted to decrease viru-

lence, and fatty acid biosynthesis genes including fabF and fabG, which are predicted to

impact membrane fluidity and permeability [49]. Genes involved in lipid transport and metab-

olism were also identified as likely targets of selection in a separate study of long-term evolu-

tion of Burkholderia multivorans over 20 years in a single CF patient [50]. Over the decades-

long timescales documented in several studies, it has also been possible to observe reductive

evolution in both B. cenocepacia and B. pseudomallei [37,49]. This process of genome “slim-

ming” often happens during long-term adaptation and specialization within a defined host

[51]. Finally, a study of 32 B. cenocepacia isolates from 8 CF patients identified parallel muta-

tions in the RNA polymerase subunit rpoB, catalase katG, the copper sensor kinase cusS, and

the methionine-sulfoxide reductase yedY [52]. The functional consequences of these muta-

tions, and how they impact bacterial survival during chronic infection in CF patients, remain

to be determined.

In all of the above examples, the patients that were studied can be considered as single

observations within larger in vivo evolutionary experiments. Combining the results of these

replicates across studies reveals several common themes of bacterial evolution in the adapt-

and-live scenario. First, evolution of antibiotic resistance is clearly important in the setting of

chronic bacterial infections. This is likely because antibiotic treatment imposes strong selective

pressure, and resistance-conferring mutations have a large effect size [53,54]. Second, a highly

variable suite of mutations occur that impact the ways that the bacteria interact with their host.

These include mutations that modulate bacterial virulence, often by down-regulating acute vir-

ulence in favor of strategies that promote persistence in the face of innate and adaptive

immune pressures [38,55–57]. Third, as was also observed in the in vitro LTEE, hypermutators

frequently arise. Rapid evolution of hypermutators in vitro is facilitated by serial exposure to

strong and varying selection pressures [22]. This observation likely explains the frequent emer-

gence of hypermutators in the CF lung, where bacterial populations are able to persist in the

face of variable antibiotic treatments and a dynamic host immune response [49,58,59]. Emer-

gence of hypermutator strains is clinically concerning, as it portends rapid acquisition of anti-

biotic resistance [60], and may be a marker of disease progression in CF [61]. While these

appear to be some of the common “rules” that govern the evolution ofM. tuberculosis, P. aeru-
ginosa, and Burkholderia during chronic infection, it is important to note that genotypic and
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phenotypic heterogeneity are frequently found across studies [44,62]. This highlights the

dynamic nature of bacterial evolution and points to a need for deep sampling of many patients

in order to gain a more complete understanding of bacterial adaptation in the adapt-and-live

scenario.

Adapt-and-die mutations: Evolution of beneficial traits that do not persist

In contrast to adapt-and-live mutations, adapt-and-die mutations are ultimately extinguished

from the infecting population, despite being beneficial. The death of a beneficial mutation can

occur through a variety of mechanisms. For example, if a mutation is conditionally beneficial

and offers a relative fitness advantage in only one type of environment within the host, and

perhaps confers a severe fitness cost under other conditions, these conditions will hinder sur-

vival of the mutant. Alternatively, as observed in the LTEE, some beneficial mutations may

simply be outcompeted by fitter clones due to clonal interference. Also, despite their relative

advantage, clones that harbor beneficial mutations may still ultimately be eliminated by host

immunity or antibiotic treatment. Finally, some mutations may confer a fitness advantage

only in a tissue compartment within the host that does not permit transmission to a new host,

thus creating an evolutionary “dead-end” [63,64]. Due to their relatively transient nature,

these adapt-and-die mutations may escape detection, even though the information they

encode is still valuable for understanding bacterial adaptation and mechanisms of pathogene-

sis. In this section, we argue that adapt-and-die mutations represent an untapped resource for

information about bacterial evolution during human infection.

The evolution of vancomycin-resistant Staphylococcus aureus (VRSA) is a notable example

of an adapt-and-die scenario that generates a fitness cost restricting transmission to other

hosts. S. aureus is a common colonizer of the CF airway, and several recent studies have com-

pared S. aureus adaptation in CF patients to the adaptation of P. aeruginosa in the same envi-

ronment [65–67]. S. aureus also frequently causes skin and soft tissue infections, bone and

joint infections, and bacteremia. Vancomycin is the primary therapy for severe methicillin-

resistant S. aureus (MRSA) infections, and its evolution to VRSA is concerning. Worldwide,

there have been at least 52 VRSA isolates described since the first report in 2002 [68], yet epi-

demic spread has not occurred. VRSA is believed to evolve by conjugative transfer of an

Inc18-like vanA-encoding plasmid from vancomycin-resistant enterococci (VRE) to MRSA.

Detailed studies of a subset of cases have revealed that successful vanA plasmid transfer

requires MRSA to harbor a pSK41-like conjugative plasmid [69]. The evolutionary jump from

MRSA to VRSA can take place when VRE co-colonize the same anatomical site as a pSK41-po-

sitive precursor MRSA strain (Fig 3A). The clinical features of VRSA cases suggest that this

most often occurs within a polymicrobial biofilm that is present, for example, on a skin wound

or indwelling medical device [70]. Because the recipient MRSA strain has a low prevalence

[71], vanA plasmid transfer between VRE and MRSA is a relatively rare event. Moreover, in

the absence of vancomycin pressure, the vanA gene cluster causes a large growth defect in S.

aureus [72]. Transmission of S. aureus from person to person occurs by direct contact and col-

onization of the skin. To date, no such VRSA transmission events have been reported, presum-

ably due to the fitness cost imposed by the vanA operon (Fig 3A). Although rare, VRSA cases

continue to be reported, thus future opportunities for the acquisition of compensatory muta-

tions that might permit epidemic transmission remain a dangerous possibility.

A second notable example of the adapt-and-die scenario is when beneficial mutations are

selected within tissue compartments that do not permit their transmission to new hosts (Fig

3B). Generally, bacterial transmission occurs via the respiratory route, fecal-to-oral route, or

by direct skin contact. Although tissue compartments outside of a pathogen’s main

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009872 September 9, 2021 9 / 19

https://doi.org/10.1371/journal.ppat.1009872


transmission route, such as the bloodstream or central nervous system, are commonly invaded

during infection, bacteria are generally unable to be transmitted directly from these compart-

ments to other individuals. Furthermore, invasive infections are often caused by bacteria that

colonize a different body site, such as the skin [73], nasopharynx [74], or gastrointestinal tract

[75]. Due to the process of niche adaptation, these bacteria are often well adapted to reside at

anatomical sites of colonization, rather than sites of infection. Because transmission does not

happen between the bacterial populations at these more invasive sites of infection, beneficial

Fig 3. Bacterial evolution during acute infection. (A) Evolution of VRSA during coinfection with MRSA and VRE. While MRSA can be easily transmitted to

other patients, VRSA have poor fitness and cannot be transmitted. (B) Different VRE populations in the GI tract and bloodstream of an infected patient. While

VRE from the GI tract can be transmitted to other patients, VRE infecting the bloodstream are not transmitted. Conditionally beneficial mutations (shown in

green) that are selected during growth in the bloodstream will similarly not be transmitted to other patients. Because anatomical barriers prevent conditionally

beneficial adaptations from being transmitted, body sites such as the bloodstream can be considered evolutionary “dead-ends.” GIAU : AnabbreviationlisthasbeencompiledforthoseusedinFig3:Pleaseverifythatallentriesarecorrect:, gastrointestinal; MRSA,

methicillin-resistant S. aureus; VRE, vancomycin-resistant Enterococcus; VRSA, vancomycin-resistant S. aureus.

https://doi.org/10.1371/journal.ppat.1009872.g003
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traits must reevolve within each new patient. This process of evolution “on repeat” can be stud-

ied by sequencing pathogen genomes sampled from sites of colonization and infection within

the same patient [76] or by sequencing the genomes of bacteria from outbreaks of a particular

kind of infection [77,78]. One example of this is the enterococci, which are stable colonizers of

the gastrointestinal tracts of land mammals [79]. In the antibiotic era, select enterococcal line-

ages have emerged that now cause invasive infections among immunocompromised and hos-

pitalized patients [80]. One recent study of an outbreak of bacteremia caused by multidrug-

resistant Enterococcus faecalis among 53 patients at a single hospital identified repeated adapta-

tions in genes affecting cell surface polysaccharide production, including the enterococcal

polysaccharide antigen (epa) and lipoteichoic acid [77]. In the latter case, independent muta-

tions in the same transcriptional repressor were observed in 21 different patients. The mutated

repressor was shown to cause overexpression of an enzyme that altered the abundance and

structure of lipoteichoic acid; these changes conferred increased resistance to antibiotic treat-

ment and innate immune stresses, which likely drove their occurrence [77]. Identical repressor

mutations were observed in very few patients, strongly suggesting that these mutations were

selected during bacterial growth in the human bloodstream and that they frequently died out

instead of being transmitted to other patients (Fig 3B).

Similar to enterococci, S. aureus also adapt during the transition from skin colonization to

invasive infection. Young and colleagues sequenced 1,163 S. aureus genomes from 105 patients

with nose colonization that developed invasive infections of the bloodstream, soft tissues, or

bones and joints [81]. Five different colonies were sampled per cultured site for each patient.

This enhanced sampling was critical and enabled the discovery of over 1,000 de novo muta-

tions with many examples of convergent evolution. Significant signatures of adaptation were

observed in genes responding to the bacterial regulators rsp and agr, as well as genes that pro-

tect against host-derived antimicrobial peptides. rsp regulates the expression of surface anti-

gens and toxins, while agr is involved in quorum sensing, toxin production, and abscess

formation. Adaptive mutations associated with pathogenesis were more likely to occur in bac-

teria isolated from sites of infection compared to colonizing bacteria, and these mutations did

not occur in S. aureus sampled from healthy individuals. Mutations associated with invasive

infection of the bloodstream or joints in this study were likely of the adapt-and-die category,

given that these tissue compartments are likely evolutionary “dead-ends.” In contrast, skin and

soft tissue infections aid transmission, and there is evidence that adapt-and-live mutations

arising at these sites can prime community outbreaks of S. aureus [78].

Convergent evolution across species

Convergent evolution has been observed across different bacterial species, which demonstrates

the generalizability of some in vivo adaptations. For example, mutations in relA that cause con-

stitutive activation of the bacterial stringent response have been identified in persistent blood-

stream infections caused by both Enterococcus faecium [82,83] and S. aureus [82–84].

Activation of the stringent response results in metabolic quiescence and antibiotic tolerance,

thus promoting persistent infection [85]. Because strains carrying relAmutations all evolve in

the bloodstream, exhibit growth defects, and show no evidence of transmission between

patients, we would assign these mutations to the adapt-and-die category. Separately, a large

analysis of published bacterial genomes recently uncovered several examples of common adap-

tive strategies found across different bacterial pathogens [54]. This dataset consisted of bacte-

rial genomes from studies where the infecting pathogen was isolated and sequenced from at

least 2 different time points from the same patient. It included over 7,000 isolates from 1,421

patients and encompassed 29 different bacterial species. Convergent adaptive changes across
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species often included common antigens recognized by the immune system, such as the flagel-

lar filament, or those involved in antibiotic resistance and tolerance, such as mutations in

RNA polymerase. By contrast, changes in virulence factors tended to be species specific. Over-

all, these findings suggest that the fate of an adaptive mutation is likely to depend on where

and when it arises, as well as the species and type of infection in which it arises.

Practical considerations for studying bacterial evolution in vivo in humans

As researchers, we are interested in studying how bacteria evolve in vivo during human infec-

tion in order to learn more about the basic biology of these organisms and to identify possible

targets for therapeutic intervention. There are several limitations that currently hinder our

ability to study in vivo bacterial evolution in sufficient depth to draw confident conclusions. In

this section, we present what we consider to be practical considerations for studying bacterial

evolution in vivo during human infection.

One major challenge to conducting rigorous studies of bacterial evolution in vivo is a lack of

access to high-quality samples or the inability to collect the right sample at the right time. Studying

bacterial evolution in vivo in humans requires the sampling of bacteria directly from human infec-

tions, which presents a formidable obstacle. While much can be learned from studying bacterial

isolates collected during routine clinical care (which are usually considered discarded specimens

and exempt from informed consent), such sample sets of convenience are likely to be sparse,

incomplete, and/or biased in ways that limit their utility for conducting rigorous and well-con-

trolled analyses. The choice of infection and sampling strategy should ideally be tailored to a set of

research questions established at the outset of the study. Many researchers, however, are unable to

consent and enroll patients in a clinical or interventional study, which leaves them to rely on the

collection of whatever samples happen to be available for a particular organism or infection of

interest. We propose that physicians and researchers should work together to collect samples

from patients that (1) meet defined sets of inclusion criteria; (2) provide informed consent; and

(3) can be sampled systematically and routinely to yield high-quality data for these studies.

A second major challenge that currently limits many studies of bacterial evolution in vivo is

the reliance on sequencing and analysis of single clones of bacteria taken from an infection-

derived clinical specimen. While the use of WGS to compare bacteria sampled from infected

patients is a powerful approach for studying pathogen adaptation [3,86,87], the sampling of

bacteria from infected patients nearly always involves the isolation of a single “representative”

clone from the population of bacteria within the patient. This standard approach, while effi-

cient and cost-effective, is based on the false assumption that infections are caused by clonal

populations. The end result is a dramatic undersampling of bacterial genetic diversity within

infected patients, which can lead to incorrect inferences about bacterial transmission and over-

look low frequency variants that might be clinically relevant, such as antibiotic-resistant

minority clones [87,88]. When bacterial clonal diversity within patients has been studied, only

a small number of patients have been sampled [89,90]. This limits the conclusions that can be

drawn from such studies and represents a critical barrier to progress in the field. Additionally,

sampling the same patient longitudinally, even if over a short time period, adds another impor-

tant dimension to these studies. We propose that sampling strategies should be tailored

according to well-defined study questions. When it is possible and appropriate for the study,

bacterial populations should also be collected longitudinally and should be sequenced along-

side representative clones, as doing so is likely to yield additional insights beyond what can be

learned from studying single bacterial isolates sampled from single time points.

A final challenge to conducting rigorous and well-controlled studies of bacterial evolution

in vivo in humans is that appropriate tools for comparative and functional genomic analyses
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still need to be developed. A number of analysis tools have been developed for studying bacte-

rial evolution in vitro and conducting genome-wide association studies in microbial pathogens

[91,92], and many of these can be adapted to account for additional complexities that exist in

human infections. One big hurdle that still remains is how to account for the movement of

mobile genetic elements as well as recombination in these systems. In vitro experimental sys-

tems are largely genetically “closed,” meaning that new genetic material cannot enter the sys-

tem and recombination is not a source of additional genetic variation in these settings (Fig 1).

In vivo, however, we know that mobile element movement and recombination can play major

roles in pathogen evolution [93,94], and these changes should ideally be analyzed alongside de

novo mutations. Current approaches largely focus on genetic changes occurring within well-

conserved genomic regions and are insufficient to detect genomic regions under selection that

may not be highly conserved. Finally, comparative genomics approaches can only identify

genes that appear to be under selection or mutations that appear to be beneficial for a particu-

lar organism. Functional studies are needed in order to test the hypotheses generated by com-

parative genomics analyses and to establish molecular mechanisms underlying beneficial

adaptations. We propose that existing analysis tools should be adapted and new tools should

be developed that can account for the added complexity of in vivo settings, for example, by

incorporating pangenome analyses, using in vivo observations to develop computational mod-

els of infection, and refining these models to be able to predict the likely impact of observed

mutations within a given infection context. The results of these analyses should then be con-

sidered as hypotheses that should be formally tested with functional follow-up approaches.

Conclusions

We conclude this review with a few key points. First, microbes are constantly recording valu-

able information into their genomes in the form of mutations due to natural selection, and

obtaining this information from clinical samples is now accessible to a growing body of

researchers. Second, in vivo evolutionary dynamics during bacterial infections in humans are

more complicated than in vitro experiments of microbial evolution, but uncovering signals of

adaptation in this setting can result in important biological insights and uncover entirely new

areas for investigation. Third, beneficial traits that arise during infection, but are short lived,

are more challenging to identify, yet also provide critical insight into how bacteria adapt to

new environments. And, finally, through this review, we hope to inspire clinicians and

researchers alike to consider ways that they can move their research closer to the study of bac-

terial evolution in vivo in humans. Such studies certainly present numerous challenges com-

pared to well-controlled in vitro evolution experiments. However, we believe that the potential

benefits of in vivo studies of bacterial evolution during human infection are both highly

impactful and directly translatable to improving the treatment and care of infected patients.
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