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Abstract

MicroRNAs (miRNAs) are endogenous small RNAs playing an important regulatory function in plant development and stress
responses. Among them, some are evolutionally conserved in plant and others are only expressed in certain species, tissue
or developmental stages. Cucumber is among the most important greenhouse species in the world, but only a limited
number of miRNAs from cucumber have been identified and the experimental validation of the related miRNA targets is still
lacking. In this study, two independent small RNA libraries from cucumber leaves and roots were constructed, respectively,
and sequenced with the high-throughput Illumina Solexa system. Based on sequence similarity and hairpin structure
prediction, a total of 29 known miRNA families and 2 novel miRNA families containing a total of 64 miRNA were identified.
QRT-PCR analysis revealed that some of the cucumber miRNAs were preferentially expressed in certain tissues. With the
recently developed ‘high throughput degradome sequencing’ approach, 21 target mRNAs of known miRNAs were identified
for the first time in cucumber. These targets were associated with development, reactive oxygen species scavenging,
signaling transduction and transcriptional regulation. Our study provides an overview of miRNA expression profile and
interaction between miRNA and target, which will help further understanding of the important roles of miRNAs in cucumber
plants.

Citation: Mao W, Li Z, Xia X, Li Y, Yu J (2012) A Combined Approach of High-Throughput Sequencing and Degradome Analysis Reveals Tissue Specific Expression
of MicroRNAs and Their Targets in Cucumber. PLoS ONE 7(3): e33040. doi:10.1371/journal.pone.0033040

Editor: Baohong Zhang, East Carolina University, United States of America

Received August 24, 2011; Accepted February 8, 2012; Published March 30, 2012

Copyright: � 2012 Mao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Basic Research Program of China (2009CB119000), National Natural Science Foundation of China (30971701),
and Foundation for the Author of National Excellent Doctoral Dissertation of PR China (200766). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jqyu@zju.edu.cn

Introduction

MicroRNAs (miRNAs) are a class of single strand, endogenous,

approximately 22 nt non-coding RNA molecules that negatively

regulate gene expressions at post-transcriptional level [1,2]. In

plants, the rapidly increasing studies demonstrate that miRNAs

play an important role in a broad range of biological processes,

including regulation of plant growth development and response to

biotic and abiotic stresses via interactions with their specific target

mRNAs [3–5]. Therefore, numerous efforts have been made to

discover and identify miRNAs from diverse plant species in recent

years. Initially, the traditional (direct cloning and sequencing)

Sanger sequencing and computational predictions approaches

were widely used for miRNA identification, and contributed

greatly to the miRNA discovery [6–10]. However, in addition to

the highly conserved miRNAs, some other miRNAs are only

expressed in certain species, tissue or developmental stages and

may accumulate at lower levels, which made it difficult to detect

them with the traditional methods. The recent approach using

next-generation high throughput sequencing technology provides

a rapid and high throughput tool to explore the large inventory of

sRNA populations and to identify low abundant miRNAs involved

in specific processes. Since its use in the model species Arabidopsis

[11–13], the next-generation high throughput sequencing tech-

nology has been successfully applied in many plant species [14–

18], and the number of reported plant miRNAs is increasing

rapidly. To date, a total of 2,109 plant miRNAs from 46 species

have been identified and deposited in miRBase (miRBase Release

17.0, http://www.mirbase.org/).

To thoroughly understand the biological functions of miRNA, it

is not only necessary to accurately identify the miRNAs, but also to

predict the targets and explore their interactions. Usually, based

on the perfect sequence complementarity between a miRNA and

its target or the conservation of miRNA targets among different

plant species, computational target prediction was widely em-

ployed in identifying plant miRNA targets [19,20]. However, due

to the existence of a higher mismatch in miRNA-target pairing,

computational target prediction method is often questionable as

concern to distinguishing the authenticity of predicted target genes

[21]. Therefore, all the prediction targets should be confirmed by

experimental approaches. So far, the modified 59 RACE remains

the most widely method for target confirmation and cleavage site

mapping [22]. Duo to intensive labor work and high cost, this

method is, however, only applicable to identify targets in small-

scale, which greatly affects the efficiency of target validation.

Fortunately, the recent advent of degradome sequencing opens up

a new avenue for high-throughput validation of the splicing targets

on a whole genome scale. The power of the method lies in
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permitting large-scale validation of small RNA targets, and, as a

result, it has revolutionized the traditional target validation

experimentation. Recently, it has been successfully applied to

screen for miRNA targets in Arabidopsis [23,24], rice [25],

grapevine [18] and soybean [26].

Cucumber is one of the most important greenhouse species in

the world. However, despite its economic and biological

importance, and availability of the complete genome sequence,

the number of miRNAs identified from cucumber plants is very

limited as compared to other plant species [27]. Furthermore,

there still has been no report of experimental validation of the

related miRNA targets in cucumber, which is critical for

understanding of the roles of miRNAs in cucumber. Therefore,

further identification of specific expression of miRNAs in different

tissues and developmental stages, as well as elucidation of their

functions with experimental validation of the related miRNA

targets will help us understand the regulatory mechanism of

miRNAs in cucumber. The goal of this study is to identify tissue

specific expression of miRNAs and their potential targets in

cucumber. To achieve this goal, two independent small RNA

libraries from cucumber leaves and roots were constructed and

sequenced by the high-throughput Illumina Solexa system. A

selected number of cucumber miRNAs were then validated by

quantitative RT-PCR. Based on these newly identified cucumber

miRNAs, we also predicted their potential miRNA targets by

degradome sequencing for the first time in cucumber.

Results

The small RNA profile in cucumber
To identify miRNAs in cucumber, two independent small RNA

libraries from cucumber leaves and roots were sequenced with the

high-throughput Illumina Solexa system, which generated a total

of 6,055,873 and 7,574,396 raw reads, respectively. After filtering

out the adapter sequences as well as sequences with low quality or

low-copy (copy,3), 4,012,509 and 4,807,017 sequences were

obtained with length 15-26 nt from leaves and roots, respectively

(Table 1). After further removing mRNA, rRNAs, tRNAs,

snRNAs, and snoRNAs, a total of 2,525,960 and 2,950,151

mappable small RNA sequences were obtained from leaves and

roots, respectively (Table 1). In both libraries, the majority of the

sRNAs were 20–24 nt in size, with 24 nt having the highest

abundance (Fig. 1). These results were consistent with the typical

small RNA distribution of angiosperms, such as rice [28],

Medigcago [29], and cucumber [27].

Identification of known miRNAs in cucumber
To identify miRNAs in cucumber, all the mappable sRNA

sequences were first compared to the currently known plant

miRNAs in miRBase v17 database. A total of the 60 known

unique miRNAs with high sequence similarity to the known plant

miRNAs were identified (Table S1). Most of these known miRNAs

(68.3%) were 21 nt in length with the remainder being 20 nt or

22 nt long (Table S1). This is similar to observations of miRNAs

from other plant species, indicating that cucumber miRNAs are

mostly processed by DCL 1 [30].

Base on the sequence similarity, these identified miRNAs could

be grouped into 29 miRNA families (Table 2 and Table S1). Most

of the identified miRNA families such as miR156, miR159,

miR167, miR394 and miR398 are highly conserved in a variety of

plant species (Table S1). In addition, as expected, we also found

several known but non-conserved miRNA (miR170, miR477,

miR530, miR827, miR858, miR1515, miR2111, and miR2950) in

our dataset that have previously been identified only from one or a

few plant species. Based on the prediction of secondary structures,

13 potential precursors of known miRNA were identified in the

cucumber genome, of which one miRNA* sequences (csa-miR393-

3P) had also been sequenced by deep sequencing (Table S1). The

predicted hairpins have a minimal folding free energy (MFE)

ranging from 237.3 kcal/mol to 282.8 kcal/mol and a minimal

folding free energy index (MFEI) ranging from 0.85 to 1.32.

The expression profiles of miRNAs were analyzed and

compared between two tissues based on the number of reads

generated from the high-throughput sequencing. Interestingly,

there was a significant difference of the relative abundance among

the miRNA families. As showed in Table 2, miR167 and miR168

were abundant in both libraries, while several conserved miRNA

(such as miR171, miR394, and miR399) as well as most of non-

conserved miRNA, were found to have very low reads in both

libraries or even to be undetectable in one library. However, we

also found that some miRNAs were expressed preferentially in the

leaves or roots. For example, the miR159 had higher abundance

in leaves while miR160, miR164, miR166, and miR397 showed a

higher expression level in roots, suggesting the potential functional

divergence among the miRNA family.

Identification of novel cucumber miRNAs
The ability of the miRNA flanking sequences to fold-back into a

hairpin structure is an important criterion to differentiate

candidate miRNA from other small RNAs. By mapping all

unique sRNA sequences to the cucumber genome and predicting

Table 1. Statistics of small RNA sequences from the cucumber leaves and roots libraries.

Category Leaves Roots

Sequences Unique sequences Sequences Unique sequences

Raw reads 6055873 1234981 7574396 1861481

Adaptor removed 131690 17128 125273 10973

Low quality reads removed 111585 27531 50734 42876

Sequences ,15 nt, .26 nt filter 864176 240088 829401 182042

Copy,3 removed 935913 851993 1761971 1502957

mRNA, RFam, Repbase matches removed 1486549 32781 1856866 32083

Mappable sequences 2525960 65460 2950151 90550

Mappable sequences: The raw reads were passed through a series of the digital filters by Illumina’s Genome Analyzer Pipeline software and ACGT101-miR program, and
the resulting sequence were called ‘‘mappable sequences’’ [57].
doi:10.1371/journal.pone.0033040.t001
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the hairpin structures for their flanking sequences, 332 miRNAs

candidates were identified in this study. The MFE of these

predicted pre-miRNAs ranged from 221.2 kcal/mol to

2149.2 kcal/mol with an average of 252.9 kcal/mol, and MFEI

ranged from 0.85 to 1.46 with an average of 1.08, which is

apparently higher than other types of RNAs such as tRNAs (0.64),

rRNAs (0.59) and mRNAs (0.62–0.66) [31]. These conditions

meet the stability requirements of the secondary structure of

miRNAs. Moreover, of these candidate miRNAs, two had

miRNA* sequences in the library (Table 3), and all these paired

to their corresponding miRNAs with 2 nt 39 overhangs (Fig. 2).

Based on the recent annotation criteria of plant miRNAs [32],

these two miRNAs were categorized as novel miRNAs in

cucumber.

Confirmation of predicted miRNAs by qRT-PCR
To verify the existence and expression patterns of the predicted

miRNAs, two novel miRNAs, as well as 13 representative known

miRNAs displaying differential expression pattern in leaves and

roots from the high-throughput sequencing were selected for qRT-

PCR analysis. Although some non-conserved and new miRNAs

were identified in low read number or undetectable by Solexa

sequencing, all of them were detected by qRT-PCR. Overall,

except for a few low-abundantly expressed miRNAs, most of the

qRT-PCR results of the high abundance miRNAs were quite

consistent with the results from sequencing data (Fig. 3). In

particular, miR156 miR159, miR171, miR398, miR408, miR530

and miR858 were more abundant in leaves, whereas the

abundances of miR160, miR164, miR166, miR397, miR477

and miR827 were higher in roots. Interestingly, miRn1-3p and

miRn2-5p also showed a tissue-specific pattern, with a higher

abundance in leaves (Fig. 3).

Target identification for cucumber miRNAs by
degradome analysis

To understand the potential biological function of these

identified miRNAs, a recently developed degradome sequencing

approach [23,24] was applied to identify the targets of cucumber

miRNAs. A total of 18650451 short sequencing reads representing

the 39cleavage fragment were generated. After initial processing

and analyzing by CleaveLand 2.0 [33], a total of 21 genes targeted

by 11 known miRNAs families were identified, of which 17 target

genes were cleaved by 10 conserved miRNA families (including

miR156/157, miR159, miR164, miR167, miR169, miR172,

miR319, miR393 and miR398) and only 4 target genes were

cleaved by miR858, a known but non-conserved miRNA family.

Interestingly, we also found a miRNA pairs (miR156 and miR157)

targeting the same gene Csa018095 (Fig. S1 and Table 4).

Unfortunately, we could not detect the cleavage signature for most

of known miRNA families and newly identified novel miRNA

families in this degradome library. Based on the signature

abundance at the target sites, these cleaved targets were classified

into three categories (categories I, II and III) (Table 4) as

previously described [23,33]. Among these identified targets,

twelve belonged to category I, eight were in category II, and only

one was in category III. These results indicated that most of these

targets were efficiently cleaved by miRNA. All the ‘target plots’ (t-

plots) of identified targets were showed in Fig. 4 and Fig. S1.

Based on the BLASTX analysis, 57.1% of the identified miRNA

targets were generally homologous to conserved target genes that

have already been found in other plants species. Most of these

conserved target genes were transcription factors, including

growth regulating factors [squamosa promoter binding (SBP)

transcription factors, MYB transcription factors, AP2-like tran-

scription factor, TCP transcription factors], and auxin response

factors (auxin signaling F-box 2). These factors had been found to

be involved in plant growth and/or responses to environmental

changes in previous reports [34,35]. Among them, mRNA for Cu/

Zn superoxide dismutase which was confirmed as miR398 targets

in Arabidopsis [23,24], rice [25], and soybean [26] was also found to

be cleaved by miR398 in this study. Interestingly, in addition to

the well-documented conserved targets, we also identified some

nonconserved targets regulated by known miRNAs. For instance,

miR167 was found potentially to target a gene encoding

chlorophyll a/b-binding protein (Table 4). As for miR398, besides

targeting Cu/Zn superoxide dismutase, it also targeted a gene

encoding blue copper protein precursor, which act as mobile

electron carriers in a variety of biological systems. These results

strongly suggest that the identified cucumber miRNAs regulate a

Table 2. Expression levels of cucumber miRNA families
assessed using Solexa sequencing.

Family Leave Roots Family Leaves Roots

csa-miR156/157 3304 1727 csa-miR393 43 25

csa-miR159 41206 223 csa-miR394 42 36

csa-miR160 360 1539 csa-miR396 2628 426

csa-miR162 277 298 csa-miR397 358 24840

csa-miR164 28 2127 csa-miR398 8046 5346

csa-miR166 442 3022 csa-miR399 14 25

csa-miR167 18070 16035 csa-miR408 5193 2030

csa-miR168 10687 8311 csa-miR477 3 88

csa-miR169 2434 1844 csa-miR530 555 176

csa-miR170 125 0 csa-miR827 14 45

csa-miR171 19 0 csa-miR858 11 0

csa-miR172 116 23 csa-miR1515 24 19

csa-miR319 6 5 csa-miR2111 38 160

csa-miR390 425 315 csa-miR2950 40 231

The expression level of cucumber miRNA families in each tissue was assessed by
counting the number of all the reads mapping to each family, normalized by
the total number of mappable sRNA in the respective libraries.
doi:10.1371/journal.pone.0033040.t002

Figure 1. The size distribution of the small RNAs in leaves and
roots libraries of cucumber.
doi:10.1371/journal.pone.0033040.g001
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wide range of genes not only in development but also in other

physiological processes.

GO function analysis of targets. To better understand

miRNA functions, we subjected the identified target genes to Gene

Ontology (GO) analysis, a promising method for uncovering the

miRNA-gene regulatory network on the basis of biological process

and molecular function [36]. The result of GO analysis

demonstrated that the 21 predicted targets could be classified

into 36 biological processes, and 11 miRNA families were found to

take part in a broad range of physiological processes, including

transcription regulation, cell differentiation, organismal

development, vegetative to reproductive phase transition,

photosynthesis, defense against stresses, hormone stimulus and

light signaling pathways (Table 5). Many miRNA families were

involved in the same biological process. For example, miR156,

miR157, miR159, miR169, miR172 and miR858 participated in

transcription regulation while miR159, miR172, miR393 and

miR858 participated in multicellular organismal development.

Discussion

Identification of miRNAs and their targets is the basis for

understanding the physiological functions of miRNAs. Many plant

miRNAs have been deposited to miRBase and their physiological

functions have also been studied. The research on cucumber

miRNAs, however, is just in its infancy. The recent completion of

the sequence of the cucumber genome provides a powerful

resource for identification of cucumber miRNAs [37]. Based on

the sequence of the cucumber genome, 49 mature miRNA

belonging to 25 known miRNA families as well as 7 new miRNA

families were detected by deep sequencing in a cucumber library

generated from phloem exudate and leaves of cucumber infected

with Hop stunt viroid [27]. However, experimental validation of the

miRNA targets was not carried out, which greatly hindered the

research of the miRNAs regulation mechanism in cucumber. In

this study, we expanded cucumber miRNA data set by identifying

60 known miRNAs as well as 2 new miRNAs with their miRNA*

star strands, of which 37 known miRNAs and all the new miRNAs

were firstly revealed in cucumber. Moreover, we for the first time

revealed 21 potential targets of these miRNAs by the recently

developed degradome sequencing approach. This will offer new

opportunities for the revelation of the miRNA-mediated tran-

scriptional regulatory networks in cucumber.

A wide range of characteristics were featured in these newly

identified known miRNAs in cucumber. As reported by Martı́nez

et al. [27], most of the identified known miRNA families are highly

evolutionarily conserved in a variety of plant species (Table S1).

Table 3. Novel cucumber miRNAs identified by high-throughput sequencing.

miRNA name Sequence (59-39) LM Precursor ID LP MFE(kcal/ml) A+U% MFEI
Frequency in
leaves Frequency in roots

csa-miRn1-5p CCGCAGGAGAGATGACACCCAC 22 Scaffold001136 154 258.2 64.9 1.08 0 25

csa-miRn1-3p AGGTGTCATCTCACTGCGGTA 21 Scaffold001136 154 258.2 64.9 1.08 0 5

csa-miRn2-5p TGCTGCTCATTCGTTAGTTCA 21 Scaffold000215 198 285.0 59.1 1.05 5 3

csa-miRn2-3p ATCTAACGATGTAGGAGCAAT 21 Scaffold000215 198 285,0 59.1 1.05 5 0

LM: length of the mature miRNA; LP: length of the miRNA precursor sequence; MFE: Minimal folding free energy; MFEI: Minimal folding free energy index
Frequency in leaves and roots: normalized sequencing frequencies in leaves and roots libraries, respectively.
doi:10.1371/journal.pone.0033040.t003

Figure 2. Predicted secondary structures of novel cucumber miRNAs. The mature miRNA and miRNA* sequences are written with red and
blue capital letters, respectively.
doi:10.1371/journal.pone.0033040.g002
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For example, miR156/157, miR319, miR165/166, miR169,

miRNA 394 and miR172 have been found to have orthologs in

45, 51, 40, 41, 40 and 24 kinds of plant species, respectively

[31,38], suggesting that these miRNAs play important and

conserved roles in plant kingdom. As for known but non-conserved

miRNAs, in addition to miR170, miR827, miR858 and miR2950

which have been reported in cucumber [27], four other miRNA

families (miR477, miR530, miR1515 and miR2111) were for the

first time detected by this study. Of these four miRNA families,

miR1515 has been only identified in Citrus sinensis and Glycine max

so far. It seems likely that these miRNAs relatively recently evolved

[22], and play important roles in more species-specific character-

istics in plant growth and development [31]. Therefore, although

presenting at low level, these non-conserved miRNAs might play

species-specific functions in cucumber.

Analyzing the spatial and temporal expression patterns of

miRNAs would provide useful information about their physiolog-

ical functions [30]. In plants, increasing evidence showed that

many miRNAs have differential accumulation in specific devel-

opmental stages and tissues [39]. For example, miR159, which is

considered to have crucial function in leaf development,

accumulated mainly in the leaf as compared to other tissues in

potato [40]. On the other hand, several miRNA families such as

miR164 and miR390, have an essential role in plant root

development including root cap formation, lateral root develop-

ment, or adventitious rooting through their ARF (auxin response

factor) targets-mediated downstream pathways [41,42]. MiR164

showed a significant higher expression in roots than in leaves in

several plant species [41,43]. In addition, the recent studies also

showed that miR397 was more abundant in opium poppy leaves,

and miR171 was higher in opium poppy roots, while miR156 and

miR408 were more abundant in barley leaves, and miR166 was

higher in barley roots [44,45]. Based on the sequencing reads and

identification by qRT-PCR, many miRNAs also showed differen-

tial expression in different tissues in our study. Consistent with

previous reports, miR164 and miR166 were highly abundant in

cucumber roots, while miR156, miR159, and miR408 were highly

abundant in cucumber leaves. On the other hand, we found

miR397 and miR171 was highly abundant in roots and leaves,

respectively, which were quite different from the patterns found in

opium poppy [44]. This suggests that in addition to some common

mechanism shared by different plant species, there are species-

specific miRNA regulatory mechanisms in cucumber miRNA.

In addition to tissue-specific miRNA, many miRNAs have been

demonstrated to be responsive to growth stages and growth

conditions. A series of recent reports found that environmental

stress-related miRNA were mostly suppressed in plants grown

under normal conditions. For example, miR395 were usually

undetectable in normal plants but induced strongly under sulphate

starvation [21]. MiR399 was specifically induced under low

phosphate stress [46], while miR393 levels were increased by a

variety of stresses [47]. Consistent with these reports, miR393, and

miR399 showed a significantly lower level of expression in this

study. However, whether these miRNAs identified in this study

would express in other tissues, or whether they are responsive to

biotic or abiotic stress, remains to be investigated.

Based on deep sequencing and the hairpin structure prediction,

we were able to identify two novel miRNAs with their miRNA*

star strands, an essential requirement for novel miRNA prediction

[32]. Because these miRNAs were not similar to any known

miRNAs, they might be specific to cucumber and play more

specific roles. As previously observed in other plants, these novel

miRNAs were expressed at low levels and difficult to detect

[12,13]. All of these novel cucumber miRNAs were validated in

this study and showed their preferential expression in leaves as

revealed by qRT-PCR (Fig. 3) which might provide important

clues about their physiological functions.

Identification of target gene with accuracy is essential to reveal

the regulatory networks of miRNA. Previous work on the

identification is limited to the bioinformational prediction [27],

and is therefore not adequate. In this study, we identified 21

potential targets for 11 known miRNA families in cucumber by

Figure 3. Expression analysis of miRNAs in cucumber leaves and roots by qRT-PCR. The amount of expression was normalized by the level
of U6 in qRT-PCR. All reactions of qRT-PCR were repeated three times for each sample. Left indicates the miRNA relative expression generated from
the high-throughput sequencing; Right indicates the miRNA relative expression tested by qRT-PCR.
doi:10.1371/journal.pone.0033040.g003
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degradome sequencing, an efficient strategy to identify target

genes of miRNAs [23,24] (Table 4). Among these targets, 57.1%

belonged to category I, suggesting that miRNA was the key

regulator of these genes [26]. Interestingly, we also found that the

same member of the SBP family (Csa018095) was cleaved by a

pairs of miRNAs (miR156 and miR157; Fig. S1 and Table 4),

suggesting that there was a combinatorial genes regulation

pathway involving a pair of miRNAs in cucumber [18].

Consistent with other plant species, most conserved miRNA

families were shown to be more likely to target transcription

factors involved in regulating plant growth and development. In

our study, mRNAs for squamosa promoter binding (SBP)

transcription factors, MYB transcription factors, AP2-like tran-

scription factor, TCP transcription factors, and auxin signaling F-

box 2 were cleaved by miR156/157, miR159/858, miR172

miR319 and miR393 families, respectively. All of these transcrip-

tion factors played an important role in plant growth and

development. For example, by negatively regulating SBP tran-

scription factors and AP2-like transcription factors, respectively,

miR156 and miR172 regulated juvenile-to-adult vegetative phase

transition in plant [48]. Overexpression of miR319a resulted in the

degradation of TCPs and delayed the leaf senescence [49]. In

addition to targeting transcription factors, some miRNAs in

cucumber were also shown to be involved in stress response and

metabolic processes, including miR398, which targeted Cu/Zn-

SODs, a well-known protein functioning in mitigating oxidative

stress during biotic and abiotic stress [50]. The similarity of

conserved targets to Arabidopsis, rice and grave, suggests that these

miRNA-mediated plant regulatory mechanisms might be con-

served through plant kingdom. Interestingly, several non-con-

served targets including chlorophyll a/b-binding protein and blue

copper protein precursor were also validated as genuine targets of

miR167 and miR398, respectively. Chlorophyll a/b-binding

protein is well known for its role in plant photosynthesis, and

blue copper protein has been reported to function as electron

carriers in a variety of biological systems. In order to more

thoroughly understand the function of miRNA, we further found

that 21 of these target genes belonging to 11 miRNA families were

involved in 36 physiological processes through GO analysis. These

physiological processes include not only transcription regulation,

organismal development, vegetative to reproductive phase transi-

tion, photosynthesis, defense against stresses, hormone stimulus

discussed above, but also cell differentiation, light signaling

pathway, cinnamic acid biosynthetic process and flavonoid

biosynthetic process. Interestingly, as previously reported [35],

there were also several miRNA regulatory groups in cucumber

that are involved in the same physiological processes including

transcription, cell differentiation, multicellular organismal devel-

opment, flower development and ethylene mediated signaling

pathway. It suggests that these miRNA regulatory groups

participate in the same physiological processes by interacting with

each other. For example, in the developmental processes, miR159

and miR172 might co-participate in cell differentiation and flower

development. In response to stress, miR159 and miR858 might

co-participate in the response to abscisic acid and salicylic acid

stimulus, while ethylene-mediated signaling pathway might be

regulated by miR172 and miR393.

It is also worth to note that not all the cucumber miRNAs

including conserved and novel miRNAs were found to have their

detectable sliced targets in this study. As discussed above, miRNAs

Table 4. Cucumber miRNA targets identified by degradome sequencing.

miRNA family Target gene family
Target gene
accession Cleavage site Abundance Category

Conserved in
Arabidopsis*

csa-miR156 DNA primase large subunit Csa008446 2338 0.75 II

squamosa promoter-binding protein Csa018095 787 1 II Y

csa-miR157 squamosa promoter-binding protein Csa018095 786 1 II

csa-miR159 r2r3-myb transcription factor Csa009014 838 5 I Y

csa-miR164 Single-stranded nucleic acid binding R3H Csa013305 253 1 I

csa-miR167 putative chloroplast chlorophyll a/b-binding protein CO995238 26 0.54 I

csa-miR169 SPL domain class transcription factor Csa014411 106 2 III

csa-miR172 AP2 domain-containing transcription factor Csa010225 1423 3 I Y

AP2 domain-containing transcription factor Csa012456 1234 7 II Y

AP2 domain-containing transcription factor Csa018310 1327 3 II Y

AP2 domain-containing transcription factor Csa020279 1366 8 I Y

Predicted membrane protein (ISS) Csa007404 540 1 II

csa-miR319 ATP binding protein, putative Csa017286 455 4 II

MdTCP2B CU7286 455 18 I Y

csa-miR393 auxin signaling F-box 2 Csa015043 1513 6.20 I Y

csa-miR398 Blue copper protein precursor CU27969 55 2 I

Cu/Zn superoxide dismutase 2 DQ178941 176 1.75 I Y

csa-miR858 MYB-related transcription factor Csa008131 301 0.48 II Y

MYB transcription factor MYB161 Csa009345 304 0.67 I Y

ubiquitin ligase protein cop1 Csa012814 2071 15 I

R2R3 transcription factor MYB108-like protein CU60428 48 0.5 I Y

*According to Addo-Quaye et al. [23].
doi:10.1371/journal.pone.0033040.t004
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are differentially expressed in tissue-specific and stage-specific

manners, and the degradome abundances of some targets may not

be sufficient to be detectable in leaf tissues. On the other hand,

besides transcript cleavage, miRNAs have also been shown to

regulate their targets by translational repression [51], and targets

regulated by such a mode would be undetectable by degradome

sequencing. In addition, the lack of completely mRNA data may

also limit the comprehensive identification of targets in some

extent. Therefore, further construction of degradome libraries

from different tissues, organs and different developmental stages

Figure 4. Target plots (t-plots) of miRNA targets in different categories confirmed by degradome sequencing. (A) T-plot (top) and
miRNA: mRNA alignments (bottom) for two category I targets, Csa020279 and Csa009014 transcripts. The arrow indicates signatures consistent with
miRNA-directed cleavage. The solid lines and dot in miRNA: mRNA alignments indicate matched RNA base pairs and GU mismatch, respectively, and
the red letter indicates the cleavage site. (B) As in (A) for Csa18310 and Csa008131, a category II target for csa-miR172 and csa-miR858. (C) As in (A) for
Csa014411, a category III target for csa-miR169.
doi:10.1371/journal.pone.0033040.g004
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would provide more insight into the interaction between miRNAs

and their corresponding targets.

In summary, we have not only identified 64 cucumber miRNAs,

which belongs to 29 known and two novel miRNA families, but

also discovered that some of the miRNAs are differentially

expressed in a tissue-dependent manner. For the first time, we

detected 21 sliced targets, which reveal interaction between

miRNA and target in cucumber by using the recently developed

degradome sequencing approach. This report will offer a

foundation for future studies of the miRNA-mediated regulatory

networks in cucumber.

Methods

Small RNA library construction and sequencing
The leaves and roots of cucumber (Cucumis sativus L. cv. Jinchun

No. 2) were collected at the two-leaf stage,and frozen in liquid

nitrogen immediately, and then stored at 280uC until RNA

isolation. For small RNA library construction,all the three different

samples were pooled and used to extract total RNA with mirVana

miRNA Isolation Kit (Ambion, Austin, TX, USA) according to

the manufacturer’s instructions. About 10 mg of small RNA were

used for sequencing by the Genome Analyzer GA-I (Illumina, San

Table 5. GO analyses show that miRNAs potentially target tissue forming-related biological processes.

miRNAs GO Biological Process gene

Total
number
of target

miR156,157,159,169,172,858 transcription Csa008446,Csa018095,Csa009014,Csa014411,Csa010225,Csa012456,
Csa018310, Csa020279,Csa008131,Csa009345,CU60428

11

miR159 regulation of gene expression Csa009014 1

miR159,172,393,858 multicellular organismal development Csa009014,Csa010225,Csa012456,Csa018310,Csa020279,Csa007404,
Csa015043,Csa009345

8

miR159,172 flower development Csa009014,Csa010225,Csa012456,Csa018310,Csa020279 5

miR172 specification of floral organ identity Csa010225,Csa012456,Csa018310,Csa020279 4

miR172 meristem maintenance Csa010225,Csa012456,Csa018310,Csa020279 4

miR393 lateral root formation Csa015043 1

miR172 vegetative to reproductive phase transition Csa010225,Csa012456,Csa018310,Csa020279 4

miR159,172 cell differentiation Csa009014, Csa010225,Csa012456,Csa018310,Csa020279 5

miR858 red or far red light signaling pathway Csa012814,CU60428 2

miR858 negative regulation of photomorphogenesis Csa012814 1

miR858 photomorphogenesis Csa012814 1

miR319 ,858 response to stress Csa017286 1

miR393 defense response Csa015043 1

miR398 response to oxidative stress CU27969 1

miR398 response to absence of light CU27969 1

miR159 response to salt stress Csa009014 1

miR159 response to wounding Csa009014 1

miR393 cellular response to phosphate starvation Csa015043 1

miR172,393 ethylene mediated signaling pathway Csa010225,Csa012456,Csa018310,Csa020279,Csa015043 5

miR858 response to ethylene stimulus CU60428 1

miR393 response to auxin stimulus Csa015043 1

miR393 auxin mediated signaling pathway Csa015043 1

miR159,858 response to abscisic acid stimulus Csa009014,Csa008131,Csa009345 3

miR858 response to gibberellin stimulus Csa009345,CU60428 2

miR159,858 response to salicylic acid stimulus Csa009014,Csa009345,CU60428 3

miR858 response to jasmonic acid stimulus Csa009345,CU60428 2

miR319,858 protein amino acid phosphorylation Csa017286,Csa012814 2

miR167 photosynthesis, light harvesting CO995238 1

miR167 photosynthesis CO995238 1

miR398 aluminum ion transport CU27969 1

miR398 electron transport chain CU27969 1

miR393,858 modification-dependent protein catabolic process Csa015043,Csa012814 2

miR398 oxidation reduction DQ178941 1

miR159 cinnamic acid biosynthetic process Csa009014 1

miR159 flavonoid biosynthetic process Csa009014 1

doi:10.1371/journal.pone.0033040.t005
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Diego, USA) following the manufacturer’s protocols. In brief, the

sRNA fractions with the length of 10–40 nt were isolated by 15%

denaturing polyacrylamide gel electrophoresis. After ligating with

59 and 39 adaptors, the obtained short RNAs were reversely

transcribed to cDNA according to the Illumina protocol. The

resulting small RNA libraries were then sequenced by the Genome

Analyzer GA-I (Illumina, San Diego, USA).

Identification of known and novel miRNAs
The raw sequences were firstly processed by Illumina’s Genome

Analyzer Pipeline software to filter out the adapter sequences, low

quality as well as low-copy sequences, and then the extracted small

RNA sequences with 15–26 nt in length were subjected to mRNA,

RFam, Repbase filter. Finally, the remaining unique sequences

were compared to the miRNA database, miRBase 17.0 (http://

www.mirbase.org/) by BLASTn search to identify the conserved

miRNAs in cucumber. A maximum of three mismatches were

allowed between identified cucumber miRNAs and currently

known plant miRNAs [52].

To identify potential miRNA precursor sequences, all identified

cucumber mature miRNA sequences were further BLASTed

against the cucumber draft genome sequences which downloaded

from cucumber genome database (http://cucumber.genomics.org.

cn/) and predicated for the hairpin RNA structures for their

flanking sequences by UNAfold software (http://rna.tbi.univie.ac.

at/cgi-bin/RNAfold.cgi). Non-coding sequences, which met

previously described criteria were then considered to be a potential

miRNA precursor. Specifically, (1) the identified miRNAs were

located in the arms of stem-loop structure; (2) no large loop or

break were exist in the identified miRNA sequence; (3) a

maximum of six mismatches were allowed between the identified

miRNAs and the opposite miRNA sequence (miRNA*); (4) the

potential miRNA precursor must have higher negative minimal

folding energy (MFE) and minimal free folding energy indexes

(MFEI) to distinguish from other small RNAs [31,52].

To identify potential novel miRNAs in cucumber, the rest

unmapped small RNA sequences were also BLASTed against the

genome and folded into a secondary structure as above. Only the

non-coding sequences which could form a perfect stem-loop

structure and meet the criteria for miRNAs prediction [32] were

then considered to be a potential novel miRNA candidate.

Verification of cucumber miRNAs by quantitative real-
time PCR (qRT-PCR)

To validate the presence and expression of the identified

miRNAs, 13 known miRNAs and two cucumber novel miRNAs

were selected for qRT-PCR. Total RNA was extracted from leaves

and roots using Trizol (Invitrogen) according to the manufactur-

er’s instructions, and then treated with RNase-free DNase I

(TaKaRa, Dalian, China) to remove the genomic DNA. The

specific forward primers of 15 selected miRNAs were designed

according to the sequence of miRNA itself, which were available

in Table S2. The reverse transcription reaction was performed

with the One Step PrimeScriptHmiRNA cDNA Synthesis Kit

(TaKaRa, Dalian, China) according to the manufacturer’s

protocol [53]

The qRT-PCR was performed with SYBR Premix Ex Taq II

(TaKaRa, Dalian, China) on the iCycler iQ real-time PCR

detection system (Bio-Rad). All reactions were performed in

triplicate for each sample and U6 snRNA was used as an internal

reference. The relative expression level of miRNA was calculated

according to the method of Livak and Schmittgen [54].

Degradome library construction and target identification
To predict the potential target mRNAs, a degradome library

was constructed from cucumber leaves as previously described by

German et al. [24,55]. Briefly, polyA-enriched RNA molecules

were isolated and ligated to an RNA oligonucleotide adaptor

containing a 39 MmeI recognition site,the ligated products were

used to generate first-strand cDNA by reverse transcription (RT).

Then a short PCR was used to amplify the cDNA to obtain

sufficient quantities of DNA products. After purification and

digestion with MmeI, the PCR product was ligated to a double-

stranded DNA adaptor, and then gel purified again for PCR

amplification. The final cDNA library was purified and sequenced

on Illumina GAIIx following vendor’s instruction.

Raw sequencing reads were obtained using Illumina’s Pipeline

v1.5 software to remove adaptor sequences and low quality

sequencing reads. The extracted sequencing reads with the length

of 20 and 21 nt were then used to identify potentially cleaved

targets by the CleaveLand pipeline as previously described

[23,33]. The degradome reads were mapped to the cucumber

sequences of mRNA and EST downloaded from Cucurbit

Genomics Datebase (http://www.icugi.org/) and NCBI (http://

www.ncbi.nlm.nih.gov/). Only the perfect matching alignment(s)

for the given read would be kept and extend to 35–36 nt by adding

15 nt of upstream of the sequence. All resulting reads (t-signature)

were reverse-complemented and aligned to the miRNA identified

in our study. No more than five mismatches of the alignments

were allowed. Alignments where the 59 the degradome sequence

position coincident with the tenth nucleotide of miRNA were

retained and scored by previously described method [56]. The

target was selected and categorized as I, II, or III as previous study

[23]. In addition, to easily analyze the miRNA targets and RNA

degradation patterns, t-plots were built according to the

distribution of signatures (and abundances) along these transcripts.

All the identified targets were subjected to BlastX analysis to

search for similarity, and then to GO analysis to uncover the

miRNA-gene regulatory network on the basis of biological process

and molecular function as previously described by Xie et al. [35] .

Supporting Information

Figure S1 Target plots (t-plots) of miRNA targets
confirmed by degradome sequencing. Signature abundance

is plotted as the length of the transcript. The miRNA-directed

cleavage signature is shown as the red arrow. The red letter in

miRNA:mRNA alignments indicates the cleavage site detected in

the degradome.

(TIF)

Table S1 Known miRNAs identified in cucumber and
their sequence similarity to known miRNAs from other
plant species.
(DOC)

Table S2 Primer sequences used for qRT-PCR.
(DOC)
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