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Diet induced the change of mtDNA copy
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Abstract

Background: Grass-fed and grain-fed Angus cattle differ in the diet regimes. However, the intricate mechanisms of
different beef quality and other phenotypes induced by diet differences are still unclear. Diet affects mitochondrial
function and dynamic behavior in response to changes in energy demand and supply. In this study, we examined
the mtDNA copy number, mitochondria-related genes expression, and metabolic biomarkers in grass-fed and grain-
fed Angus cattle.

Results: We found that the grass-fed group had a higher mtDNA copy number than the grain-fed group. Among
different tissues, the mtDNA copy number was the highest in the liver than muscle, rumen, and spleen. Based on
the transcriptome of the four tissues, a lower expression of mtDNA-encoded genes in the grass-fed group
compared to the grain-fed group was discovered. For the mitochondria-related nuclear genes, however, most of
them were significantly down-regulated in the muscle of the grass-fed group and up-regulated in the other three
tissues. In which, COX6A2, POLG2, PPIF, DCN, and NDUFA12, involving in ATP synthesis, mitochondrial replication,
transcription, and maintenance, might contribute to the alterations of mtDNA copy number and gene expression.
Meanwhile, 40 and 23 metabolic biomarkers were identified in the blood and muscle of the grain-fed group
compared to a grass-fed group, respectively. Integrated analysis of the altered metabolites and gene expression
revealed the high expression level of MDH1 in the grain-fed group might contribute to the mitochondrial NADH
oxidation and spermidine metabolism for adapting the deletion mtDNA copy number.

Conclusions: Overall, the study may provide further deep insight into the adaptive and regulatory modulations
of the mitochondrial function in response to different feeding systems in Angus cattle.
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Background
Recently, grass-fed beef production is booming in the
United States, which is considered more beneficial for
human health [1]. The main difference between grass-
fed and grain-fed beef cattle is attributable to the diet re-
gimes. As we know, mitochondria play an essential role
in the cellular response to environmental stressors, such
as air, water, temperature, and food [2]. Mitochondria
are dynamic organelles that are present in almost

eukaryotic cells and play a crucial role in several cellular
pathways, producing most of the cellular ATP employing
oxidative phosphorylation (OXPHOS). Different tissues
have specialized mitochondrial features due to differ-
ences in their metabolic profiles and energy demands
[3–6]. The difference is not only restricted to the
OXPHOS function [6] and mitochondria protein com-
positions [7] but also gene expressions, mitochondrial
DNA maintenance, and replications [8, 9].
Mitochondria contain their genomes (mtDNA), encod-

ing a total of 13 proteins, together with 22 tRNAs and two
rRNAs, necessary for translations of the respiratory sub-
unit mRNAs within the mitochondrial matrix. Alterations
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of mtDNA mean inactivating genetic mutations or deple-
tion of mtDNA copy numbers [10]. The copies of mtDNA
serve as the initial template for mtDNA replication and
maintenance, allowing cells to acquire the appropriate
numbers of mtDNA copy as they differentiate into mature
cell types [11–13]. Mitochondria replication, maintenance
as well as gene expression are controlled by nuclear-
encoded factors, such as nuclear respiratory factor 1 and 2
(NRF-1, NRF-2), mitochondrial transcription factor A
(TFAM), and peroxisome proliferator-activated receptor-
gamma coactivator-1a (PGC-1a) [14, 15]. The mitochon-
drial and nuclear genomes coordinate and co-evolve in
eukaryotes to adapt to environmental changes. Variation
in the mitochondrial genome is capable of affecting the
expression of genes on the nuclear genome [16]. However,
how the diet regime influences the mitochondria dynam-
ics, further associated with beef quality, has yet to know.
Provisioning of dietary macronutrients to mitochon-

dria is influenced by genetic variations that affect the
activities of the electron transport system, retrograde or-
ganelle signaling to the nuclear genome, and anterograde
signaling to the mitochondrion [17, 18]. In diet-induced
obesity, impaired mitochondrial function and decreased
mitochondria contents were found in liver and skeletal
muscle [19, 20]. Dietary supplementation with plasmino-
gen increased mitochondrial copy number and improved
mitochondrial function in mice [19–21]. A reduction of
the mtDNA copy number and the expression of genes
involved in mitochondrial biogenesis in the liver of rats
fed a high-fructose diet [22]. When feeding flies with a
high carbohydrate diet, the mitochondria-related gene
expression, and mtDNA were changed [23]. RNA-seq
analysis revealed that genes associated with mitochon-
drial function were differentially expressed between low-
protein fed heifers on high- or low- energy diets [24].
Meanwhile, diet by mitochondrial DNA haplotype in-

teractions drives metabolic flexibility and organismal fit-
ness [23]. Metabolomic profiling provides an additional
layer of knowledge for the complete representation of
the phenotype of the animal, revealing the combined
contributions of gene expression, enzyme activity, and
environmental context [23, 25]. What a cow eats can
have a significant effect on the metabolic and nutrient
composition of the beef via modulating metabolism and
energy expenditure [1]. Grass-fed beef may contain less
total fat than grain-fed beef, but a lot more omega-3
fatty acids and conjugated linoleic acid [26–28]. In our
previous studies, the alterations in divergences in free
fatty acids, lipid levels, and gene expression patterns
have been observed between grass-fed and grain-fed
Angus cattle [29–31]. However, information on the pos-
sible mechanism on mitochondrial function and metab-
olism between the grass-fed and grain-fed is lacking.
Here, we propose using trio measurements of mtDNA

copy number, mRNA transcribed from mtDNA, and
mRNA transcribed from nuclear DNA- related to mito-
chondria, to explore mitochondrial roles responded to
different diets in Angus cattle. In parallel, we combined
these data with metabolomics to assess the correlation
between mitochondria-related genes and metabolites
levels. These findings additionally provide insights into
patterns of transcriptional coordination between the
mitochondrial and nuclear genomes.

Methods
Animals and ethics statement
The grass-fed and grain-fed Angus cattle were raised at
the Wye Angus farm, which has been closed more than
70 years, have similar genetics. The grain-fed group re-
ceived a conventional diet comprised of shelled corn,
corn silage, soybean, and trace minerals. The grass-fed
steers usually consumed grazed alfalfa. The diet com-
poses, and feeding regiments for grass-fed and grain-fed
cattle are described in Additional file 1: Table S1. The
longissimus dorsi muscle, liver, spleen, and rumen
tissues were collected from steers with grass-fed and
grain-fed, respectively, when they reached the market
weight. The grain-fed animals reached the market weight
around the age of 14 months, while grass-fed steers
needed approximately 200 additional days to reach a
similar weight value. Samples were taken immediately
after euthanasia, frozen in liquid nitrogen, and stored at
− 80 °C until used for extracting RNA and DNA. Blood
collection for both groups was performed before slaugh-
tering. The metabolomics profiling analysis were per-
formed in blood and muscle samples from eight
individuals of the grass-fed group and the grain-fed
group, respectively. Then, the four tissues from two ran-
domly selected individuals in each group were used for
deep sequencing. MtDNA copy number was detected in
24 samples (4 tissues × 3 individuals × 2 groups).
All animal experiments were conducted according to

the NIH guidelines for housing and care of laboratory
animals and following the regulations of the University
of Maryland at College Park (UMCP). The UMCP Insti-
tutional Animal Care and Use Committee (IACUC)
reviewed and approved the protocols (permit number R-
08-62).

mtDNA copy number analysis
DNA was prepared, and mtDNA copy number analysis
was performed according to the previous report [32, 33].
Briefly, total DNA was extracted from longissimus dorsi
muscle, liver, spleen, and rumen tissues using Wizard
Genomic DNA Purification Kit (Promega, Madison, WI,
USA), respectively. The DNA concentration was detected
using Nanodrop-2000 spectrophotometer (Thermo Fisher
Scientific Inc., Wilmington, DE) and adjusted to 50 ng/μL.
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Primers were designed for four mitochondrial genes: the
ND2 (NADH dehydrogenase subunit 2), ND5 (NADH de-
hydrogenase subunit 5), CYTB (cytochrome B), 12sRNA,
and COX3 (cytochrome oxidase subunit III). The ACTB
(actin B) gene was used as a nuclear control gene. For the
analysis of mtDNA copy number, quantitative real-time
PCR (qPCR) amplification of genomic DNA was per-
formed on a C1000 Touch thermal cycler (BioRad,
Hercules, CA, USA). The reactions for each gene were
performed with 50 ng genomic DNA in triplicates in a
final volume of 10 μL using 300 nmol/L of the specific
primers and the 2 × SYBR Green PCR mix (Biorad,
Hercules, CA, USA). The PCR program was 95 °C for 5
min, 40 cycles of 95 °C for 15 s, 60 °C for the 30 s, and
72 °C for 30 s, with a melting curve analysis (65 °C–95 °C)
in the last cycle to evaluate amplification specificity. For
each run, a standard curve was generated from 10-fold
serial dilutions (10− 1 to 10− 8). Relative mtDNA copy
numbers were calculated following equation [34]: MtDNA
copy number = 21 + (Ct

n_gene
-Ct

mt_gene
), where Ct represents

the average cycle threshold. The mtDNA copy number
data from the four tissues were analyzed separately.

RNA sequencing and analysis
The RNA extraction, cDNA synthesis, library prepar-
ation, transcriptome sequencing, and raw data were car-
ried out from our reported protocols [29–31]. We
employed FastQC v.0.11.2 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to check the sequence
data quality and Trim Galore v 0.4.0 (https://www.bio-
informatics.babraham.ac.uk/projects/trim_galore/) to
clean the data. The cleaned data were aligned to the ref-
erence genome downloaded from Ensembl (Bos_tauru-
s.ARS-UCD 1.2) using Hisat2 (https://ccb.jhu.edu/
software/hisat2/) [35]. Differentially expressed genes
were computed by using Cuffdiff (cole-trapnell-lab.
github.io/cufflinks/cuffdiff). A gene was considered to be
differentially expressed when fold changes ≥2 and FDR <
0.15. Gene Ontology (GO) enrichment analysis and
Kyoto Encyclopedia of Gene and Genomes (KEGG)
pathway analysis were implemented with STRING tools
(http://string-db.org/) and KOBAS 3.0 (http://kobas.cbi.
pku.edu.cn/).

Metabolomics profiling
Metabolomics profiling analysis was performed by the
Metabolon Platform, as previously described [29]. The
whole blood and muscle tissues were assigned a unique
identifier by the Metabolon Laboratory Information Man-
agement System (LIMS). Samples were prepared using the
automated MicroLab STAR system from Hamilton Com-
pany. A recovery standard was added before the first step
in the extraction process for quality control (QC) pur-
poses. Sample preparation was conducted using aqueous

methanol extraction process to remove the protein frac-
tion while allowing for maximum recovery of small mole-
cules. The resulting extract was divided into four
fractions: one for analysis by liquid chromatography/mass
spectroscopy (LC/MS) (positive mode), one for LC/MS
(negative mode), one for gas chromatography/mass spec-
troscopy (GC/MS), and one for backup. Samples were
placed briefly on a TurboVap (Zymark) to remove the or-
ganic solvent. Each sample was then frozen and dried
under a vacuum. Samples were then prepared for the ap-
propriate instrument. The progress of LC/MS, GC/MS,
QA/QC, data extraction, and compound identification
were detail described in our lab previous publication. The
MUVR package in R was used to find the metabolic bio-
markers [36].

Metabolomic enrichment and pathway characterization
The pathway analysis was performed by MetaboAnalyst
4.0 [37]. The common pathway databases in the Meta-
boAnalyst 4.0 were used to explore metabolic impact
pathways. The pathway with a P-value less than 0.05, as
well as an impact value greater than 0.1, was defined as a
significant impact pathway. Degree Centrality was selected
for the node importance, and the pathway impact value
calculation in the topological analysis. The hypergeometric
distribution in the overrepresentation analysis was applied
to assess the significance of each pathway based on its
overlap with pathway lists in the joint databases. Statistical
significance was defined at the joint P < 0.05.

Results
MtDNA copy number variation in different tissues
MtDNA copy number, assayed with independent primer
sets, showed the difference in grass-fed and grain-fed
groups. Overall, grass-fed steers had higher mtDNA
copy number than grain-fed steers. Among tissues,
mtDNA copy number was higher in the liver than the
other three tissues, regardless of grass-fed and grain-fed
ones. The following was muscle. In regards to the ND2/
ACTB primer set, diet significantly affected copy num-
ber. In liver and muscle, the mtDNA copy number
showed significant differences between grass-fed and
grain-fed (P < 0.05). But there was little influence on the
copy number in rumen and spleen. Copy number with
regards to CYTB/ACTB, COX3/ACTB, or 12SRNA/
ACTB showed a similar result (Fig. 1).

The expression of mitochondria DNA-encoded genes
To identify whether the mitochondrial gene expression
was altered in grass-fed and grain-fed cattle, the 13
mtDNA-encoded genes were examined using RNA se-
quencing data (Fig. 2). In muscle, seven of the 13 genes,
ND1, ND2, ND3, ND4, ND5, COX2, and CYTB, were
significantly up-regulated in the grain-fed group
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compared to the grass-fed group. In the liver, ND1,
ND2, ND5, COX2, and CYTB had lower expression
levels in the grass-fed group. In the spleen, only one
mtDNA-encoded gene, ND3, was showed significantly
lower in the grass-fed group. In the rumen, there was no
mtDNA-encoded gene was significantly expressed be-
tween the two diets. Interestingly, in the four tissues, no
differentially expressed mtDNA-encoded genes were
shown up-regulation in grass-fed Angus cattle.

Differentially expressed mitochondria-related nuclear
genes
The human mitochondria-related genes were down-
loaded from the MitoProteome Human Mitochondrial
Protein Database [38]. Gene names were directly com-
pared with those in cattle using the BioMart data-
mining tool (http://useast.ensembl.org/biomart/mart-
view). Meanwhile, the genes reported to be involved in
mitochondrial function was generated by searching the
“cattle mitochondrial” into the NCBI Gene database
(National Center for Biotechnology Information, U.S.
National Library of Medicine, Gene, http://www.ncbi.
nlm.nih.gov/gene). Finally, 1283 genes were matched, in-
cluding 13 mtDNA encoded protein genes as well as

1270 mitochondria-related nuclear genes (Additional file
1: Table S2).
The expression levels of 1270 mitochondria-related

nuclear genes were also investigated based on the RNA
sequencing data, and differentially expressed gene (DEG)
analyses were performed between the two diets across
different tissues. The numbers of the differentially
expressed that mitochondria-related nuclear genes were
shown in Fig. 3 and Additional file 1: Table S3-S7.
Compared to the grain-fed group, most of the DEGs
were down-regulated in the muscle of the grass-fed
group, but more DEGs were up-regulated in the other
three tissues (Fig. 3a). In muscle, 15 mitochondria-
related nuclear genes were differentially expressed in a
diet-dependent manner. CKMT2 (creatine kinase, mito-
chondrial 2), UBB (ubiquitin B), and MDH1 (malate de-
hydrogenase 1) were up-regulated in the grass-fed
group, while other nine genes had the opposite expres-
sion pattern. In the liver, the effect of diet change
showed that 27 mitochondria-related nuclear genes were
differentially expressed, all of which were up-regulated
in the grass-fed group. Among the nine DEGs observed
in spleen, seven genes were up-regulated, and two genes,
LYRM7 (LYR motif containing 7) and CYP11A1

Fig. 1 The mtDNA copy number variation in different tissues between grass-fed and grain-fed
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Fig. 2 Heat map showing relative expression of mtDNA encoded genes in the four tissues of grass-fed and grain-fed Angus cattle. The average
fragments per kilobase of transcript per million (FPKM) value of the two replicates was used as the gene expression, and the heat map was
plotted based on log2(FPKM+ 1). The color legend represents the appropriate level, with red indicating high expression level and the blue
indicating low expression level

Fig. 3 Differentially expressed mitochondria-related nuclear genes. a Number of up- or down-regulated DEGs in the four tissues. Up-regulated
and down-regulated genes were displayed in red and green, respectively. b Venn diagram showing the number of DEGs commonly expressed in
the four tissues
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(cytochrome P450, family 11, subfamily A, polypeptide
1), were down-regulated in the grass-fed group. In the
rumen, 15 mitochondria-related nuclear genes were dif-
ferentially expressed (fold changes ≥2, FDR < 0.15), of
which 11 genes were up-regulated, and four genes were
down-regulated in the grass-fed compared to the grain-
fed ones. There were no DEGs in common among the
four tissues of the two different diets. UBB was com-
monly differentially expressed in muscle and liver. While
there were two DEGs, DHCR24 (24-dehydrocholesterol
reductase) and SHMT1 (serine hydroxymethyltransferase
1), commonly expressed in liver and rumen (Fig. 3b).

Bioinformatics functions analysis
To further define the potential biological function of dif-
ferentially expressed mitochondrial-related genes, in-
cluding mtDNA encoded protein genes, as well as
mitochondria-related nuclear genes, GO analysis and
KEGG pathway analysis were performed. The enriched
GO terms of biological processes, molecular functions
and cellular components were shown in Table 1 and
Additional file 1: Table S8 (FDR < 0.05). For the KEGG
pathway analysis, most of the differentially expressed
pathways (P < 0.05) were associated with metabolic path-
ways in the four tissues (Additional file 2: Fig.S1). In
muscle, the metabolic pathways included carbon metab-
olism, glyoxylate and dicarboxylate metabolism, and bu-
tanoate metabolism. In liver, the metabolism were
involved in pyruvate metabolism, amino acid metabol-
ism, glyoxylate, and dicarboxylate metabolism, carbon
metabolism, and glycerolipid metabolism. Meanwhile,
The FoxO signaling pathway was also differentially
expressed, which was associated with development.

Prediction potential metabolic biomarkers and significant
impact metabolic pathways
LC/MS and GC/MS data detected 326 and 353 com-
pounds in blood and muscle [29] (Additional file 3).
Then, the compounds were analyzed using MUVR pack-
age in R to find themetabolic biomarkers. There were 40
and 23 metabolic biomarkers were identified in blood
and muscle of the grain-fed group compared to a grass-
fed group, respectively (Fig. 4). The involved metabolites
belonged to the amino acid, carbohydrate, cofactors and
vitamins, lipid, nucleotide, peptide, and xenobiotics. For
the 40 metabolic biomarkers in blood, 14 metabolites
had higher relative abundance in blood of the grain-fed
group than the grass-fed group (P < 0.01). Another 26
metabolites significantly decreased in the grain-fed
group. In muscle, 14 metabolic biomarkers were in-
creased in a grain-fed group compared to the grass-fed
group, and the other nine were decreased (P < 0.01).
Among these metabolites, four lipids (1-eicosapentae-
noyl glycerophosphoethanolamine, 2-eicosapentaenoyl

glycerophosphoethanolamine, 1-linolenoyl glyceropho-
sphocholine (18:3n-3), and 3-dehydrocarnitine), one
amino acid (N-methyl proline), and one xenobiotic
(homostachydrine) were proposed as conventional meta-
bolic biomarkers for the two tissues, which had same
abundance trend between the two different diet groups.
Impact pathway analysis revealed that eight pathways

were significant impact pathways based on the 23 meta-
bolic biomarkers in muscle (Fig. 5a): glycerophospholipid
metabolism (P = 0.0018, impact value = 0.6), arginine and
proline metabolism (P = 0.0021, impact value = 0.2162),
alpha-linolenic acid metabolism (P = 0.0036, impact
value = 0.25), purine metabolism (P = 0.0102, impact
value = 0.1077), glutathione metabolism (P = 0.0164, im-
pact value = 0.2222), linoleic acid metabolism (P = 0.0359,
impact value = 0.25), D-glutamine and D-glutamate me-
tabolism (P = 0.0359, impact value = 0.5), nitrogen metab-
olism (P = 0.0429, impact value = 0.2). Meanwhile, there
were four significant impact pathways based the 40 meta-
bolic biomarkers in blood (Fig. 5b): neomycin, kanamycin
and gentamicin biosynthesis (P = 0.0171, impact value =
1), glycine, serine and threonine metabolism (P = 0.0328,
impact value = 0.1515), glycerophospholipid metabolism
(P = 0.0364, impact value = 0.4857), linoleic acid metabol-
ism (P = 0.0423, impact value = 0.25).

Integrated analysis of metabolites and mitochondrial-
related genes
The over-representation analysis and pathway topology
analysis were conducted between the diet-different
metabolic biomarkers and differentially expressed
mitochondrial-related genes in the muscle of grass-fed
and grain-fed groups (analysis I). The nutrients digested
in the rumen are absorbed by the rumen epithelial wall
and are then transported to the mammary to the liver
for glycogenesis, followed by transportation to other tis-
sues through the bloodstream [39, 40]. Therefore, we in-
tegrated the differentially expressed mitochondria-
related nuclear genes in the liver and rumen together to
ascertain the metabolic biomarkers in the blood, and did
the over-representation analysis and pathway topology
analysis (analysis II). Topology analysis uses the struc-
ture of a given pathway to evaluate the relative import-
ance of the genes/metabolites based on their relative
locations. In the analysis I, 27 pathways were identified,
and 20 of them were displayed in Fig. 6a. In analysis II,
46 pathways were identified, the top 20 of which were
shown in Fig. 6b. Six and nine pathways were signifi-
cantly enriched in the analysis I and analysis II, recep-
tively. They include Arginine and proline, glyoxylate and
dicarboxylate, alpha-Linolenic acid, butanoate, glycero-
phospholipid, and beta-Alanine metabolisms. Other
metabolisms also include pyruvate, glycine, serine and
threonine, lysine degradation, glyoxylate and
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Table 1 Top five gene ontology terms in the four tissues

Tissue GO terms FDR

Muscle Biological Process

Cellular respiration 1.51E-
11

Oxidation-reduction process 4.18E-
11

ATP synthesis coupled electron transport 8.73E-
10

Nucleobase-containing small molecule metabolic
process

5.99E-
09

ATP metabolic process 5.28E-
08

Cellular Component

Mitochondrion 8.58E-
14

Mitochondrial respiratory 6.93E-
13

Respiratory chain complex 6.93E-
13

An inner mitochondrial membrane protein
complex

4.88E-
12

Mitochondrial part 1.80E-
11

Molecular Function

Oxidoreductase activity 2.07E-
12

NADH dehydrogenase (ubiquinone) activity 6.48E-
09

Catalytic activity 6.57E-
09

Electron transfer activity 0.00029

Cytochrome-c oxidase activity 0.0025

Liver Biological Process

Oxidation-reduction process 3.08E-
17

Small-molecule metabolic process 1.32E-
13

Metabolic process 9.41E-
11

Cellular metabolic process 9.41E-
11

Cellular process 1.04E-
08

Cellular Component

Mitochondrion 8.72E-
21

Mitochondrial part 6.00E-
19

Cytoplasmic part 1.95E-
13

Cytoplasm 4.00E-
13

Mitochondrial membrane 1.82E-

Table 1 Top five gene ontology terms in the four tissues
(Continued)
Tissue GO terms FDR

11

Molecular Function

Oxidoreductase activity 4.54E-
16

Catalytic activity 1.61E-
12

Cofactor binding 2.96E-
06

Aldehyde dehydrogenase (NAD) activity 2.75E-
05

Coenzyme binding 5.48E-
05

Spleen Biological Process

Oxidation-reduction process 0.0117

Cellular Component

Mitochondrial part 7.57E-
10

Mitochondrial membrane 6.12E-
09

Mitochondrial inner membrane 4.01E-
08

Mitochondrial membrane part 6.04E-
08

Inner mitochondrial membrane protein complex 0.00012

Molecular Function

Oxidoreductase activity 0.0014

NADH dehydrogenase (ubiquinone) activity 0.003

Catalytic activity 0.014

Rumen Biological Process

Positive regulation of mitochondrion organization 0.0356

Cellular metabolic process 0.0356

Organonitrogen compound metabolic process 0.0356

Cellular modified amino acid metabolic process 0.0419

Phosphorylation 0.0419

Cellular Component

Mitochondrial part 0.00044

Mitochondrial envelope 0.0016

Cytoplasm 0.0028

Mitochondrial membrane 0.0098

Cytoplasmic part 0.0126

Molecular Function

Drug binding 0.00042

Kinase activity 0.0046

Catalytic activity 0.0076

Transferase activity 0.0076

Carbohydrate derivative binding 0.0076
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dicarboxylate, and tryptophan metabolisms. The gene-
metabolite interaction networks were also shown in Fig. 6.

Discussion
MtDNA copy number variation
According to the nutritional analysis of grass-diet and
grain-diet, the contents of non-fiber carbohydrates and
starch were much higher in the grain-diet, providing
more total-digestible nutrients and available energy as

well. Contrarily, proteins, lignin, fiber matter, and ash
were more abundant in the grass- than grain-diet (Add-
itional file 1: Table S1). It has been reported that when
the flies were fed a high protein diet, the mtDNA copy
number was increased compared to the high carbohy-
drate diet [23]. In our results, grass-fed steers had higher
mtDNA copy number than grain-fed steers, which might
be that the administration of insulin and amino acids en-
hances mitochondrial biogenesis and ATP production

Fig. 4 Potential metabolic biomarkers and metabolic pathways in blood and muscle of grain-fed group compared to the grass-fed group. B, Blood; M,
Muscle; Color highlighting indicates the common six metabolites in the two tissues
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[41]. Meanwhile, the mtDNA copy number was higher in
the liver than muscle, rumen, and spleen, regardless of
grass- or grain-fed group. According to the ND2/ACTB
primer set, the mtDNA copy number was 3.96-fold higher
in the liver of the grass-fed group than the grain-fed group
and was 2.46-fold higher in the muscle, which might be
due to the different mechanism of mtDNA replication and
maintenance in different tissues [9, 42]. The liver and kid-
ney cells replicate their mtDNA using the asynchronous
mechanism, skeletal muscle and brown fat with high
OXPHOS activity employ a strand-coupled replication
mode, combined with increased levels of recombination [9].

The expression of mitochondria-related genes
By RNA-seq profiling, 13 mtDNA-encoded genes were
diet-dependent and could be differently regulated at the
level of transcription. Concerning differential expression,
most of the genes encoding subunits of complex I (ND1,
ND2, ND3, ND4, ND5), complex III (CYTB) and com-
plex IV (COX2) were down-regulated in the grass-fed
group, suggesting that the high protein diet might have
an adverse effect on the mtDNA-encoded genes [10].
Mitochondrial Complexes I, III and IV are considered
the energy-conserving core of the electron transport
chain because they pump protons across the mitochon-
drial inner membrane, which is responsible for ATP pro-
duction, and affecting mitochondrial function directly
[43, 44]. Future studies should assay the ATP levels in

the different tissues of the grass-fed group and grain-fed
group. However, the higher expression levels of
mtDNA-encoded genes were along with lower mtDNA
copy number, implicating that compensation for differ-
entially expressed mtDNA-encoded genes resulting from
the different diet might be via transcriptional mecha-
nisms, rather than changes to mtDNA ploidy. Several
factors, including but not limited to mtDNA copy num-
ber, ultimately determine the steady-state abundance of
mtRNAs and derived proteins in a cell [32, 33, 45], most
of which were nuclear-encoded factors [16, 46].
To see if the mitochondrial related nuclear genome

experience analogous changes in gene expression due to
different diets, we examined the expression of
mitochondria-related nuclear genes in different tissues
of the grass-fed and grain-fed group. In muscle, an in-
spection of differentially expressed genes showed evi-
dence for up-regulation of ATP synthesis coupled
electron transport (COX6A2) in grain-fed steers. The
COX6A2 protein is one subunit of the respiratory chain
complex IV, of which expression is restricted to striated
muscles [47, 48]. COX6A2 has an important role in
thermogenesis and whole-body energy metabolism and
maybe a potential new target for therapy against high-fat
diet-induced obesity or insulin resistance [49, 50]. In the
liver, all of the differentially expressed genes were up-
regulated in the grass-fed group. According to the GO
term analysis, the POLG2 gene was involved in the

Fig. 5 The pathway impact view of the metabolic biomarkers identified in muscle and blood tissue from the grass-fed and grain-fed group, respectively. a
the pathway impact view of the metabolic biomarkers identified in muscle. b the pathway impact view of the metabolic biomarkers identified in blood.
The X- and Y-axes represent the pathway impact value and pathway enrichment value, respectively; larger sizes and darker colors represent higher
pathway enrichment and impact values
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respiration electron transport chain. POLG2 encodes the
accessory subunits of DNA polymerase gamma, which is
the only DNA replicative polymerase involved in the hu-
man mitochondria and is crucial for the replication and
repair of mtDNA [51, 52]. POLG2 could enhance inter-
actions with the DNA template and increases both the
catalytic activity. Mutations in POLG2 have a dominant-
negative effect and lead to multiple mtDNA deletions
[53]. The higher level of POLG2 might contribute to the
larger amount mtDNA copy number in the liver of

grass-fed steers compared to the grain-fed. In the rumen,
PPIF was up-regulated, and DCN was down-regulated in
the grass-fed group compared to the grain-fed group.
These two genes were involved in the GO term of “posi-
tive regulation of mitochondrion organization”. PPIF is
previously known as cypD, which is an important mito-
chondrial chaperone protein and well known for regulat-
ing mitochondrial function and coupling of the electron
transport chain and ATP synthesis by controlling the
mitochondrial permeability transition pore [54, 55].

Fig. 6 Integrated metabolic pathway analysis from combined metabolites and differentially expressed mitochondrial-related genes in (a) muscle
or (b) blood. The red box represents the significantly enriched pathways
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Overexpression of cypD in HEK293 cell mitochondria
increased respiratory activity, particularly the activity of
complex III. This led to the increasing assembly of
supercomplexes containing complexes I, III, and IV. At
the same time, cypD binds to complex III and super-
complexes containing complex III and faster incorpor-
ation of complex III into these supercomplexes [56].
DCN is involved in multiple cellular functions such as
proliferation, migration, and invasion and acts as a struc-
tural molecule, as well as a ligand for receptors [57, 58].
It has been reported that DCN potently attenuated mito-
chondrial respiratory complexes and mtDNA [59]. In
the spleen, NDUFA12 was involved in the GO term of
“oxidation-reduction process”, which was up-regulated
in the grass-fed group compared to the grain-fed group.
NDUFA12 was required for the formation of the extra
membrane arm of mitochondrial complex I [60] and had
the function of the stability of complex I [61]. Based on
these results, it suggested that different mitochondria-
related nuclear factors, involved in ATP synthesis, mito-
chondrial replication, transcription, and maintenance,
might contribute to the mtDNA copy variation and
changing of mtDNA expression in different tissues of
grass-fed and grain-fed steers.

Key metabolic pathways after single and integrated
analysis
According to the previous study, alterations in glucose
metabolism and divergences in free fatty acids were
found between the grass-fed and grain-fed Angus steers
[29]. In the present study, 40 and 23 metabolic bio-
markers were identified in the blood and muscle of the
grain-fed group compared to a grass-fed group, respect-
ively. Based on the single metabolic pathway analysis,
the most significantly impacted pathway in the muscle
of grass-fed and grain-fed group was glycerophospholi-
pid metabolism, which was also significantly different in
the blood of the two different diet group. Changes in
lipid abundance may also be indicative of altered mem-
brane metabolism. Phosphoethanolamine, glyceropho-
sphocholine, and glycerophosphoethanolamine were
elevated in grain-fed muscle and may suggest increased
membrane turnover, which may support enhanced tissue
growth [62]. In blood, the most significantly impacted
pathway was Neomycin, kanamycin, and gentamicin bio-
synthesis, which was also the top pointed in the com-
bined level (enrichment and biological meaning). The
involved metabolite was NADH, which was important
for the TCA cycle. In contrast, NADH was elevated in
the blood, but diminished elevated in the muscle of
grass-fed compared to grain-fed cattle and may highlight
differential energy regulation by the muscle versus other
tissues in response to these diets. The related gene
MDH1 was down-regulated in the muscle of the grain-

fed group compared to grass-fed, while up-regulated in
the liver and rumen. MDH1 is a NAD(H)-dependent en-
zyme and a part of the malate–aspartate shuttle (MAS).
The synthesis of cytosolic malate was via MDH1. MDH1
generates NAD+ upon the reduction of oxaloacetate to
malate. MAS is important for intracellular NAD(H)
redox homeostasis as it transfers, reducing equivalents
across the mitochondrial membrane [63].
Meanwhile, the most critical pathway was arginine and

proline metabolism based on the integrated analysis in
muscle. Three metabolites (spermidine, L-glutamate, 4-
guanidinobutanoate), and one gene (CKMT2) were in-
volved in this pathway. CKMT2 is a mitochondrial creat-
ine kinase responsible for the transfer of high energy
phosphate from the mitochondria to the cytosolic com-
partment, and at the same time for returning ADP to the
mitochondrial respiratory system, thereby stimulating
oxidative phosphorylation, which was negatively
associated with spermidine, L-glutamate, and 4-
guanidinobutanoate in our results. Spermidine, L-glutam-
ate, and 4-guanidinobutanoate were elevated levels in
grain-finished muscle and may reflect higher synthesis
and availability for tissue growth. Spermidine displays
pleiotropic effects that include anti-inflammatory proper-
ties, antioxidant functions, enhancement of mitochondrial
metabolic function, and respiration [64]. ATP, as polya-
nion, is capable of suppressing the polycationic effect of
spermidine [65]. However, the relationship between the
CKMT2 and spermidine needed to be further studied.
Meanwhile, spermidine is a polyamine compound, and
the higher level in grain-finished muscle might occur due
to the maintenance of mitochondrial NADH oxidation
that responded to lower mtDNA copy number [66].

Conclusions
In summary, these data suggest that the grass and grain
diets in cattle would cause the differences in the mtDNA
copy number, mtDNA expression, and mRNA expres-
sion of selected nuclear genes involved in mitochondrial
function. Meanwhile, the changes of mitochondria-
related gene expression might contribute to the metabo-
lites level variations. However, further research is re-
quired to better understand the relationships between
mitochondria function, metabolic and molecular mecha-
nisms, and beef quality.
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