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Edge artificial intelligence wireless 
video capsule endoscopy
A. Sahafi1,6, Y. Wang1,6, C. L. M. Rasmussen2, P. Bollen2, G. Baatrup3,4, V. Blanes‑Vidal1,5, 
J. Herp1,5 & E. S. Nadimi1,5*

Gastrointestinal (GI) tract diseases are responsible for substantial morbidity and mortality worldwide, 
including colorectal cancer, which has shown a rising incidence among adults younger than 50. 
Although this could be alleviated by regular screening, only a small percentage of those at risk are 
screened comprehensively, due to shortcomings in accuracy and patient acceptance. To address these 
challenges, we designed an artificial intelligence (AI)-empowered wireless video endoscopic capsule 
that surpasses the performance of the existing solutions by featuring, among others: (1) real-time 
image processing using onboard deep neural networks (DNN), (2) enhanced visualization of the 
mucous layer by deploying both white-light and narrow-band imaging, (3) on-the-go task modification 
and DNN update using over-the-air-programming and (4) bi-directional communication with patient’s 
personal electronic devices to report important findings. We tested our solution in an in vivo setting, 
by administrating our endoscopic capsule to a pig under general anesthesia. All novel features, 
successfully implemented on a single platform, were validated. Our study lays the groundwork for 
clinically implementing a new generation of endoscopic capsules, which will significantly improve 
early diagnosis of upper and lower GI tract diseases.

Gastrointestinal (GI) tract disorders are responsible for around 1 million deaths per year across Europe; and 
are associated with substantial morbidity and healthcare costs. The incidence and prevalence of many GI tract 
disorders are highest amongst the young and specially, the elderly, and as the world population ages, the disease 
burden will inevitably increase1.

Colorectal cancer (CRC) is the most common GI cancer in Europe, with a risk of CRC diagnosis in a lifetime 
of 1 in 20. The incidence in Europe is expected to increase from 3.6 million cases in 2015 to 4.3 million cases in 
2035, due to increased life expectancy and adoption of western diet and lifestyle. Although the prognosis for early 
CRC diagnosis and 5-year survival can reach 70%, it stays extremely poor for late cases, being as low as 10%1.

Fecal immunochemical test (FIT) is routinely used in screening for CRC. If positive, patients undergo either 
an additional diagnostic procedure (such as colonoscopy, flexible sigmoidoscopy, computed tomographic colo-
nography (CTC), or wireless capsule endoscopy), or a therapeutic procedure such as optical colonoscopy, to find 
precursors of cancer, e.g. suspicious colorectal polyps. The challenge we are facing is that only 66% of people at 
risk are screened comprehensively2. This is mainly due to the low accuracy of these screening methods, as FIT can 
only detect approximately between 13% to 50% of cancer with one round of screening in asymptomatic patients3. 
Low accuracy of screening methods leads to unnecessary invasive diagnostic procedures.

Diagnosing small or large bowel lesions after an onset of symptoms carries its own risks. For instance, colo-
noscopy only reaches the terminal ileum and is a highly specialized, technically difficult and expensive proce-
dure, with the potential of causing serious complications including perforations, abdominal pain, and bleeding. 
Complete colonoscopy is not always possible due to technical difficulties (15% of cases4), poor bowel preparation 
(16.9% of cases5), or patient intolerance (11.1% among men and 18.4% among women6). Despite these potential 
challenges, colonoscopy remains as the gold standard for investigation of symptoms suggestive of colorectal 
cancer, and the only choice (besides surgery) for both diagnostic and therapeutic examinations, offering resec-
tion of polyps, if needed. CTC is an alternative, less invasive test; however, additional investigation after CTC 
is needed to confirm suspected colonic lesions, and this is an important factor in establishing the feasibility of 
CTC as an alternative to colonoscopy7.
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Novel imaging solutions such as wireless video capsule endoscopy, hereafter referred to as camera pill, have 
been emerging, which offer advantages in diagnosis, follow up, and management of GI tract disorders8. Capsule 
endoscopy has been suggested as an alternative to CTC following incomplete colonoscopy. It is shown that the 
completion rate of CTC is slightly higher than that of capsule endoscopy (98% vs. 90%), while the diagnostic 
yield of capsule endoscopy was higher (37% vs. 10%), especially when comparing findings of polyps of all sizes9. 
For a thorough comparison of colonoscopy, CTC and capsule endoscopy, we refer the interested readers to the 
VICOCA study10.

While we are experiencing the winter of novel camera pills, off-the-shelf products deployed in clinical prac-
tice have not been updated for over a decade, leaving a large gap between what recent advances in embedded 
electronics, systems-on-chips (SOCs) and AI could potentially offer, and the solutions currently deployed in 
everyday practice. A thorough overview of the literature11 proves that a significant effort has been placed around 
coping challenges, such as motion control and localization12, navigation and manipulation of the camera pill13. 
Although the outcome of these studies and projects like VECTOR14 undoubtedly advanced the field, none paved 
the way into clinical deployment, due to bearing serious concerns on safety, size, functionality of these solutions, 
and technological readiness15.

Some of the important limitations of current off-the-shelf products include, but are not limited to: (1) logisti-
cal challenges around the delivery and collection of the camera pill, data logger and the receiver vest, (2) tedi-
ous manual diagnosis of roughly 50,000 retrieved images from each patient investigation to look for important 
findings, (3) low resolution images missing details as captured only under white light, (4) high incompletion 
rate among investigations, and 5) a more restrict bowel preparation process compared to colonoscopy or CTC​
16. Given the numerous attempts reported in the literature, with limited success towards the design of active 
endoscopic capsules featuring locomotion, we investigated an alternative approach, i.e., a camera pill with basic 
mechanical design, but empowered by disruptive on-board intelligence; which addresses the above mentioned 
limitations in one single platform.

The overarching aim of our study was to enhance efficiency and diagnostic accuracy of premalignant and 
malignant small and large bowel disorders by designing a new generation of AI-empowered camera pills. This 
resulted in an edge camera pill that is within limits of ingestible size, while featuring a myriad set of unprec-
edented functionalities towards targeted and localized small and large bowel screening and diagnostics. The 
most important features include: (1) onboard analysis of captured images using Deep Neural Networks (DNNs) 
for real-time on-the-go detection of important findings, such as bleeding, lesions, colorectal polyps or cancer, 
(2) image acquisition using adaptive frame rate, (3) enhanced visualization of the mucous using optical virtual 
chromoendoscopy (VCE) by integrating an ambient light of blue and green wavelength generated by special 
LEDs, mimicking both white-light-imaging (WLI) and narrow-band-imaging (NBI), (4) embedded open-source 
platform, where DNNs can be readily overwritten or further updated based on the task they are trained for, using 
over-the-air-programming (OTAP), (5) bi-directional communication between the camera pill and patient’s 
personal electronic devices (e.g. mobile phones or tablets) without the need of a data storage unit or additional 
receivers, and (6) optimal energy consumption due to the transmission of particular images with important 
findings.

The organization of this paper is as follows. In “System design” section, the architecture of our camera pill 
at component and system level, and the rationale behind its design are presented. In “Onboard intelligence” 
section, the details of our edge-AI solution for real-time detection of abnormalities in captured images are pro-
vided. The experimental settings in which the performance of our camera pill was tested is sketched in section 
“Experimental setup”. Discussions and future improvements to our design are presented in Section “Concluding 
remarks and future work”.

Methods
System design.  Our system design is architectured around incorporating adaptive and embedded AI, 
which eliminates both hardware and embedded-software barriers that impede the transition from a passive cam-
era pill to an intelligent one. Onboard AI and OTAP are the distinct modi operandi of our camera pill compared 
to that of other solutions. Undergoing a UGI-LGI investigation using our camera pill, and the steps involved in 
the process are sketched in Fig. 1.

Once the bowel preparation procedure is complete, i.e., post-fasting and taking clear liquids, and prior 
to the administration of the camera pill, the pill is wirelessly programmed with pre-trained AI algorithms to 
detect lesions and abnormalities of interest. The onboard AI algorithms contain features such as identification of 
anatomical UGI and LGI landmarks for hibernation or resumption of region-specific tasks, as well as detection 
and localization of important lesions. After reaching the regoin-of-interest (UGI or LGI), images of the mucous 
layer under the while light, and at a constant frame rate of one per second are acquired, while simultaneously, 
onboard real-time processing of these images using pretrained DNNs are carried out. If no lesions are detected 
within each frame, the image will be deleted and only every 5th image will be wirelessly transmitted, so that upon 
completion of investigation, localization of the camera pill within UGI-LGI, and reconstruction of the bowel are 
carried out17. This was targeted towards the reduction of both unnecessary communication (bandwidth) and 
power consumption.

Upon detection of any abnormality such as ulcers or colorectal polyps, the frame rate is autonomously 
increased to up to 2fps, while real-time analysis of captured images under both white light and narrow band 
are carried out. All images containing important findings will be wirelessly transmitted to the receiver. After 
completion of investigations, image-based path reconstruction of the bowel and pinning the findings down on 
the reconstructed path will be performed17. During the investigation and after completion, all findings will be 
available immediately, and if a following therapeutic endoscopy or colonoscopy is recommended, the patient 
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can go directly for an out-clinic procedure if this is available within a realistic geographical distance while ben-
efiting from the same bowel preparation procedure deployed during camera pill investigations. In addition, the 
specialist will be guided to the RoI (region-of-interest) where important findings and abnormalities are pinned 
using the image-based reconstructed bowel.

Hardware system architecture.  System architecture and the outward appearance of our camera pill are 
presented in Fig. 2. The list of main components include: an AI edge computing chip, power management unit 
(PMU), Bluetooth low energy (BLE) bi-directional communication unit, image acquisition system (glass dome, 
lens, LEDs (white, green and blue) and camera unit), cell batteries, a MEMS (micro-electromechanical system) 
chip pack combining a 3D accelerometer and a temperature sensor, and the shell. The camera pill is 42.7 mm 
long and 15.8 mm wide. A side-by-side comparison of our camera pill designed in Autodesk Inventor Version 
202118, and a ruler can be found in Fig. 2b.

Image acquisition system.  The image acquisition system of our camera pill consists of a glass dome (15 mm 
transparent small half globe glass cover) and an OV7670 CMOS VGA camera chip and lens, featuring an axial 
field of view of 140◦ and a depth of field between 5 and 100mm, capturing images in BMP format with an image 
resolution of 240× 240 pixels19. Although a dual-headed camera pill (one camera at either end) provides a wider 
coverage of the mucous layer compared to a standard single-headed one, no statistically significant improvement 
in diagnostic yield within small bowel has been reported in the literature20. Without the added benefit of improv-
ing the diagnostic yield, a dual-headed camera pill compared to a single-headed counterpart can unnecessarily 
prolong the physician reading time and increase system’s power consumption and communication throughput. 
Though the diagnostic sufficiency of utilizing one camera could be linked to the small bowel’s diameter, it might 
not hold for large bowel investigations. Given the large diameter of colon, and the challenge of detecting laterally 
spreading tumors (LST) and hidden polyps, two cameras would most likely be preferred. This however entails 
more demanding power and computational resources. It is important to highlight that our design has the capac-
ity to adapt to two cameras. A thorough discussion is provided in the concluding remarks and the future works 
of this study.

Our optical VCE Imaging modality featuring different lighting conditions, i.e., WLI and NBI, was designed 
by deploying a total of 8 LEDs, where the ambient light was generated by 4 white LEDs in WLI mode, and two 
blue and two green LEDs in the NBI mode. It is worth noting that our design is substantially different from 
digital VCE solutions such as the flexible spectral color enhancement (FICE), where digital post processing of 
videos are performed, after the image acquisition process is completed21.

AI edge computing chip.  After capturing every image of the mucous layer, the images are transferred to the AI 
unit where onboard analysis takes place. Our camera pill is equipped with an 8mm× 8mm K210 Kendryte chip, 
which is an AI Application Specific Integrated Circuit (ASIC) with the computational power of 1 tera operations 
per second (TOPS)22. K210 is equipped with 8MB of RAM, a dual core 64-bit CPU with an adjustable frequency 
of 400MHz. It also features KPU (neural network processor) functionalities with built-in convolution, batch 
normalization, activation, and pooling operations. The major advantage of K210 is the design flexibility, as there 
is no direct limit on the number of network layers that need to be deployed, and each layer of DNN parameters 
can be configured separately, including the number of input and output channels, line width and column height. 
In addition, K210 supports any form of activation function22.

Communication unit.  Onboard analysis of captured images and solely transmitting important findings takes 
the edge of both communication bandwidth and power consumption. Constrained by the limited energy 
resources available (consisting of three cell batteries), and in order to maintain a secure direct bi-directional 
communication between the camera pill and patient’s personal electronic device, Bluetooth Low Energy (BLE) 
technology was selected. Our camera pill is equipped with a flexible single chip nRF52840 High-end multi-

Figure 1.   The 4 stages illustrating the use of our camera pill.
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protocol Bluetooth 5 system-on-chip (SoC) solution featuring both long range and high throughput modes (2 
Mbps), operating at 2.4 GHz ISM band23. The antenna solution was based on an ANT-2.45-CHP, featuring one 
of the smallest, low loss, high bandwidth and performance antenna chips available24. This choice combined with 
the bi-directional BLE technology enabled us to receive the images directly on a tablet without any additional 
interface (such as a receiver vest).

Power management unit.  Presented in Fig. 2b, our camera pill is powered by three cell batteries, while the PMU 
governs various power functionalities and provides multiple voltage levels needed by different components using 
highly efficient DC-DC converters and linear low-dropout regulators (LDO). As the initial supplied voltage of 
4.5V provided by the batteries drops gradually as the system operates, the PMU regulates required voltages by 
each system component, until the threshold of 2.8V is reached. Below this limit, the system no longer operates, as 
some of the important components such as the AI unit and the image acquisition system cannot be operational 
anymore.

Onboard intelligence.  Onboard DNN-based processing of captured images for detection and localization 
of abnormalities commonly relies on pretrained networks such as Faster-Region DNN25, Single-Shot-Detector 
(SSD)26 and You-Only-Look-Once (YOLO)27–29, among others. The main obstacle in adopting these networks 
for devices with limited computational resources such as our camera pill with a memory size of only 8MB, is 
their large size, as for instance, YOLO V3 being one of the smallest and most popular networks requires an 
approximate memory allocation of 237MB. In two independent studies30,31, we showed that ZF-Net based DNN 
as backbone for a Faster R-CNN to detect and localize colorectal polyps, and a ResNet-50 based convolutional 
neural network (CNN) to detect and classify lesions in Crohn’s disease in both small and large bowel required 

Figure 2.   Camera pill’s PCB (a), system architecture of our camera pill (b, left), and the prototype (designed in 
Autodesk Inventor 2021; https://​www.​autod​esk.​com/​produ​cts/​inven​tor/​overv​iew) and sealed components (b, 
right).

https://www.autodesk.com/products/inventor/overview
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an approximate memory allocation of 375MB and 167MB, respectively. Keeping the constraints dictated by the 
memory allowance and network size in mind, we designed an optimized YOLO-based DNN of approximately 
3.2MB to detect and localize colorectal polyps, and implemented the solution in our camera pill. The same con-
cept could be applied to a variety of UGI and LGI diseases.

The architecture of our DNN is inspired by those of MobileNet32 and YOLO, and is based on non-maximum 
suppression (NMS) algorithm33 filtering candidate regions using a confidence score Sp . The algorithm then 
returns the location of detected colorectal polyps as a set of bounding boxes featured by the coordinates of 
the upper left corner [x, y], the width w and the height h of the bounding box. Images fulfilling the condition 
Sp ≥ St are considered to present significant findings, and are further analyzed and transferred to the BLE unit 
for communication to the external receiver. Images with the score not meeting the threshold will be considered 
insignificant, and will be deleted by the AI unit. The architecture of our proposed DNN is shown in Fig. 3.

DNN architecture.  The architectural details of our proposed DNN for the detection and localization of colo-
rectal polyps is presented in Table 1. Our DNN, developed in TensorFlow, has an input layer fed with images of 
the size 240× 240× 3 , 15 intermediate layers represented as Li , where i = 1, · · · , 15 , and an output layer. Two 
types of convolutional layers, namely standard32 (L1&L15) and depth-wise separable layers32 (L2, · · · , L14) have 
been utilized. Given that the standard convolutional layers maintain useful information within an image, they 

Figure 3.   Architecture of our DNN for detection of colorectal polyps.

Table 1.   On-board DNN Architecture. There is a Batch Normalization (BN) after each layer. The BNs are not 
shown for keeping the table concise.

Layer Type Filter Shape Stride Input Size Output Size

L1 Conv 3× 3× 3× 32 S2 240× 240× 3 120× 120× 32

L2
Depthwise 3× 3× 32× 1 S1

120× 120× 32 120× 120× 64
Pointwise 1× 1× 32× 64 S1

L3
Depthwise 3× 3× 64× 1 S2

120× 120× 64 60× 60× 128
Pointwise 1× 1× 64× 128 S1

L4
Depthwise 3× 3× 128× 1 S1

60× 60× 128 60× 60× 128
Pointwise 1× 1× 128× 256 S1

L5
Depthwise 3× 3× 128× 1 S2

60× 60× 128 30× 30× 256
Pointwise 1× 1× 128× 256 S1

L6
Depthwise 3× 3× 256× 1 S1

30× 30× 256 30× 30× 256
Pointwise 1× 1× 256× 256 S1

L7
Depthwise 3× 3× 256× 1 S2

30× 30× 256 15× 15× 512
Pointwise 1× 1× 256× 512 S1

L8-L12
5×Depthwise 3× 3× 512× 1 S1

15× 15× 512 15× 15× 512
Pointwise 1× 1× 512× 512 S1

L13
Depthwise 3× 3× 512× 1 S2

15× 15× 512 8× 8× 1024
Pointwise 1× 1× 512× 1024 S1

L14
Depthwise 3× 3× 1024× 1 S2

8× 8× 1024 4× 4× 1024
Pointwise 1× 1× 1024× 1024 S1

L15 Conv 1× 1× 1024× 15 S1 4× 4× 1024 4× 4× 15

Output 4× 4× 15
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were chosen as the building blocks for the first and last layer. Furthermore, to reduce the number of trainable 
parameters and therefore computational complexity of the network by a factor of up to k2 , k being the kernel 
size, depth-wise separable convolutional layers were chosen as (L2, · · · , L14) layers. These layers split the convo-
lutional computation into two steps, 1) depth-wise convolution applying a single convolutional filter per each 
input channel, and 2) point-wise convolution creating a linear combination of the output of the depth-wise 
convolution29. Each convolutional layer was then followed by a batch normalization layer, which for the sake of 
brevity is not discussed in detail here. The shape of deployed filters are formulated as wk × hk × ck × nk , where 
wk , hk , ck and nk are the kernel width, kernel height, number of kernel channels and the number of kernels, 
respectively. The stride size is set to either 1 ( S1 ) or 2 ( S2 ), while network’s input and output size are presented 
in the form of wf × hf × cf  , where wf , hf  and cf  are the width, height, and channel numbers of feature maps, 
respectively. Our DNN outputs a total of 4× 4× 3 proposal bounding boxes, in which after applying the NMS 
algorithm, the one with the largest Sp is filtered as the candidate proposal. Since five elements ( Sp , x, y, w and h) 
represent one bounding box, our DNN’s output size is 4× 4× 15.

Image acquisition and training.  The images used in this study for training, validation and testing of our DNN 
were obtained from videos of a double blinded longitudinal trial including 255 patients from the National screen-
ing program in Denmark that were FIT-positive, during a period of one year (2015-2016). The participants 
underwent both colon capsule endoscopy and optical colonoscopy in two consecutive days. Prior to the day of 
undergoing colonoscopy, the participants were investigated by a second-generation PillCam capsule endoscopy 
(PillCam COLON 2 Medtronic, Minnesota, USA). Throughout both investigations, polyp size, morphology and 
location were identified16. The study was approved by the Local Ethics Committee (S20140141) and registered at 
clinicaltrials.gov (NCT02303756). The study was performed in accordance with relevant guidelines and regula-
tions, and informed consent was obtained from all participants and/or their legal guardians.

The videos featuring at least one colorectal polyp of any size or morphology were analyzed frame-by-frame, 
which resulted in an original database of 764 distinct images of polyps. These 764 images were retrieved from 549 
distinct polyps, as some of these polyps were reported as a sequence of images when the camera pill approached 
the polyp. The population under study was FIT positive, and approximately 75% of the polyps were neoplastic. 
The number of cancerous polyps was below 5%. To maintain a class balance, we further included 764 images of 
the normal mucous layer, where no significant pathology were detected. To regularize the network, reduce over-
fitting, ensure that it is rotation and translation invariant, and help remedy the scarcity of data (i.e., to increase 
the effective size of our dataset), we augmented the database of original images tenfold, using random rotation, 
scaling, translation, flipping and cropping. We also performed random mirroring at training time. The augmented 
images containing polyps were all checked for contents, ensuring that polyps were not mistakenly cropped out. 
These augmentations are justified since masses have no inherent orientation and their diagnosis is invariant to 
these transformations. Using data augmentation, we created a database containing 15280 images with different 
grades of colon cleanliness, of which half of them contained colorectal polyps of various sizes and morphology. 
We then split the images randomly by patient into training, validation and testing sets (80%, 10% and 10% of 
the full dataset, respectively), constraining the validation and test sets to be balanced. Training, validation and 
testing of DNN’s performance were carried out in TensorFlow, using a batch size of 20, with the training step size 
of 1e − 3 . In addition, the NMS threshold St was set to 0.65. A set of examples demonstrating the performance of 
the trained DNN is presented in Fig. 4, where blue boxes indicate the ground truth annotated manually by the 
specialist, and green boxes are the output of our DNN. Red numbers above each green box is DNN’s confidence 
value (range [0, 1]), in which larger numbers are an indication of network’s confidence in regions featuring 
important findings. The overall performance of our DNN for detection of colorectal polyps within the test set 
reached a precision of AP25 = 99.5% and AP50 = 95.8% , APn referring to the average precision calculated using 
the intersection over union (IoU) criterion.

DNN implementation.  Our DNN features 3.2M trainable parameters, requiring a memory allocation of 3.2MB 
when 8-bit integer format (INT8) is used to represent each parameter. At the clock frequency rate of 400MHz 
for 8-bit integer computation, the power consumption of the AI chip is approximately 300mW22. To boost the 
power efficiency of the chip during the inference phase and to reduce the power required for AI computation, 
we reduced the clock frequency of the CPU and the AI accelerator tenfold, resulting in a power consumption 
of approximately 50mW. Given that voltage scaling is not a feature of K210 AI chip, the power resource of 4.5V 
supplies our camera pill at 0% sparsity level for a time period of one hour.

Figure 4.   Examples of the performance of polyp detection algorithm.
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Experimental setup.  To evaluate the performance of our camera pill, and to ensure the integrity of both 
system design as well as individual components, we administered our camera pill to a pig under general anes-
thesia, as shown in Fig. 5. The pig ( ≈ 45 Kg) was intubated after premedication with sedatives (midazolam 0.2 
mg/kg, medetomidin 0.024 mg/kg, ketamin 5 mg/kg and butorphanol 0.2 mg/kg IM) and ventilated with 2% 
isoflurane in air and oxygen (1 : 2). After the procedure, the pig was euthanized while still in anaesthesia with 
an overdose of anaesthetics (pentobarbital 400 mg/kg IV).This study is reported in accordance with ARRIVE 
guidelines. The experiment was performed in accordance with relevant guidelines and regulations.

To avoid retention, the camera pill was anchored to the tip of a flexible tube, and then inserted through the 
abdominal wall into the small intestine. The abdominal wall was then sutured and the tethered camera pill 
was guided to different locations through the small intestine, where the performance of the MEMS chip pack 
(temperature and acceleration) was tested and validated. Prior to the insertion, we over-the-air programmed 
the camera pill with the DNN trained for detecting colorectal polyps. It can be observed in Fig. 6a and b, that 

Figure 5.   The experimental setup.

Figure 6.   White light (WLI) and narrow band imaging (NBI) modalities.
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the DNN detects regions that appear as haemorrhagic (red color) areas and localizes them as colorectal polyps. 
Once the collection of several images of the mucous layer under WLI modality was completed, and correspond-
ing bounding boxes were calculated, we switched to the NBI mode. An example of the mucous layer seen under 
both modalities are presented in Fig. 6c and d, exhibiting an enhanced contrast and elevated level of details 
during NBI compared to that of WLI. To test the functionality of the camera pill inside pig’s intestine and to 
verify the performance of the BLE unit, AI component and the communication between these two entities, we 
designed a mock-up of a similar DNN to the one sketched previously, but featuring different values for network’s 
parameters. We then uploaded the mock-up DNN using OTAP from a tablet, and successfully rewrote the 
existing network that was trained for detecting colorectal polyps, while the camera pill was inside pig’s small 
intestine. The experiment was carried out for approximately 1-hour at 0% sparsity state, until the cell batteries 
were depleted. This is the state in which the camera pill was 100% in active mode, detecting polyps, performing 
semantic segmentation, and wirelessly transmitting the images. This is equivalent to a scenario in which every 
image captured by the camera pill featured an important finding. It is evident that by increasing the sparsity 
level as occurring during patient investigation, the camera pill will operate for longer periods of time, fulfilling 
8− 10 hours of recording. The data collected during the experiment were saved, and the entire experiment was 
recorded by two digital cameras from different angles.

Protocol approval.  The study (double-blinded longitudinal trial) was approved by the Danish Local Ethics 
Committee (S20140141) and registered at clinicaltrials.gov (NCT02303756) on December 1st 201434. All par-
ticipants were informed about the study, and signed, written informed consents to publish the results of this 
study were obtained. Furthermore, informed consent for participation was obtained from the participants in 
the manuscript. For a more detailed description of the study design, we refer the interested readers to the sup-
plementary materials and our previous publications6,8,16.

The in vivo procedure that was carried out on the pig, was ethically approved by the Danish Animal Inspector-
ate under license 2016-15-0201-00815. Animal housing, care and preparation were performed by qualified staff 
under the supervision of a designated veterinarian at the Animal Medicine Laboratory, Medical Research Center 
at the University of Southern Denmark, with the approval of the institutional animal welfare body (AWB), the 
equivalent of the Institutional Animal Care and Use Committee (IACUC).

Concluding remarks and future work
Our camera pill, featuring onboard intelligence, successfully addresses major limitations of current off-the-shelf 
products deployed in clinical practice. The design of our camera pill, capable of providing both predictive and 
reactive intelligence, based on the collected images, is feasible, mainly due to recent advances in deep learning 
and surge of interest in embedded AI. Features such as onboard real-time processing of images for lesion detec-
tion and classification, bi-directional communication (OTAP) to modify assigned tasks on-the-go, and improved 
image resolution and enhanced quality by means of optical chromoendoscopy, all included on a single platform, 
can tip the scales in favor of the novel camera pill design presented here, potentially making it the “device-of-
choice” for both CRC screening and diagnostic purposes. Furthermore, issues such as poor bowel preparation, 
incomplete investigation, and exorbitant costs of logistics around the delivery of the camera pill, followed by 
retrieving the equipment and reader’s investigation sessions, inter alia, that hinder universal acceptance of capsule 
endoscopy can be resolved by using our design.

Based on the results, it is evident that the addition of both blue and green wavelength by deploying extra LEDs, 
to mimic the spectrum procured during NBI resulted in a remarkable improvement in image quality, which in 
turn has the potential to significantly reduce the need for intensive a priori cleansing regimen of the GI tract, and 
for a strict patient preparation process. The use of NBI further provides enhanced vessel and surface patterns of 
lesions that contribute to both detection and characterization of those lesions. Despite the fact that our DNN 
was trained to detect and localize colorectal polyps, the in vivo evaluation of its performance inside the small 
intestine of a pig was satisfactory, as regions appearing to contain lesions similar to polyps were proposed by the 
network, albeit justifiably with low confidence.

Our future efforts will focus on addressing the shortcomings of our current design, and the evaluation process 
around it. Reducing the size, primarily the length of our camera pill, is of paramount importance. Our design is 
approximately 1cm longer than commercially available products such as Colon2 PillCam ( 11.6mm× 32.8mm ) 
or SB3 PillCam ( 11.4mm× 26.2mm ), which can be pinned on the use of three cell batteries. It is worth men-
tioning that the main challenge we faced during the design process of our camera pill to make it comparable to 
its counterparts (Medtronic PillCam or IntroMedic MiroCam) in terms of size, image resolution and the field of 
view, was the inaccessibility of the components to be purchased for research purposes (i.e., small scale purchase). 
Several components that we integrated in our solution, such as the imaging system with a limited 140◦ field of 
view or the AI chip with 8MB of RAM were the most advanced units. This obstacle, to a large degree, dictated us 
the choice of components. At the time of conducting the study, K210 Kendryte chip and the OV7670 CMOS VGA 
camera chip and lens were the only viable choices, dictating the needs for such power resources. This limitation, 
however, does not hinder the functionality of our camera pill, which could be readily improved by adopting 
more advanced components. This will be addressed in our next design, as computationally more powerful and 
less power demanding AI chips are now available, enabling us to train more computationally complex and larger 
DNNs. Our current DNN features an input layer targeting images of size 240× 240 pixels, which is approximately 
half the number of pixels retrieved from Medtronic PillCams ( 340× 340 pixels). Combined with the double-
headed camera design, Medtronic PillCams produce four times the number of pixels retrieved from our solu-
tion. Large number of pixels have a significant impact on the processing time, communication throughput and 
energy resources on an embedded AI platform with limited computational and power resources as camera pills.
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On the algorithmic side, we will improve our DNN to include various types of lesions, such as bleeding, or 
inflammatory bowel diseases. After pruning and optimization, our multi-lesion classifier based on a ResNet-50 
CNN31 will be implemented onboard, enabling us to detect and classify lesions in Crohn’s disease in both small 
and large bowel. Our DNN will also identify important anatomical landmarks (e.g., flexures), and we will replace 
the mock-up DNN with pruned networks trained for detecting a variety of lesions, e.g., bleeding of the GI tract. 
Publicly available high quality annotated wireless capsule endoscopy (WCE) images and videos such as KID35 
play a fundamental role in this journey. The next step towards the evaluation process is the administration of 
our camera pill to a pig, while freely roaming in a pen.

Even taking into account the few limitations of our design, our edge AI camera pill signifies an improvement 
of utmost importance over current camera pill solutions. Addressing challenges around the delivery and retrieve-
ment of the equipment (data logger and the receiver vest) can lead to the adoption of our solution into general 
practitioner’s office rather than highly specialized hospitals. In addition, mitigating the psychological burden on 
patients by reporting the outcome of the investigations immediately, play a major role in the acceptance of our 
solution by both patients and healthcare professionals, as shown in a recent patient reported outcome method 
(PROM) study36. The study showed that the current waiting time of 3 days for the patients to receive the reports 
on their capsule endoscopy investigation poses a major psychological burden. In a scenario where the camera 
pill investigation indicates important findings, recommended immediate therapeutic follow-up endoscopy or 
colonoscopy is feasible, since the patient’s physical condition is considered acceptable for an out-clinic colonos-
copy in sedation, except those prescribed with special anticoagulants. This practice has already been planned at 
the Department of Surgery at the Odense University Hospital, where camera pills are administered in groups of 
5− 10 patients, and 2 colonoscopy slots are reserved at the clinic.

Finally, ethical issues related to physician’s acceptance and patient’s confidence in novel computer-aided 
algorithms such as onboard AI needs to be discussed. Even though studies such as PEACE37 clearly indicate that 
there is a significant tendency towards AI acting as adversarial rather than assistive tool, (i.e., only selected images 
will be proofread by the expert, while others will simply not be double-checked), the fact that not all the images 
are available for a full screening process could be a cause for concern. Our platform, using OTAP, is capable of 
transmitting all images, if pre-indications on various lesions exist. In addition, we can adjust our DNN to obtain 
both a high positive predictive value (PPV) and a high negative predictive value (NPV), and therefore wirelessly 
transmit an increased number of images as important findings for further investigation.

Data availability
The data supporting the results reported in this article can be provided to interested readers, by contacting the 
corresponding author. However, due to the absence of consent for publication or complete anonymisation of 
the outcome of the clinical trial, enquiries about access to the outcome of the trial, i.e., database containing 
patient information and images of lesions should be made to the data owner, i.e., Odense Univesity Horpital 
(Svendborg Hospital).
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