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Abstract
Vegetation phenology—the seasonal timing and duration of vegetative phases—is 
controlled by spatiotemporally variable contributions of climatic and environmental 
factors plus additional potential influence from human management. We used land 
surface phenology derived from the Advanced Very High Resolution Radiometer and 
climate data to examine variability in vegetation productivity and phenological dates 
from 1989 to 2014 in the U.S. Northwestern Plains, a region with notable spatial het-
erogeneity in climate, vegetation, and land use. We first analyzed interannual trends 
in six phenological measures as a baseline. We then demonstrated how including 
annual-resolution predictors can provide more nuanced insights into measures of 
phenology between plant communities and across the ecoregion. Across the study 
area, higher annual precipitation increased both peak and season-long productivity. 
In contrast, higher mean annual temperatures tended to increase peak productivity 
but for the majority of the study area decreased season-long productivity. Annual 
precipitation and temperature had strong explanatory power for productivity-related 
phenology measures but predicted date-based measures poorly. We found that rela-
tionships between climate and phenology varied across the region and among plant 
communities and that factors such as recovery from disturbance and anthropogenic 
management also contributed in certain regions. In sum, phenological measures did 
not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can 
decouple phenology from climate; therefore, analyses including only interannual 
trends should not assume climate alone drives patterns. For example, models of areas 
exhibiting greening or browning should account for climate, anthropogenic influence, 
and natural disturbances. Investigating multiple aspects of phenology to describe 
growing-season dynamics provides a richer understanding of spatiotemporal pat-
terns that can be used for predicting ecosystem responses to future climates and 
land-use change. Such understanding allows for clearer interpretation of results for 
conservation, wildlife, and land management.
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1  | INTRODUC TION

Ecological information across space and time can enhance decision-
making by allowing researchers and practitioners to address prob-
lems within appropriate geographies, derive landscape-scale 
indicators of change, and prioritize in situ monitoring efforts (Dale 
et al., 2000; Lausch et al., 2018; Marvin et al., 2016). For example, 
adequate understanding of the timing, magnitude, and duration of 
seasonal events (phenology) of an ecological community can inform 
management and restoration efforts and help managers estimate 
how sensitive a community may be to ongoing changes in climate. 
Conversely, not accounting for spatiotemporal patterns in phenol-
ogy can lead to mismanagement, including food-security risks (e.g., 
Bezerra et al., 2019; Sadras & Monzon, 2006; Stevenson et al., 2015), 
ecological disruption caused by phenological mismatches (e.g., 
Rehnus et al., 2020; Renner & Zohner, 2018), and sampling biases 
(Gibson et al., 2016; Smith et al., 2017). Vegetation phenology inter-
acts with climate and has cascading impacts to ecosystem processes 
such as nutrient cycling and the maintenance of ecosystem services 
(Beard et  al.,  2019; Cleland et  al.,  2007; Morisette et  al.,  2009). 
Furthermore, wildlife species within a system may respond to vege-
tation phenology and productivity with potential cascading effects 
on seasonal timings, fecundity, interspecific interactions, and behav-
ior (Donnelly et al., 2018; Rehnus et al., 2020; Stoner et al., 2020).

Many aspects of phenology can be measured by satellite-based 
remote sensing, termed “land surface phenology,” a combined mea-
surement of variation across multiple plant species and individuals 
as well as background surfaces such as soils (Hanes et  al.,  2014). 
Studies of land surface phenology have identified numerous changes 
across the globe in the seasonal cycle of vegetation growth due to 
climate, including changes to start of spring, end of season, and 
season-long productivity (Chen et al., 2020; Morisette et al., 2009). 
Greening, measured through either increased growing-season pro-
duction or higher peak productivity, is evident over considerable 
portions of the Earth's terrestrial surface (Piao et  al.,  2019; Zhu 
et  al.,  2016). However, parts of the terrestrial surface have expe-
rienced no change or are browning—a decrease in growing-season 
production and/or lower peak productivity (de Jong et  al.,  2011; 
Meng et al., 2020; Zhu et al., 2016). Trends in greening, browning, 
and other aspects of phenological change often challenge the pre-
dictions of land surface models, suggesting that our understanding 
of these processes must be improved.

Phenological measurements, be they dates or magnitudes, are 
not always strictly increasing or decreasing; many factors play into 
their variability and patterns (de Jong et  al.,  2011; Li et  al.,  2019; 
Piao et  al.,  2019). Although analyses of an individual phenological 
measure through time (interannual trend) provide important infor-
mation, the amount of the land surface that exhibits statistically 
significant trends in these phenological measurements reflects 

how constraining climate factors are changing through time and 
how ecosystems respond to these changes. Interannaul trends 
may depend heavily on the selected starting and ending years of 
the time series, which may mask more subtle changes in the pro-
gression of vegetation greenness in an area (e.g., Yang et al., 2021; 
Yuan et al., 2019). Including climatic drivers in models of phenology 
helps elucidate the mechanisms behind observed changes across 
years. In addition, there are important differences in the implica-
tions of climate change for peak productivity versus season-long 
productivity. Unfortunately, only peak or season-long productiv-
ity is typically investigated, which can obscure comparisons of the 
mechanisms underlying different aspects of phenological changes 
(Gao et al., 2020). Precipitation and temperature have been identi-
fied as important drivers of seasonal variation in productivity; how-
ever, these relationships can vary across ecosystems and vegetation 
types (Fu et al., 2017; Maurer et al., 2020; Reed et al., 2019; Yang 
et al., 2021). Furthermore, other natural and anthropogenic factors 
may confound this spatial dynamic, such as disturbance, land-use 
and land-cover change (including invasive species), CO2 enrichment, 
and changes to water use and soil water-holding capacity (Nemani 
et al., 2003; Piao et al., 2019; Zhang et al., 2019).

The U.S. Northwestern Plains (NWP; Figure 1) provide a mean-
ingful geography to expand from prior studies of phenological 
change due to large expanses of intact native vegetation (Auch 
et  al.,  2011) interspersed by more intensively managed agricul-
tural areas. Climatic drivers of phenology vary across gradients in 
the NWP, which exhibits strong west-to-east increases in precipi-
tation and south-to-north decreases in temperature (Figure  A1; 
Epstein et  al.,  1996). Interannual variability in precipitation is high 
in the NWP, leading to variable productivity (Petrie et  al.,  2016); 
however, productivity of higher elevation areas, which are typically 
forested, has varied less over time and has responded more strongly 
to temperature than precipitation (Fu et  al.,  2017; Potter,  2020). 
Collectively, these factors lead to variability in spatiotemporal pat-
terns of phenology across the NWP. Here, interannual trends of 
increasing productivity outweigh browning trends; about 20% of 
the NWP has exhibited a significant increase in peak productivity 
(as measured by maximum annual NDVI) over the past few decades 
(Brookshire et  al.,  2020), and further increases are anticipated 
(Hufkens et al., 2016). Additionally, growing-season length has also 
increased, primarily due to later end-of-season dates rather than 
earlier start-of-season dates (Ren et al., 2020). How these different 
measurements of phenology combine to determine changes in veg-
etation seasonality and productivity across different ecosystems in 
the NWP remains less clear.

Consequently, we aimed to examine the spatiotemporal variabil-
ity in dates and magnitudes of phenological events in the NWP and 
how prevailing climatic conditions may influence and/or govern this 
variability. Ecological models, in our case phenological ones, can be 
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hierarchical, complex, and challenging to parameterize (Morisette 
et  al.,  2009; Newman et  al.,  2019). Therefore, to explore patterns 
at various scales, for example, temporal, regional, and community 
level, we analyzed spatiotemporal patterns in six phenological 
metrics across seven plant communities and an entire ecoregion. 
Specifically, our objectives were to first evaluate interannual trends 
and then compare those findings to a model incorporating annual 
precipitation and temperature across space and vegetation commu-
nity types of the NWP (Figure 1). We then used these findings to 
examine the predictive ability of annual weather variables for phe-
nological measures and evaluate their role in patterns, such as vari-
ation of greening versus browning between different measures of 
productivity.

2  | MATERIAL S AND METHODS

2.1 | Study area

We defined the NWP study area using a two-part process. First, we 
selected the Northwestern Great and Glaciated Plains ecoregions 
(https://www.epa.gov/eco-resea​rch/ecore​gions; Omernik,  1987) 
and then included semi-arid areas within the upper Missouri River 
basin, the transitional areas from the Great Basin (parts of the Middle 

Rocky Mountains) and Wyoming Basins (Bighorn Basin part of this 
ecoregion, Figure 1). We chose this boundary to include similar veg-
etation types of semi-arid grasslands and shrublands with intermixed 
agricultural and forested areas and to cover a wide range of climatic 
regimes. Vegetation communities range from barren and shrubland 
systems in the west to mixed-grass and tall-grass prairie to the east. 
Forested areas are found in higher elevations, such as the western 
edge of the NWP, in mountain islands like the Black Hills, and adja-
cent to rivers. Areas converted to agriculture primarily occur in the 
northern and eastern portions of the study region and in irrigated 
areas along waterways. The NWP receives from 33 to 56 cm (13 to 
22 in) of precipitation per year and mean annual temperature ranges 
from 3.8 to 10.5℃ (39 to 51℉), although precipitation can exceed 
160  cm (63 in) per year, and annual mean temperatures average 
below 0℃ (32℉) at higher elevations (Figure A1; USDA, 2006).

2.2 | Data sources and processing

We obtained phenology data derived from the Advanced Very High 
Resolution Radiometer (AVHRR) satellite processed by the USGS for 
the years 1989–2014 (USGS EROS, 2015). These data utilized com-
posites of daily, 1  km pixel values to calculate the normalized dif-
ference vegetation index (NDVI), from which phenological measures 

F I G U R E  1   The Northwestern Plains study area, which comprises the Northwestern Great and Glaciated Plains Level 3 Ecoregions 
(Omernik, 1987), plus areas containing semi-arid vegetation in the upper Missouri River basin. These additions include portions of the Middle 
Rocky Mountains and Wyoming Basins Ecoregions. Land cover data from the Multi-Resolution Land Characteristics Consortium (NLCD 
2016, available at www.mrlc.gov)

https://www.epa.gov/eco-research/ecoregions
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were derived (Eidenshink, 2006; Reed et al., 1994). The general ap-
proach applied by the USGS Remote Sensing Phenology Center for 
these data is to create smoothed NDVI composites (Eidenshink, 2006) 
using a weighted least squares approach (Swets, 1999) and employ 
a delayed moving-average algorithm to identify dates of phenologi-
cal events and their magnitudes (Reed et al., 1994). Due to degrada-
tion in the orbit at the end of life for different platforms carrying 
the AVHRR, solar zenith angles (SZAs) have changed through time 
and are associated with trends in phenological measures, degrading 
the temporal consistency (Ji & Brown, 2017) and precluding analy-
ses beyond 2014. Although much of the study area had limited area 
with significant correlations between SZA and phenological meas-
ures, we chose to remove problematic years (1992, 1993, 1994, 
1999, and 2002) to minimize issues from orbital degradation (Ji & 
Brown, 2017). Our comparison of results including versus excluding 
the five problematic years found limited large-scale effects on the 
results.

We used six phenological measures (Figure  2) similar to those 
used in other studies of semi-arid systems (Maurer et al., 2020; Ren 
et al., 2020; Yang et al., 1998). These included four date-related mea-
sures (start, end, and length of season, and day of peak productivity 

(NDVI)) and two measures related to productivity and the shape of 
the phenological curve (maximum NDVI and time-integrated NDVI). 
While maximum NDVI (hereafter peak productivity) is a surrogate 
for vegetation productivity at a single point in time, the peak of the 
growing season, time-integrated NDVI (hereafter season-long pro-
ductivity) is a surrogate for vegetative productivity across the entire 
growing season.

We acquired climate data from the Parameter-elevation 
Relationships on Independent Slopes Model (PRISM) version AN81d 
at 30-arcseconds (~800 m, for our study domain) spatial resolution 
(Daly et al., 2008) for each calendar year of our phenology dataset 
(1989–2014). We chose annual values (Figure A1) to provide a parsi-
monious overview of the complex mix of phenological measures and 
vegetative communities. In effect, annual measures are a relative 
index of the average climate conditions that each “pixel” experiences 
over the study period. We recognize the decreased fit and sensitiv-
ity that may occur by combining seasons, in addition to a reduction 
in identifying the mechanistic understanding of seasonal factors 
influencing phenology. By reducing the complexities, this approach 
allowed us to assess whether relatively simple models provide mean-
ingful predictions that can connect with annual climatic variability.

F I G U R E  2   Visualization of phenological measures from the smoothed normalized difference vegetation index (NDVI) used in this study 
(a). These include the Julian day for start of season (SOS), end of season (EOS), and date of maximum NDVI (MAXT), and growing-season 
characteristics of season duration (DUR = EOS − SOS), value of maximum NDVI (MAXN), and time-integrated NDVI (TIN, shaded gray area). 
Potential changes (red dashed lines) to the growing-season curve include extending the growing season through earlier SOS and later EOS 
with a similar MAXT but higher TIN (b), increasing the MAXN but with similar SOS and EOS leading to a higher TIN (c), and shifting to an 
earlier SOS and MAXT, with a higher MAXN, earlier EOS, and overall lower TIN (d). Other combination changes to SOS, EOS, MAXT, and 
MAXN are possible with cascading effects on TIN
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For land cover, we utilized the 2016 National Land Cover 
Database (Figure 1), a Landsat-derived classification of cover across 
the continental United States that includes data every 2–3 years 
between 2001 and 2016 (Wickham et al., 2014, Yang et al., 2018). 
There are sixteen classes, including developed, agricultural, and nat-
ural land-cover classes. We aggregated these 30-m pixels to assign 
the primary (modal) land-cover class within each 1-km AVHRR pixel 
for 2001, 2004, 2006, 2008, 2011, and 2013. We then identified 
AVHRR pixels where the modal land-cover class remained the same 
for every year and used those in analyses by land-cover type. Values 
for land surface phenology measures over heterogeneous areas can 
be driven by a subset of the area (e.g., a subdominant land-cover class) 
(Zhang et al., 2017). Therefore, we also used the change index NLCD 
layer to calculate the per AVHRR pixel (1 × 1 km resolution) percent-
age of Landsat pixels (30 × 30 m resolution) that changed between 
2001 and 2016. This index was used to measure any subdominant 
land-cover changes in the study area (Figure A2) to assess whether 
such changes may be influencing trends. Our analysis considered 
the land-cover classes of barren (i.e., vegetation generally minimal 
or constituting a minority of the pixel, e.g., South Dakota badlands), 
deciduous forest, evergreen forest, shrubland, grassland, agriculture 
(a combination of pasture, intensively managed under an annual or 
perennial cycle for feed, grazing, crops, and/or woody agriculture), 
and wetlands (combined woody and herbaceous wetlands) (Table 1).

2.3 | Data analysis

We conducted two sets of analyses to demonstrate how the spatial 
variation in phenology measures and observations, such as greening, 
can be enriched with the inclusion of climate variables that are likely 
drivers of potential trends. First, we modeled interannual trends 
for each of our six phenology measures (Figure 2). For each AVHRR 
pixel, we calculated the Sen's slope to account for outliers, skewed 
data, and heteroscedasticity and used the Mann–Kendall test to 
assess significance of the interannual trend. For each phenology 
measure, we removed any record with more than three total missing 
values and then interpolated any gaps of one value. Any remaining 
records with missing data (gaps of two or more years) were removed. 
As Sen's slope requires a continuous record, we included all AVHRR 
years in this analysis, but removed years with orbital degradation 
from the Mann–Kendall test of the significance of the trend. We 
used the land-cover data to examine the distribution of Sen's slopes 
between cover classes.

Second, to identify associations of climate factors in addition to 
time-based trends in phenological measures, we fit linear models in-
cluding the explanatory variables of annual mean temperature, an-
nual precipitation, and time. Our model for each AVHRR pixel was:

where Yi  is the ith observation of the phenological measure (depen-
dent variable), B0 is the intercept, B1…Bk are the slope coefficients for 

independent variables, Yeari is the ith year of the observation, Pi is the 
total annual precipitation in the ith year, Ti is the annual mean tem-
perature in the ith year, and εi is the error term for the ith observation. 
This allows us to expand beyond simple trend analyses to disentan-
gle associations of time, precipitation, and temperature. We included 
time (Year) as a variable to represent temporally dependent linear 
effects that are not accounted for by  temperature and precipitation 
measures, such as changes to land management or use, disturbance 
recovery, other climatic factors including increasing atmospheric CO2 
concentrations, or sensor effects (e.g., Auch et al., 2011; Brookshire 
et al., 2020; Nemani et al., 2003; Stoy et al., 2018; Zhu et al., 2016). To 
display the relative contributions of each predictor across space, we 
calculated their partial correlation. Then, we took the absolute value 
of these and normalized values to cover the range of 0–255 so each 
independent variable could be used as an input band into a RGB image. 
This approach is used to visualize the within-study-area contribution of 
each covariate for this analysis and identify the dominant associations 
for each phenological measure. All statistical analyses were performed 
in R Studio (Version 1.1.463) using R 4.0.3 (R Core Team, 2019) and 
the R packages ppcor (Kim, 2015), raster (Hijmans, 2019), sp (Bivand 
et al., 2008; Pebesma & Bivand, 2005), rgdal (Bivand et al., 2019), trend 
(Pohlert, 2020), and zoo (Zeileis & Grothendieck, 2005) for analyses, 
and RColorBrewer (Neuwirth,  2014) and Plot3D (Soetaert,  2017) for 
display.

3  | RESULTS

3.1 | Phenology trends

Notable patterns emerged from the interannual trends of pheno-
logical measures (Figure 3; Table A1). For example, the majority of 
trends for the start and end of season increased, suggesting both 
are occurring later, but less than 15% of AVHRR pixels exhibited 
significant trends. The majority of interannual trends toward ear-
lier start-of-season days were found in the southern portion of the 
study domain, whereas the northeastern portion of the study area 
was characterized by later end of season and some later days of peak 
productivity (Figure  3). Season-long productivity had significant 
trends for 23% of AVHRR pixels in the study area, the majority of 
which (84%) increased. Similarly, 29% of pixels had significant trends 
for peak productivity of which 95% increased. The larger increases 
in season-long productivity and peak productivity were in the north-
eastern NWP, whereas the majority of decreases occurred in the 
southwestern portion of the study area (Figure 3).

Significant trends in phenological measures varied by plant com-
munity type and responses were not synchronous, and trends are 
likely only associated with major land-cover changes in a small num-
ber of cases (Tables  1 and A1; Figures  A3 and A4). Some notable 
exceptions between land-cover classes for phenological measures 
include shrub communities having a balanced split between trends 
of earlier (48%) and later (52%) spring start compared to other com-
munities wherein the preponderance of significant AVHRR pixels 

(1)Yi = B0 + B1Yeari + B2Pi + B3Ti + �i
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moved toward later spring onset (>70%). Evergreen and deciduous 
forests and barren areas tended toward an earlier end of season, 
while other communities tended toward later end-of-season dates. 
Significant trends in peak productivity (95%) and season-long pro-
ductivity (96%) largely increased; however, barren communities and 
to some extent evergreen forests differed from other communities 
with less dominant splits between increasing and decreasing peak 
and season-long productivity. Between 2001 and 2016, 94% of the 
study area (as measured in changes to Landsat pixels) remained in 
the same land-cover class (Figure A2) and the vast majority (92%) 
of the AVHRR pixels in the study area had limited, less than 20%, 
subpixel change (Table  1). AVHRR pixels with significant trends in 
phenological measures were not more likely to have increased sub-
pixel cover class changes (Figure A4).

3.2 | Associations of climate and time to 
phenology measures

Coefficients from our multiple regression analyses of phenology 
(Equation 1) varied across space, between each phenology meas-
ure, and across community types. Annual values of precipitation and 
temperature (Figure A1) in combination with time performed well in 
accounting for variation in peak productivity and season-long pro-
ductivity but had limited explanatory power for date-based meas-
ures (Figure  A5). After accounting for annual climate, many areas 
maintained strong associations with time (a surrogate for other po-
tential effects not covered by precipitation and temperature) and 
in similar areas as those with significant trends in the interannual 
trend analyses (Figures  A6 and A7). In general, peak productiv-
ity and season-long productivity increased as annual precipitation 
increased (Figures 4, 5, A8, and A9). However, higher mean annual 
temperature tended to increase peak productivity yet decrease 
season-long productivity (Figures 4, 5, A10, and A11). Higher mean 

annual temperatures were predominantly associated with earlier 
start-of-season dates, but changes to end of season and length of 
season were much more mixed between earlier/shorter and later/
longer (Figures A10 and A11).

The associations of phenological measures differed between 
community type (Figures A12-A14). For example, evergreen forests 
tend to move in opposite directions as other community types with 
respect to time, precipitation, and temperature. Effect sizes, such as 
increased peak and season-long productivity with time or increased 
precipitation, are larger in general for the pasture/crop areas and 
barren, shrub, and grassland communities, respectively. Season-long 
productivity was more strongly associated with annual precipita-
tion for all communities, whereas the strength of the associations 
of mean annual temperature and time varied between communities 
(Figures 4, 5, A12-A14).

In analyses investigating the relative contributions of all pre-
dictors through a partial correlation analysis, spatial patterns 
emerged for each of the six phenology measures (Figure A15). In 
the northeastern portion of the study area, time—a surrogate for 
multiple possible factors—was strongly associated with end-of-
season dates, while areas farther west tended to have stronger 
associations with temperature (Figure  A15). Temperature often 
had the largest partial correlation with date-based phenological 
measures. However, for productivity-based measures, precipita-
tion had larger correlations with peak productivity, except in ag-
ricultural areas to the NE and forested areas in the SW (Figure 4). 
For season-long productivity, temperature often in combination 
with annual precipitation had the larger partial correlations for 
most of the study area, with the same patterns for time as were 
seen for peak productivity (Figure 5). Within land-cover types, the 
most prominent shifts in correlations due to precipitation for peak 
productivity versus precipitation and temperature for season-long 
productivity occurred in the shrub, pasture/crop, and wetland 
communities (Figures 4 and 5).

TA B L E  1   Pixel numbers for analyzed community types and proportion class of pixels with minor type changes between 2001 and 2016

Land-cover type Area (km2)
Proportion of 
study area

Proportion of type area for each change per pixel percentage category

0–20% 20–40% 40–60% 60–80% 80–100%

Barren 2,368 0.4% 96.2% 2.5% 1.0% 0.2% 0.0%

Deciduous forest 469 0.1% 97.4% 2.6% 0.0% 0.0% 0.0%

Evergreen forest 54,783 8.5% 94.1% 4.3% 1.2% 0.3% 0.2%

Shrub 146,987 22.8% 98.2% 1.4% 0.3% 0.1% 0.0%

Grassland 309,241 48.0% 95.3% 3.7% 0.8% 0.1% 0.0%

Pasture/crop 119,221 18.5% 94.1% 5.2% 0.5% 0.1% 0.0%

Wetland 3,937 0.6% 91.6% 7.0% 1.3% 0.1% 0.0%

Other 41,911 1.4% 41.4% 24.2% 16.1% 11.7% 6.5%

Total 679,024 100.0% 92.3% 4.8% 1.6% 0.8% 0.4%

Note: Area calculated from the AVHRR pixels where the modal land-cover type is unchanged between 2001 and 2013 based on a Landsat-based 
classification including NLCD 2001, 2004, 2006, 2008, 2011, and 2013. The “Other” land-cover type includes AVHRR pixels where the modal land-
cover type changed over the time period. Change classes based on the NLCD 2016 Land Cover Change index, as the proportion of 30-m pixels coded 
under any change category within each AVHRR pixel.
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4  | DISCUSSION

We identified three main findings from this research: (1) Over our 
study period, we found that only a small proportion of our study area 
had significant temporal trends in any of our six phenological meas-
ures; (2) annual climatic variables had robust explanatory power for 

productivity-based phenological measures; and (3) there was sub-
stantial spatial variability within vegetation groups and variability in 
how strongly vegetation phenological groups varied through time 
and responded to potential drivers. Collectively, these results high-
light that phenological patterns depend on ecological context and 
also illustrate hierarchical relationships (regionally and across local 

F I G U R E  3   Interannual phenological trends (with units in the title of each plot) for 1989–2014 based on the AVHRR satellite record 
(values from Sen's slope). The study area is depicted with a dashed black line and U.S. states with gray solid lines. Hatching indicates areas 
where Mann–Kendall tests for trend were significant (p < .05)
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communities). In addition, monitoring and assessment of ecosystems 
should incorporate differences between and within communities and 
acknowledge that vegetation responses to changes in climate may 
shift over time (e.g., Li et al., 2019; Yuan et al., 2019). These results 
are useful for management applications as they set the stage for ef-
forts such as scenario planning. Some predictions of phenological 

changes through time, like potential future changes to productiv-
ity, may be identified using annual weather variables. Furthermore, 
analyses utilizing phenology such as models of ecosystem-wide 
carbon uptake or responses of wildlife to climate change and vari-
ability should consider multiple phenological measures and context 
dependencies (Donnelly et al., 2018; Rehnus et al., 2020; Richardson 

F I G U R E  4   The combination of partial correlation coefficients for different drivers on maximum vegetation productivity. Scatter plots 
(left column and bottom row) and RGB image (upper right) illustrate the partial correlations of annual precipitation (AP), mean annual 
temperature (MAT), and time (Yr) on productivity as measured by yearly AVHRR maximum NDVI from 1989 to 2014. The thick solid line 
represents the study area boundary, and the dashed lines are U.S. state boundaries. The scatter plots identify the absolute values of partial 
correlation coefficients from 2000 randomly selected pixels from the study for each vegetation community. In the map, color represents the 
relative association (absolute values) of the correlation of each factor. The brightness of pixels is relative to the combined partial correlation 
where darker colors have smaller and brighter colors have larger summed partial correlations. Hatching indicates areas where at least one 
partial correlation coefficient of the three variables considered was significant (p < .05)
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et al., 2012). We discuss these three main findings in more detail in 
the following paragraphs.

First, assessment of interannual trends during 1989–2014 
identified limited portions of the study area as having statistically 
significant changes in any of the six phenological measures using 
Mann–Kendall tests on Sen's slope calculations. In addition, for 
each of these significant pixel-scale trends, there were differences 

in the magnitude and direction of change between vegetation 
types and across space. The drivers of phenological measures var-
ied across the study area and communities, illustrating time trends 
alone in individual phenology-based response variables did not re-
veal the complexity and trade-offs between phenological measures 
in time and space (Butterfield et al., 2020; Wang et al., 2011; Wu 
et al., 2020).

F I G U R E  5   The combination of partial correlation coefficients for different drivers on season-long vegetation productivity. Scatter 
plots (left column and bottom row) and RGB image (upper right) illustrate the partial correlations of annual precipitation (AP), mean annual 
temperature (MAT), and time (Yr) on productivity as measured by AVHRR time-integrated NDVI from 1989 to 2014. The thick solid line 
represents the study area boundary, and the dashed lines are U.S. state boundaries. The scatter plots identify the absolute values of partial 
correlations from 2000 randomly selected pixels from the study for each vegetation community. In the map, color represents the relative 
association (absolute values) of the correlation of each factor. The brightness of pixels is relative to the combined partial correlations where 
darker colors have smaller and brighter colors have larger summed partial correlations. Hatching indicates areas where at least one partial 
correlation coefficient of the three variables considered was significant (p < .05)



     |  11177WOOD et al.

Second, annual precipitation and temperature had strong ex-
planatory power for productivity-related phenological measures 
but tended to predict date-based measures poorly. By including 
relatively simple explanatory variables, we were able to identify 
changes through time and across communities and to identify di-
vergent influences of temperature on peak versus season-long pro-
ductivity. Therefore, the definition of greening and implications of 
both measures should be clearly understood and incorporated in 
phenological studies (Gao et al., 2020). Furthermore, illustrating the 
consequences of greening and/or browning under contemporary or 
future scenarios should include assessment of their patterns across 
varied plant communities and assess the trade-offs/exchanges of 
higher spring/peak productivity for lower season-long production 
(Butterfield et al., 2020; Hu et al., 2010; Wang et al., 2011).

Third, patterns of phenological measures and their relationship 
to climate varied within and across community types. Community re-
sponses to a changing climate can depend on context, such as latitude 
and elevation (Cowles et al., 2018; Reed et al., 2019). In some cases, 
disturbance and management decoupled phenology from climate 
and led to trends in phenology that could be mistakenly attributed 
when only considering interannual trends. Furthermore, additional 
drivers can also impact vegetation phenology via discrete events, 
such as fertilization, management, shifting community composition 
(including invasive species), or disturbance (Gu et  al.,  2003; Hao 
et al., 2019; Piao et al., 2019; Turner, 2010; Zhang, Liu, et al., 2019), 
all of which complicate temperature- and precipitation-based expla-
nations for phenological phenomena. Accordingly, specific drivers or 
surrogates such as time should be quantitatively included along with 
climate.

4.1 | The role of climate in phenological variability

Increasing precipitation had a clear association with increased pro-
ductivity across large areas of the NWP (Figure 5), such as in low 
elevation, dry, warm areas like the Powder River basin (Figure  6). 
We found that grasslands and shrublands had larger positive re-
sponses in both peak and season-long productivity to precipitation 
relative to other communities (Figure A13). Precipitation is a strong 
driver of grassland productivity in the NWP (Petrie et  al.,  2016; 
Yang et  al.,  1998), and in other similar biomes, globally (Meng 
et al., 2020; Wu et al., 2020). Furthermore, responses by a commu-
nity to water limitations, and therefore productivity, vary between 
communities (Maurer et al., 2020; Ponce-Campos et al., 2013; Webb 
et al., 1978) and even between grassland types (Konings et al., 2017; 
Yang et  al.,  1998). Conversely increasing temperature mostly had 
a divergent association, increasing peak productivity but lowering 
season-long productivity. Implications of warming temperatures 
on productivity can vary between vegetation functional groups 
(Livensperger et al., 2016), have cascading ecosystem effects (Beard 
et al., 2019; Rehnus et al., 2020; Renner & Zohner, 2018), and include 
consequences to human society (Bezerra et  al.,  2019; Stevenson 
et al., 2015).

Overall, both precipitation and temperature were needed to fully 
explain phenological measures (e.g., Gao et  al.,  2020). Spatial and 
ecological differences in limiting factors—such as temperature re-
strictions on the length of the season in water-sufficient areas ver-
sus water-limited systems with ample growing days—lead to spatial 
variation (Chen et al., 2019; Cowles et al., 2018; Piao et al., 2019; 
Reed et al., 2019; Yang et al., 2021). The precipitation and tempera-
ture controls on productivity are stronger in arid and semi-arid re-
gions such as much of the NWP (see Figure A1), compared to more 
mesic areas (Maurer et al., 2020). There are important trade-offs that 
may come from shifts in the growing season (Figure 2; see also Fu 
et al., 2017; Butterfield et al., 2020). Specifically, whereas warm, wet 
springs may increase early-season productivity and peak productiv-
ity, this may be offset by lower soil-water recharge and decreased 
production during dry, hot summers (Butterfield et  al.,  2020; Hu 
et al., 2010; Lian et al., 2020; Wang et al., 2011). Conversely, a later 
start of spring from delayed snow melt can lead to increased, sus-
tained, summer productivity (Hu et al., 2010; Potter, 2020). These 
relationships and potential trade-offs may impose conflicting selec-
tion pressures on other members of the ecosystem due to asynchro-
nous changes between start of season and peak versus season-long 
productivity.

Further investigations of the role of vapor pressure deficit (VPD), 
or other metrics of atmospheric moisture and water balance, may 
help explain seasonal vegetative processes, beyond those informed 
by temperature and precipitation. In North American grasslands, 
VPD during July and August was a strong predictor of productivity 
(Konings et al., 2017). Higher VPD leads to decreased gross primary 
productivity across global ecosystems (Zhang, Ficklin, et al., 2019), 
and VPD even was a strong predictor in small mammal distribu-
tion models (Johnston et al., 2019; Smith et al., 2019). In our study 
area, northeastern Montana and much of North and South Dakota 
showed decreasing VPD between 1979 and 2013 in the spring and 
summer, while VPD in central Montana and Wyoming increased 
(Bromley et  al.,  2020; Ficklin & Novick,  2017). Although VPD is a 
promising explanatory variable for vegetation responses to climate, 
it is unclear how to best aggregate VPD across time to account for its 
nonlinear impacts on productivity (Lasslop et al., 2010).

4.2 | Nonclimate associations

We included time in our models as a surrogate for multiple poten-
tial linear factors other than temperature and precipitation that can 
influence phenological measures, and in the NWP time strongly 
governed response in specific areas (Figures  4-6). Fire and insect 
disturbances are common in forests of the NWP and may have af-
fected productivity (Pfeifer et al., 2011; Turner, 2010). For example, 
the Greater Yellowstone Ecosystem experienced stand-replacing 
fires across large areas in 1988 that were followed by reestablish-
ment of forest communities such as those dominate by lodgepole 
pine (Pinus contorta) (Turner, 2010). We found stronger associations 
between time and season-long productivity within fire perimeters 
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compared to outside, illustrating postdisturbance succession such as 
from patchy pioneer plant species to dense early-stage evergreen 
forests (Figure 6).

Likewise, shifts in agricultural practices such as decreased sum-
mer fallow (Lubowski et al., 2006; Vick et al., 2016), increased crop-
ping efficiency (Ray et al., 2012), changes to crop type (e.g., different 
sowing dates) (Zhang, Liu, et  al.,  2019), and field abandonment/
human movement (Hao et al., 2019; Kolecka, 2021; Li et al., 2017) 

can impact phenological measures. However, these changes are not 
spatially uniform. For example, in northeastern Montana (Figure 6) 
Major Land Resource Area (MLRA) 52 has had stable amounts 
of fallow acres, but to the east in MLRA 53 fallow acreages have 
declined in favor of increased cover crops (Long et al., 2014; Vick 
et al., 2016). In areas of declining fallow, increased vegetation leads 
to greater photosynthesis and productivity in the growing season, 
while areas without declines in fallow would exhibit more stable 

F I G U R E  6   Display of partial correlation analysis of season-long vegetation productivity containing examples of associations dominated 
by time, a surrogate for multiple potential factors influencing phenology, and by climate. Productivity is measured by AVHRR time-integrated 
NDVI (TIN) from 1989 to 2014. The top breakout map and plots illustrate differences in agricultural practices between Major Land Resource 
Area (MRLA, https://www.nrcs.usda.gov/wps/porta​l/nrcs/main/soils/​surve​y/geo/) 53 (orange boundary) where summer fallow has been 
decreasing and MLRA 52 (green boundary) where acreages in fallow are stable. The bottom left map and plot show recovery in Yellowstone 
National Park from disturbance (1988 fires, red boundaries, (Welty & Jeffries, 2000)) as productivity increased through time. The bottom 
right map and plot display how productivity increases with annual precipitation in the Powder River Basin Level 4 Ecoregion (light blue 
boundary, https://www.epa.gov/eco-resea​rch/ecore​gions). Yellow boxes in the central figure represent enlarged areas on the periphery. 
Scatter plots show TIN against time or yearly precipitation totals with a line derived from a simple linear regression. See Figure 5 for 
description of how colors represent the relative weighting of slopes from a partial correlation analysis of climate and time variables against 
TIN and the text for more details on each example

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/geo/
https://www.epa.gov/eco-research/ecoregions
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amounts of vegetation and therefore are more strongly controlled 
by precipitation. Importantly, planting and harvesting decisions can 
play a large role in the phenology of agroecosystems; such decisions 
exhibit finer level changes than those typically identified through 
land-cover classifications. Overall, portions of the study area that 
have strong time-based controls over season-long productivity 
often have logical explanations based on known disturbances and 
management practices, which tend to decouple phenology from 
climate.

4.3 | Opportunities for application and 
addition study

We used annual values for temperature and precipitation to test 
the improvement from interannual trends with only a small increase 
to the dimensionality of our models. Although this approach had 
strong explanatory power for productivity measures, it was more 
limited for date-based phenological measures. Phenology is respon-
sive to seasonal conditions prior to and during the growing season 
that may diverge from annual patterns (e.g., Bianchi et al., 2019; Fu 
et al., 2017; Ren et al., 2020), and although there is often strong cor-
relation between annual and seasonal values, climate trends and 
species response to climate may not vary homogeneously (Bromley 
et al., 2020). Temperature was the clearer control on season duration: 
Warmer temperatures can advance spring (Allstadt et al., 2015; Fu 
et al., 2017; Ren et al., 2020) and extend the growing season through 
longer snow-free periods and later freeze events (Potter,  2020). 
Later spring starts and spatial differences in the direction of spring 
movement are not unprecedented in the Northern Hemisphere (e.g., 
Li et al., 2019; Ren et al., 2020). For example, spring is trending ear-
lier in western and central Europe but later in eastern Europe, at-
tributable to differing weather patterns (Ahas et  al.,  2002). Shifts 
to later end-of-season dates (as found in much of our study area) 
are found in central Asia and China, and movement toward ear-
lier end-of-season dates is found in more southern areas of the 
Great Plains, western and central Asia, and parts of Mongolia (Ren 
et al., 2020). Overall, more complex models addressing seasonal time 
periods (Ren et al., 2020), additive growing degree days (de Beurs 
& Henebry, 2007), and/or ecological memory (Liu et al., 2019) have 
promise for date-based phenological measures.

In our study, we identified that trends toward higher peak pro-
ductivity did not always translate to higher season-long produc-
tion. Drivers of peak and season-long productivity can differ in 
general and across vegetation communities (Fu et  al.,  2017, 2019; 
Xia et  al.,  2015). Mixed responses of greening versus browning in 
grassland, shrub, steppe, and forested areas are also found in regions 
of Patagonia (Bianchi et al., 2019) and across vegetation communi-
ties in Mongolia (Meng et al., 2020). We demonstrated that green-
ing and browning studies should consider peak and season-long 
productivity differently, given that their relationships to climate 
drivers differed markedly. Earlier or higher growth and/or longer 

growing-season peaks can be offset by limited production in a dry 
summer (Livensperger et  al.,  2016; e.g., Hu et  al.,  2010). These 
shifts, trade-offs, and asynchronies in vegetation phenology have 
feedbacks and consequences to ecological communities, includ-
ing consumer–resource dynamics, species' behaviors, and other 
ecosystem processes (Beard et  al.,  2019; Morisette et  al.,  2009). 
Understanding the implications of future climate change is import-
ant for predicting potential ecological and social-ecological impacts 
(e.g., Allstadt et  al.,  2015; Beard et  al.,  2019; Beever et  al.,  2019; 
Epstein et al., 2021; Hufkens et al., 2016). A collective understanding 
and consideration of multiple phenological measures and their driv-
ers is important for effective management actions and continued 
development of a multiscale ecological perspective for management 
(Bezerra et al., 2019; Morisette et al., 2009).

ACKNOWLEDG MENTS
Lance McNew, Lisa Rew, and Jennifer Walker reviewed a prior 
version of this manuscript. DJAW acknowledges funding from the 
Bureau of Land Management Montana-Dakotas State Office under 
Interagency Agreement L15PG00230 and L20PG00168. PCS ac-
knowledges support from the U.S. National Science Foundation 
awards DEB 2034997, OIA 1632810, and EF 1702029 and the 
University of Wisconsin—Madison. Any use of trade, firm, or prod-
uct names is for descriptive purposes only and does not imply en-
dorsement by the U.S. Government.

CONFLIC T OF INTERE S T
None declared.

AUTHOR CONTRIBUTIONS
David J. A. Wood: Conceptualization (equal); data curation (equal); 
formal analysis (lead); investigation (lead); methodology (lead); re-
sources (equal); writing-original draft (lead); writing-review & editing 
(equal). Scott Powell: Conceptualization (equal); investigation (sup-
porting); methodology (equal); supervision (equal); writing-original 
draft (supporting); writing-review & editing (equal). Paul C. Stoy: 
Conceptualization (equal); investigation (supporting); methodol-
ogy (equal); supervision (equal); writing-original draft (supporting); 
writing-review & editing (equal). Lindsey L. Thurman: Data curation 
(equal); formal analysis (supporting); methodology (equal); writing-
review & editing (equal). Erik A. Beever: Data curation (equal); meth-
odology (supporting); resources (equal); writing-review & editing 
(equal).

DATA AVAIL ABILIT Y S TATEMENT
Data are accessible from public repositories with details on process-
ing in the manuscript. Land surface phenology data and fire perim-
eter data are available from the U.S. Geological Survey at https://doi.
org/10.5066/F7PC30G1 and https://doi.org/10.5066/P9Z2VVRT. 
Land-cover and land-use data are available from the Multi-Resource 
Land Characteristics Consortium at https://doi.org/10.5066/
P937PN4Z. Climate data are available from the PRISM Climate 

https://doi.org/10.5066/F7PC30G1
https://doi.org/10.5066/F7PC30G1
https://doi.org/10.5066/P9Z2VVRT
https://doi.org/10.5066/P937PN4Z
https://doi.org/10.5066/P937PN4Z


11180  |     WOOD et al.

Group at Oregon State University (https://prism.orego​nstate.
edu/). However, free data are only available at a 4  km resolution, 
and the 800 m gridded data used herein can be procured from the 
PRISM group. Ecoregional boundaries were downloaded from the 
Environmental Protection Agency (https://catal​og.data.gov/datas​
et/u-s-level​-iii-and-iv-ecore​gions​-u-s-epa) and Major Land Resource 
Area boundaries from the National Resource Conservation Service 
(https://catal​og.data.gov/datas​et/major​-land-resou​rce-areas​-mlra).

ORCID
David J. A. Wood   https://orcid.org/0000-0003-4315-5160 
Paul C. Stoy   https://orcid.org/0000-0002-6053-6232 
Lindsey L. Thurman   https://orcid.org/0000-0003-3142-4909 
Erik A. Beever   https://orcid.org/0000-0002-9369-486X 

R E FE R E N C E S
Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., & Scheifinger, H. (2002). 

Changes in European spring phenology. International Journal of 
Climatology, 22, 1727–1738.

Allstadt, A. J., Vavrus, S. J., Heglund, P. J., Pidgeon, A. M., Thogmartin, W. 
E., & Radeloff, V. C. (2015). Spring plant phenology and false springs 
in the conterminous US during the 21st century. Environmental 
Research Letters, 10, 104008.

Auch, R. F., Sayler, K. L., Napton, D. E., Taylor, J. L., & Brooks, M. S. (2011). 
Ecoregional differences in late-20th-century land-use and land-
cover change in the US northern great plains. Great Plains Research, 
21(2), 231–243.

Beard, K. H., Kelsey, K. C., Leffler, A. J., & Welker, J. M. (2019). The 
missing angle: Ecosystem consequences of phenological mismatch. 
Trends in Ecology & Evolution, 34(10), 885–888.

Beever, E. A., Simberloff, D., Crowley, S. L., Al-Chokhachy, R., Jackson, H. 
A., & Petersen, S. L. (2019). Social–ecological mismatches create con-
servation challenges in introduced species management. Frontiers in 
Ecology and the Environment, 17, 117–125.

Bezerra, A. D. M., Pacheco Filho, A. J. S., Bomfim, I. G. A., Smagghe, G., 
& Freitas, B. M. (2019). Agricultural area losses and pollinator mis-
match due to climate changes endanger passion fruit production in 
the Neotropics. Agricultural Systems, 169, 49–57.

Bianchi, E., Villalba, R., & Solarte, A. (2019). NDVI spatio-temporal pat-
terns and climatic controls over Northern Patagonia. Ecosystems, 23, 
84–97.

Bivand, R. S., Keitt, T. H., & Rowlingson, B. (2019). rgdal: Bindings for the 
‘Geospatial’ Data Abstraction Library. https://CRAN.R-proje​ct.org/
packa​ge=rgdal

Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., & Pebesma, E. J. (2008). 
Applied spatial data analysis with R. Springer.

Bromley, G. T., Gerken, T., Prein, A. F., & Stoy, P. C. (2020). Recent trends 
in the near-surface climatology of the Northern North American 
Great Plains. Journal of Climate, 33, 461–475.

Brookshire, E. N. J., Stoy, P. C., Currey, B., & Finney, B. (2020). The green-
ing of the Northern Great Plains and its biogeochemical precursors. 
Global Change Biology, 26, 5404–5413.

Butterfield, Z., Buermann, W., & Keppel-Aleks, G. (2020). Satellite ob-
servations reveal seasonal redistribution of northern ecosystem 
productivity in response to interannual climate variability. Remote 
Sensing of Environment, 242, 111755. https://doi.org/10.1016/j.
rse.2020.111755

Chen, M., Parton, W. J., Hartman, M. D., del Grosso, S. J., Smith, W. 
K., Knapp, A. K., Lutz, S., Derner, J. D., Tucker, C. J., Ojima, D. S., 
Volesky, J. D., Stephenson, M. B., Schacht, W. H., & Gao, W. (2019). 
Assessing precipitation, evapotranspiration, and NDVI as controls of 

U.S. Great Plains plant production. Ecosphere, 10, 106456. https://
doi.org/10.1016/j.ecoli​nd.2020.106456

Chen, X., Wang, W., Chen, J., Zhu, X., Shen, M., Gan, L., & Cao, X. (2020). 
Does any phenological event defined by remote sensing deserve 
particular attention? An examination of spring phenology of winter 
wheat in Northern China. Ecological Indicators, 116, 106456. https://
doi.org/10.1016/j.ecoli​nd.2020.106456

Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. 
(2007). Shifting plant phenology in response to global change. Trends 
in Ecology & Evolution, 22, 357–365.

Cowles, J., Boldgiv, B., Liancourt, P., Petraitis, P. S., & Casper, B. B. (2018). 
Effects of increased temperature on plant communities depend on 
landscape location and precipitation. Ecology and Evolution, 8(11), 
5267–5278.

Dale, V. H., Brown, S., Haeuber, R., Hobbs, N., Huntly, N., Naiman, R., 
Riebsame, W., Turner, M., & Valone, T. (2000). Ecological principles 
and guidelines for managing the use of land. Ecological Applications, 
10, 639–670.

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, 
G. H., Curtis, J., & Pasteris, P. P. (2008). Physiographically sensitive 
mapping of climatological temperature and precipitation across the 
conterminous United States. International Journal of Climatology, 28, 
2031–2064.

de Beurs, K. M., & Henebry, G. M. (2007). A statistical framework for 
the analysis of long image time series. International Journal of Remote 
Sensing, 26, 1551–1573.

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. 
(2011). Analysis of monotonic greening and browning trends from 
global NDVI time-series. Remote Sensing of Environment, 115, 
692–702.

Donnelly, J. P., Allred, B. W., Perret, D., Silverman, N. L., Tack, J. D., Dreitz, 
V. J., Maestas, J. D., & Naugle, D. E. (2018). Seasonal drought in North 
America's sagebrush biome structures dynamic mesic resources for 
sage-grouse. Ecology and Evolution, 8(24), 12492–12505. https://doi.
org/10.1002/ece3.4614

Eidenshink, J. (2006). A 16-year time series of 1 km AVHRR satellite 
data of the conterminous United States and Alaska. Photogrammetric 
Engineering & Remote Sensing, 72, 1027–1035.

Epstein, H., Lauenroth, W., Burke, I., & Coffin, D. (1996). Ecological re-
sponses of dominant grasses along two climatic gradients in the 
Great Plains of the United States. Journal of Vegetation Science, 7, 
777–788.

Epstein, K., Wood, D. J. A., Roemer, K., Currey, B., Duff, H., Gay, J., 
Goemann, H., Loewen, S., Milligan, M. C., Wendt, J. A. F., Brookshire, 
E. N. J., McNew, L. B., McWethy, D. B., Maxwell, B. D., Stoy, P. C., & 
Haggerty, J. H. (2021). Towards an urgent yet deliberate conserva-
tion strategy: Sustaining social-ecological systems in rangelands of 
the Northern Great Plains, Montana. Ecology and Society, 26(1), 10.

Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes 
in vapor pressure deficit suggest a continental-scale drying of 
the United States atmosphere. Journal of Geophysical Research: 
Atmospheres, 122, 2061–2079.

Fu, Z., Stoy, P. C., Luo, Y., Chen, J., Sun, J., Montagnani, L., Wohlfahrt, 
G., Rahman, A. F., Rambal, S., Bernhofer, C., Wang, J., Shirkey, G., & 
Niu, S. (2017). Climate controls over the net carbon uptake period 
and amplitude of net ecosystem production in temperate and boreal 
ecosystems. Agricultural and Forest Meteorology, 243, 9–18.

Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., & Niu, 
S. (2019). Maximum carbon uptake rate dominates the interannual 
variability of global net ecosystem exchange. Global Change Biology, 
25, 3381–3394.

Gao, X., Liang, S., & Sauer, J. (2020). Greening Hiatus in Eurasian Boreal 
forests since 1997 caused by a wetting and cooling summer climate. 
Journal of Geophysical Research Biogeosciences, 125, e2020JG005662. 
https://doi.org/10.1029/2020J​G005662

https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
https://catalog.data.gov/dataset/u-s-level-iii-and-iv-ecoregions-u-s-epa
https://catalog.data.gov/dataset/u-s-level-iii-and-iv-ecoregions-u-s-epa
https://catalog.data.gov/dataset/major-land-resource-areas-mlra
https://orcid.org/0000-0003-4315-5160
https://orcid.org/0000-0003-4315-5160
https://orcid.org/0000-0002-6053-6232
https://orcid.org/0000-0002-6053-6232
https://orcid.org/0000-0003-3142-4909
https://orcid.org/0000-0003-3142-4909
https://orcid.org/0000-0002-9369-486X
https://orcid.org/0000-0002-9369-486X
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=rgdal
https://doi.org/10.1016/j.rse.2020.111755
https://doi.org/10.1016/j.rse.2020.111755
https://doi.org/10.1016/j.ecolind.2020.106456
https://doi.org/10.1016/j.ecolind.2020.106456
https://doi.org/10.1016/j.ecolind.2020.106456
https://doi.org/10.1016/j.ecolind.2020.106456
https://doi.org/10.1002/ece3.4614
https://doi.org/10.1002/ece3.4614
https://doi.org/10.1029/2020JG005662


     |  11181WOOD et al.

Gibson, D., Blomberg, E. J., & Sedinger, J. S. (2016). Evaluating vegetation 
effects on animal demographics: The role of plant phenology and 
sampling bias. Ecology and Evolution, 6, 3621–3631.

Gu, L., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J., 
Urbanski, S. P., & Boden, T. A. (2003). Response of a deciduous forest 
to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 
299, 2035–2038. https://doi.org/10.1126/scien​ce.1078366

Hanes, J. M., Liang, L., & Morisette, J. T. (2014). Land surface phenology. 
Biophysical applications of satellite remote sensing.

Hao, H., Li, Y., Zhang, H., Zhai, R., & Liu, H. (2019). Spatiotemporal 
variations of vegetation and its determinants in the National Key 
Ecological Function Area on Loess Plateau between 2000 and 
2015. Ecology and Evolution, 9, 5810–5820. https://doi.org/10.1002/
ece3.5165

Hijmans, R. J. (2019). raster: Geographic data analysis and modeling.
Hu, J. I. A., Moore, D. J. P., Burns, S. P., & Monson, R. K. (2010). Longer 

growing seasons lead to less carbon sequestration by a subalpine for-
est. Global Change Biology, 16, 771–783.

Hufkens, K., Keenan, T. F., Flanagan, L. B., Scott, R. L., Bernacchi, C. 
J., Joo, E., Brunsell, N. A., Verfaillie, J., & Richardson, A. D. (2016). 
Productivity of North American grasslands is increased under fu-
ture climate scenarios despite rising aridity. Nature Climate Change, 
6, 710–714.

Ji, L., & Brown, J. F. (2017). Effect of NOAA satellite orbital drift on 
AVHRR-derived phenological metrics. International Journal of Applied 
Earth Observation and Geoinformation, 62, 215–223.

Johnston, A. N., Bruggeman, J. E., Beers, A. T., Beever, E. A., 
Christophersen, R. G., & Ransom, J. I. (2019). Ecological conse-
quences of anomalies in atmospheric moisture and snowpack. 
Ecology, 100, e02638. https://doi.org/10.1002/ecy.2638

Kim, S. (2015). ppcor: Partial and semi-partial (part) correlation. R package 
version 1.1. https://CRAN.R-proje​ct.org/packa​ge=ppcor

Kolecka, N. (2021). Greening trends and their relationship with agricul-
tural land abandonment across Poland. Remote Sensing of Environment, 
257, 112340. https://doi.org/10.1016/j.rse.2021.112340

Konings, A. G., Williams, A. P., & Gentine, P. (2017). Sensitivity of grass-
land productivity to aridity controlled by stomatal and xylem regula-
tion. Nature Geoscience, 10, 284–288.

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, 
A., Stoy, P., & Wohlfahrt, G. (2010). Separation of net ecosystem ex-
change into assimilation and respiration using a light response curve 
approach: Critical issues and global evaluation. Global Change Biology, 
16, 187–208.

Lausch, A., Bastian, O., Klotz, S., Leitão, P. J., Jung, A., Rocchini, D., 
Schaepman, M. E., Skidmore, A. K., Tischendorf, L., Knapp, S., & 
Vihervaara, P. (2018). Understanding and assessing vegetation 
health by in situ species and remote-sensing approaches. Methods in 
Ecology and Evolution, 9, 1799–1809.

Li, W., Li, X., Tan, M., & Wang, Y. (2017). Influences of population pres-
sure change on vegetation greenness in China's mountainous areas. 
Ecology and Evolution, 7, 9041–9053.

Li, Y., Zhang, Y., Gu, F., & Liu, S. (2019). Discrepancies in vegetation phe-
nology trends and shift patterns in different climatic zones in middle 
and eastern Eurasia between 1982 and 2015. Ecology and Evolution, 
9, 8664–8675. https://doi.org/10.1002/ece3.5408

Lian, X., Piao, S., Li, L. Z. X., Li, Y., Huntingford, C., Ciais, P., Cescatti, A., 
Janssens, I. A., Peñuelas, J., Buermann, W., Chen, A., Li, X., Myneni, 
R. B., Wang, X., Wang, Y., Yang, Y., Zeng, Z., Zhang, Y., & McVicar, T. 
R. (2020). Summer soil drying exacerbated by earlier spring greening 
of northern vegetation. Science Advances, 6(1), eaax0255. https://doi.
org/10.1126/sciadv.aax0255

Liu, Y., Schwalm, C. R., Samuels-Crow, K. E., Ogle, K., & Liu, L. (2019). 
Ecological memory of daily carbon exchange across the globe and its 
importance in drylands. Ecology Letters, 22, 1806–1816.

Livensperger, C., Steltzer, H., Darrouzet-Nardi, A., Sullivan, P. F., 
Wallenstein, M., & Weintraub, M. N. (2016). Earlier snowmelt and 
warming lead to earlier but not necessarily more plant growth. AoB 
Plants, 8, plw021.

Long, J. A., Lawrence, R. L., Miller, P. R., Marshall, L. A., & Greenwood, M. 
C. (2014). Adoption of cropping sequences in northeast Montana: A 
spatio-temporal analysis. Agriculture, Ecosystems & Environment, 197, 
77–87.

Lubowski, R. N., Vesterby, M., Bucholtz, S., Baez, A., & Roberts, M. J. 
(2006). Major uses of land in the United States, 2002.

Marvin, D. C., Koh, L. P., Lynam, A. J., Wich, S., Davies, A. B., Krishnamurthy, 
R., Stokes, E., Starkey, R., & Asner, G. P. (2016). Integrating tech-
nologies for scalable ecology and conservation. Global Ecology and 
Conservation, 7, 262–275.

Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E., Collins, S. L., & 
Coulson, T. (2020). Sensitivity of primary production to precipitation 
across the United States. Ecology Letters, 23(3), 527–536. https://doi.
org/10.1111/ele.13455

Meng, X., Gao, X., Li, S., & Lei, J. (2020). Spatial and temporal character-
istics of vegetation NDVI changes and the driving forces in Mongolia 
during 1982–2015. Remote Sensing, 12(4), 603.

Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. 
A., Abatzoglou, J., Wilson, B. E., Breshears, D. D., Henebry, G. M., 
Hanes, J. M., & Liang, L. (2009). Tracking the rhythm of the seasons in 
the face of global change: Phenological research in the 21st century. 
Frontiers in Ecology and the Environment, 7, 253–260.

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., 
Tucker, C. J., Myneni, R. B., & Running, S. W. (2003). Climate-driven 
increases in global terrestrial net primary production from 1982 to 
1999. Science, 300, 1560–1563.

Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes. https://CRAN.R-
proje​ct.org/packa​ge=RColo​rBrewer

Newman, E. A., Kennedy, M. C., Falk, D. A., & McKenzie, D. (2019). 
Scaling and complexity in landscape ecology. Frontiers in Ecology and 
Evolution, 7, 293.

Omernik, J. M. (1987). Ecoregions of the conterminous United States. 
Annals of the Association of American Geographers, 77, 118–125.

Pebesma, E. J., & Bivand, R. S. (2005). S Classes and methods for spatial 
data in R. R News, 5, 9–13.

Petrie, M., Brunsell, N., Vargas, R., Collins, S., Flanagan, L., Hanan, N., 
Litvak, M., & Suyker, A. (2016). The sensitivity of carbon exchanges 
in Great Plains grasslands to precipitation variability. Journal of 
Geophysical Research: Biogeosciences, 121(2), 280–294. https://doi.
org/10.1002/2015J​G003205

Pfeifer, E. M., Hicke, J. A., & Meddens, A. J. H. (2011). Observations and 
modeling of aboveground tree carbon stocks and fluxes following 
a bark beetle outbreak in the western United States. Global Change 
Biology, 17, 339–350.

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, 
A., Ciais, P., Tømmervik, H., Nemani, R. R., & Myneni, R. B. (2019). 
Characteristics, drivers and feedbacks of global greening. Nature 
Reviews Earth & Environment, 1, 14–27.

Pohlert, T. (2020). trend: Non-parametric trend tests and change-point de-
tection. https://CRAN.R-proje​ct.org/packa​ge=trend

Ponce-Campos, G. E., Moran, M. S., Huete, A., Zhang, Y., Bresloff, C., 
Huxman, T. E., Eamus, D., Bosch, D. D., Buda, A. R., Gunter, S. A., 
Scalley, T. H., Kitchen, S. G., McClaran, M. P., McNab, W. H., Montoya, 
D. S., Morgan, J. A., Peters, D. P. C., Sadler, E. J., Seyfried, M. S., & 
Starks, P. J. (2013). Ecosystem resilience despite large-scale altered 
hydroclimatic conditions. Nature, 494, 349–352.

Potter, C. (2020). Snowmelt timing impacts on growing season phenol-
ogy in the northern range of Yellowstone National Park estimated 
from MODIS satellite data. Landscape Ecology, 35, 373–388. https://
doi.org/10.1007/s1098​0-019-00951​-3

https://doi.org/10.1126/science.1078366
https://doi.org/10.1002/ece3.5165
https://doi.org/10.1002/ece3.5165
https://doi.org/10.1002/ecy.2638
https://CRAN.R-project.org/package=ppcor
https://doi.org/10.1016/j.rse.2021.112340
https://doi.org/10.1002/ece3.5408
https://doi.org/10.1126/sciadv.aax0255
https://doi.org/10.1126/sciadv.aax0255
https://doi.org/10.1111/ele.13455
https://doi.org/10.1111/ele.13455
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
https://doi.org/10.1002/2015JG003205
https://doi.org/10.1002/2015JG003205
https://CRAN.R-project.org/package=trend
https://doi.org/10.1007/s10980-019-00951-3
https://doi.org/10.1007/s10980-019-00951-3


11182  |     WOOD et al.

R Core Team (2019). R: A language and environment for statistical comput-
ing. 3.5.3 ed. R Foundation for Statistical Computing.

Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. 
(2012). Recent patterns of crop yield growth and stagnation. Nature 
Communications, 3, 1293. https://doi.org/10.1038/ncomm​s2296

Reed, B. C., Brown, J. F., Vanderzee, D., Loveland, T. R., Merchant, J. W., 
& Ohlen, D. O. (1994). Measuring phenological variability from satel-
lite imagery. Journal of Vegetation Science, 5, 703–714.

Reed, P. B., Pfeifer-Meister, L. E., Roy, B. A., Johnson, B. R., Bailes, G. T., 
Nelson, A. A., Boulay, M. C., Hamman, S. T., & Bridgham, S. D. (2019). 
Prairie plant phenology driven more by temperature than moisture 
in climate manipulations across a latitudinal gradient in the Pacific 
Northwest, USA. Ecology and Evolution, 9, 3637–3650. https://doi.
org/10.1002/ece3.4995

Rehnus, M., Peláez, M., & Bollmann, K. (2020). Advancing plant phenol-
ogy causes an increasing trophic mismatch in an income breeder 
across a wide elevational range. Ecosphere, 11(6), e03144. https://
doi.org/10.1002/ecs2.3144

Ren, S., Li, Y., & Peichl, M. (2020). Diverse effects of climate at differ-
ent times on grassland phenology in mid-latitude of the Northern 
Hemisphere. Ecological Indicators, 113, 106260. https://doi.
org/10.1016/j.ecoli​nd.2020.106260

Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological 
mismatch in trophic interactions among plants, insects, and ver-
tebrates. Annual Review of Ecology, Evolution, and Systematics, 49, 
165–182.

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., 
Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. 
C., Dragoni, D., Garrity, S. R., Gough, C. M., Grant, R., Hollinger, D. 
Y., Margolis, H. A., McCaughey, H., Migliavacca, M., … Xue, Y. (2012). 
Terrestrial biosphere models need better representation of vegeta-
tion phenology: Results from the North American Carbon Program 
Site Synthesis. Global Change Biology, 18, 566–584.

Sadras, V. O., & Monzon, J. P. (2006). Modelled wheat phenology cap-
tures rising temperature trends: Shortened time to flowering and ma-
turity in Australia and Argentina. Field Crops Research, 99, 136–146.

Smith, A. B., Beever, E. A., Kessler, A. E., Johnston, A. N., Ray, C., Epps, 
C. W., Lanier, H. C., Klinger, R. C., Rodhouse, T. J., Varner, J., Perrine, 
J. D., Seglund, A., Hall, L. E., Galbreath, K., Macglover, C., Billman, 
P., Blatz, G., Brewer, J., Castillo Vardaro, J., … Yandow, L. (2019). 
Alternatives to genetic affinity as a context for within-species re-
sponse to climate. Nature Climate Change, 9, 787–794.

Smith, J. T., Tack, J. D., Doherty, K. E., Allred, B. W., Maestas, J. D., 
Berkeley, L. I., Dettenmaier, S. J., Messmer, T. A., & Naugle, D. E. 
(2017). Phenology largely explains taller grass at successful nests in 
greater sage-grouse. Ecology and Evolution, 8(1), 356–364. https://
doi.org/10.1002/ece3.3679

Soetaert, K. (2017). plot3D: Plotting multi-dimensional data. https://
CRAN.R-proje​ct.org/packa​ge=plot3D

Stevenson, T. J., Visser, M. E., Arnold, W., Barrett, P., Biello, S., Dawson, 
A., Denlinger, D. L., Dominoni, D., Ebling, F. J., Elton, S., Evans, N., 
Ferguson, H. M., Foster, R. G., Hau, M., Haydon, D. T., Hazlerigg, D. 
G., Heideman, P., Hopcraft, J. G. C., Jonsson, N. N. … Helm, B. (2015). 
Disrupted seasonal biology impacts health, food security and eco-
systems. Proceedings of the Royal Society B: Biological Sciences, 282, 
20151453. https://doi.org/10.1098/rspb.2015.1453

Stoner, D. C., Messmer, T. A., Larsen, R. T., Frey, S. N., Kohl, M. T., Thacker, 
E. T., & Dahlgren, D. K. (2020). Using satellite-derived estimates of 
plant phenological rhythms to predict sage-grouse nesting chronol-
ogy. Ecology and Evolution, 10, 11169–11182.

Stoy, P. C., Ahmed, S., Jarchow, M., Rashford, B., Swanson, D., Albeke, S., 
Bromley, G., Brookshire, E. N. J., Dixon, M. D., Haggerty, J., Miller, P., 
Peyton, B., Royem, A., Spangler, L., Straub, C., & Poulter, B. (2018). 
Opportunities and trade-offs among BECCS and the food, water, 

energy, biodiversity, and social systems nexus at regional scales. 
BioScience, 68(2), 100–111. https://doi.org/10.1093/biosc​i/bix145

Swets, D. L. (1999). A weighted least-squares approach to temporal 
smoothing of NDVI. In 1999 ASPRS annual conference, from image to in-
formation. Portland, Proceedings. American Society for Photogrammetry 
and Remote Sensing, Bethesda, 17-21 May 1999, 1999.

Turner, M. G. (2010). Disturbance and landscape dynamics in a changing 
world. Ecology, 91, 2833–2849.

USDA, N. (2006). Land resource regions and major land resource areas of 
the United States, the Caribbean, and the Pacific Basin. US Department 
of Agriculture Handbook (pp. 296).

USGS EROS (2015). AVHRR remote sensing phenology.
Vick, E. S. K., Stoy, P. C., Tang, A. C. I., & Gerken, T. (2016). The surface-

atmosphere exchange of carbon dioxide, water, and sensible heat 
across a dryland wheat-fallow rotation. Agriculture, Ecosystems & 
Environment, 232, 129–140.

Wang, X., Piao, S., Ciais, P., Li, J., Friedlingstein, P., Koven, C., & Chen, 
A. (2011). Spring temperature change and its implication in the 
change of vegetation growth in North America from 1982 to 2006. 
Proceedings of the National Academy of Sciences, 108, 1240–1245.

Webb, W., Szarek, S., Lauenroth, W., Kinerson, R., & Smith, M. (1978). 
Primary productivity and water use in native forest, grassland, and 
desert ecosystems. Ecology, 59, 1239–1247.

Welty, J. L., & Jeffries, M. I. (2020). Combined wildfire datasets for the 
United States and certain territories, 1878-2019: U.S. Geological Survey 
Data Release. https://doi.org/10.5066/P9Z2VVRT

Wickham, J., Homer, C., Vogelmann, J., McKerrow, A., Mueller, R., Herold, 
N., & Coulston, J. (2014). The multi-resolution land characteristics 
(MRLC) consortium — 20 years of development and integration of 
USA national land cover data. Remote Sensing, 6, 7424–7441.

Wu, S., Gao, X., Lei, J., Zhou, N., & Wang, Y. (2020). Spatial and tem-
poral changes in the normalized difference vegetation index and 
their driving factors in the desert/grassland biome transition zone of 
the Sahel region of Africa. Remote Sensing, 12(24), 4119. https://doi.
org/10.3390/rs122​44119

Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., Arain, A., 
Blanken, P. D., Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S., 
Chen, S., Dong, J., Flanagan, L. B., Frankenberg, C., Georgiadis, T., 
Gough, C. M., Hui, D., … Luo, Y. (2015). Joint control of terrestrial 
gross primary productivity by plant phenology and physiology. 
Proceedings of the National Academy of Sciences, 112, 2788–2793.

Yang, L., Guan, Q., Lin, J., Tian, J., Tan, Z., & Li, H. (2021). Evolution of 
NDVI secular trends and responses to climate change: A perspec-
tive from nonlinearity and nonstationarity characteristics. Remote 
Sensing of Environment, 254, 112247. https://doi.org/10.1016/j.
rse.2020.112247

Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, 
A., Costello, C., Dewitz, J., & Fry, J. (2018). A new generation of 
the United States National Land Cover Database: Requirements, 
research priorities, design, and implementation strategies. ISPRS 
Journal of Photogrammetry and Remote Sensing, 146, 108–123.

Yang, L., Wylie, B. K., Tieszen, L. L., & Reed, B. C. (1998). An analysis 
of relationships among climate forcing and time-integrated NDVI of 
grasslands over the US northern and central Great Plains. Remote 
Sensing of Environment, 65, 25–37.

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, 
Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., 
Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., … Yang, S. 
(2019). Increased atmospheric vapor pressure deficit reduces global 
vegetation growth. Science Advances, 5(8), eaax1396.

Zeileis, A., & Grothendieck, G. (2005). zoo:S3Infrastructure for regular 
and irregular time series. Journal of Statistical Software, 14(6), 1–27.

Zhang, Q., Ficklin, D., Manzoni, S., Wang, L., Way, D., Phillips, R., & 
Novick, K. A. (2019). Response of ecosystem intrinsic water use 

https://doi.org/10.1038/ncomms2296
https://doi.org/10.1002/ece3.4995
https://doi.org/10.1002/ece3.4995
https://doi.org/10.1002/ecs2.3144
https://doi.org/10.1002/ecs2.3144
https://doi.org/10.1016/j.ecolind.2020.106260
https://doi.org/10.1016/j.ecolind.2020.106260
https://doi.org/10.1002/ece3.3679
https://doi.org/10.1002/ece3.3679
https://CRAN.R-project.org/package=plot3D
https://CRAN.R-project.org/package=plot3D
https://doi.org/10.1098/rspb.2015.1453
https://doi.org/10.1093/biosci/bix145
https://doi.org/10.5066/P9Z2VVRT
https://doi.org/10.3390/rs12244119
https://doi.org/10.3390/rs12244119
https://doi.org/10.1016/j.rse.2020.112247
https://doi.org/10.1016/j.rse.2020.112247


     |  11183WOOD et al.

efficiency and gross primary productivity to rising vapor pressure 
deficit. Environmental Research Letters, 14(7), 074023. https://doi.
org/10.1088/1748-9326/ab2603

Zhang, X., Liu, L., & Henebry, G. M. (2019). Impacts of land cover and 
land use change on long-term trend of land surface phenology: A 
case study in agricultural ecosystems. Environmental Research Letters, 
14(4), 044020. https://doi.org/10.1088/1748-9326/ab04d2

Zhang, X., Wang, J., Gao, F., Liu, Y., Schaaf, C., Friedl, M., Yu, Y., Jayavelu, 
S., Gray, J., Liu, L., Yan, D., & Henebry, G. M. (2017). Exploration of 
scaling effects on coarse resolution land surface phenology. Remote 
Sensing of Environment, 190, 318–330.

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, 
P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., 
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., … Zeng, N. (2016). 

Greening of the Earth and its drivers. Nature Climate Change, 6, 
791–795.

How to cite this article: Wood, D. J. A., Powell, S., Stoy, P. C., 
Thurman, L. L., & Beever, E. A. (2021). Is the grass always 
greener? Land surface phenology reveals differences in peak 
and season-long vegetation productivity responses to climate 
and management. Ecology and Evolution, 11, 11168–11199. 
https://doi.org/10.1002/ece3.7904

https://doi.org/10.1088/1748-9326/ab2603
https://doi.org/10.1088/1748-9326/ab2603
https://doi.org/10.1088/1748-9326/ab04d2
https://doi.org/10.1002/ece3.7904


11184  |     WOOD et al.

TA B L E  A 1   Distributions of significant trends (p < .05, Mann–Kendall test) across community types with direction of Sen's Slopes, for 
1989–2014 for six phenological measures based on the AVHRR satellite record

Vegetation community type

Barren
Deciduous 
forest

Evergreen 
forest Shrub Grassland Pasture/Crop Wetlands Total

Start of season

Significant 12% 11% 13% 14% 8% 6% 9% 9%

Increasing 
(later)

88% 100% 95% 52% 70% 75% 94% 70%

Decreasing 
(earlier)

12% 0% 5% 48% 30% 25% 6% 30%

End of season

Significant 6% 28% 6% 9% 13% 18% 10% 13%

Increasing 
(later)

43% 43% 17% 91% 97% 98% 97% 92%

Decreasing 
(earlier)

57% 57% 83% 9% 3% 2% 3% 8%

Season duration

Significant 6% 6% 7% 5% 2% 4% 2% 4%

Increasing 
(longer)

30% 37% 4% 73% 90% 94% 49% 68%

Decreasing 
(shorter)

70% 63% 96% 27% 10% 6% 51% 32%

Day of max NDVI

Significant 2% 2% 5% 3% 4% 13% 5% 6%

Increasing 
(later)

53% 22% 18% 29% 49% 67% 52% 53%

Decreasing 
(earlier)

48% 78% 82% 71% 51% 33% 48% 47%

Maximum NDVI

Significant 21% 42% 24% 17% 28% 49% 26% 29%

Increasing 49% 100% 73% 92% 98% 99% 96% 95%

Decreasing 51% 0% 27% 8% 2% 1% 4% 5%

Time-integrated NDVI

Significant 4% 20% 10% 11% 21% 47% 20% 23%

Increasing 27% 99% 87% 86% 96% 98% 88% 96%

Decreasing 73% 1% 13% 14% 4% 2% 12% 4%

Note: 1—Increasing and decreasing values are calculated from only significant pixels, with total trends being the number of significant pixels divided 
by the total number pixels of the community type. For each community type, the percentage increasing (decreasing) is the number of significant 
pixels with a positive (negative) slope divided by the total number of significant pixels. Therefore, increasing slopes correspond to transition dates 
later in the year, longer seasons, or higher productivity as applicable to each phenology measure.

APPENDIX A

ADDITIONAL SPATIOTEMPOR AL AND COMMUNIT Y PAT TERNS AND FINDINGS
These figures and tables provide additional information on temperature and precipitation patterns, potential contributions of land-cover 
change, differences between communities, and distributions of slopes from the multiple linear regression analyses. In addition, results for all 
phenological measures are included from the partial correlation analyses showing the spatial differences between predictors.
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F I G U R E  A 1   Mean annual temperature and precipitation, and their coefficient of variation (CV) in the Northwestern U.S. Great Plains 
from 1989 to 2014, coinciding with the AVHRR satellite-derived phenological record. Precipitation values limited to a value of 800 mm/year 
for display purposes (i.e., the dark blue is 800+ mm), ranging up to 2,500 mm in higher elevation areas in the Rocky Mountains. In order to 
use a ratio scale for the coefficient of variation calculation on temperature values, yearly data were first converted to kelvin temperatures 
(℃ + 273.15). The study area is depicted with a dashed black line and U.S. states with gray solid lines
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F I G U R E  A 2   Proportion of AVHRR pixels (1 km resolution) 
experiencing land-cover type change between 2001 and 2016. 
Land-cover changes derived from the Landsat-based (30 m 
resolution) NLCD Change Index record. The study area is depicted 
with a dashed black line and U.S. states with gray solid lines
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F I G U R E  A 3   Boxplots of Sen's slopes for six phenology measures by vegetation type (ForestDecid = Deciduous Forest, 
ForestEverg = Evergreen Forest, see text for description of each land-cover class) for 1989–2014 based on the AVHRR satellite record. 
Boxplots represent the distribution of slopes for each phenological measure, with the dashed line representing no change (zero slope)
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F I G U R E  A 4   Stacked proportional bar plot comparison of study area wide change of land-cover types (ForestDecid = Deciduous Forest, 
ForestEverg = Evergreen Forest, see text for description of each land-cover class) within AVHRR pixels to those with significant interannual 
trend of peak productivity (MAXN). Land cover derived from the Landsat-based (30 m) NLCD Change Index record. MAXN used as the 
example comparison as it has the largest area of significant interannual trend and overlap with the majority of other significant interannual 
trends for the other five phenological measures studied
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F I G U R E  A 5   R2 values for multiple linear regression models of the change from mean annual temperature, annual precipitation, and time 
for phenological measures in the Northwestern Plains. The study area is depicted with a dashed black line and U.S. states with gray solid 
lines
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F I G U R E  A 6   Slopes for change through time for phenological measures calculated from the AVHRR satellite record in the Northwestern 
Plains after accounting for annual precipitation and mean annual temperature. The study area is depicted with a dashed black line and U.S. 
states with gray solid lines. Note different axes for each plot
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F I G U R E  A 7   Histograms for the change over time for phenological measures calculated from the AVHRR satellite record for the 
Northwestern Plains after accounting for annual precipitation and mean annual temperature. Note different axes for each plot
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F I G U R E  A 8   Slopes for the effect of annual precipitation on phenological measures calculated from the AVHRR satellite record in the 
Northwestern Plains after accounting for mean annual temperature and time. The study area is depicted with a dashed black line and U.S. 
states with gray solid lines. Note different axes for each plot
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F I G U R E  A 9   Histograms of the change from annual precipitation for phenological measures calculated from the AVHRR satellite record 
for Northwestern Plains communities after accounting for time and mean annual temperature. Note different axes for each plot
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F I G U R E  A 1 0   Slopes for the effect of mean annual temperature for phenological measures calculated from the AVHRR satellite record in 
the Northwestern Plains after accounting for annual precipitation and remaining time-based trend. The study area is depicted with a dashed 
black line and U.S. states with gray solid lines. Note different axes for each plot
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F I G U R E  A 11   Histograms of the change due to annual mean temperature on phenological calculated from the AVHRR satellite record 
measures for Northwestern Plains communities after accounting for time and annual precipitation. Note different axes for each plot
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F I G U R E  A 1 2   Boxplots for the change over time in phenological measures calculated from the AVHRR satellite record for major 
Northwestern Plains vegetation types (ForestDecid = Deciduous Forest, ForestEverg = Evergreen Forest, see text for description of each 
land-cover class) after accounting for annual precipitation and mean annual temperature. Note different axes for each plot
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F I G U R E  A 1 3   Boxplots for the change from annual precipitation on phenological measures calculated from the AVHRR satellite record 
for major Northwestern Plains vegetation types (ForestDecid = Deciduous Forest, ForestEverg = Evergreen Forest, see text for description 
of each land-cover class) after accounting for time and mean annual temperature. Note different axes for each plot
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F I G U R E  A 14   Boxplots for the change from mean annual temperature on phenological measures calculated from the AVHRR satellite 
record for major Northwestern Plains vegetation types (ForestDecid = Deciduous Forest, ForestEverg = Evergreen Forest, see text for 
description of each land-cover class) after accounting for time and annual precipitation. Note different axes for each plot



     |  11199WOOD et al.

F I G U R E  A 1 5   Combined partial correlations for time (Yr), annual precipitation (AP), and mean annual temperature (MAT) in phenological 
measures for the Northwestern Plains. Color represents the relative correlation of each factor in explaining the measures between 1989 
and 2014. Brightness of the color is relative to the absolute value of the combined correlations where darker colors are smaller and brighter 
colors larger combined partial correlations. Dashed lines are U.S. state boundaries


