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Abstract

Background: Deep learning is gaining importance in the prediction of cognitive states and brain pathology based on
neuroimaging data. Including multiple hidden layers in artificial neural networks enables unprecedented predictive power;
however, the proper training of deep neural networks requires thousands of exemplars. Collecting this amount of data is
not feasible in typical neuroimaging experiments. A handy solution to this problem, which has largely fallen outside the
scope of deep learning applications in neuroimaging, is to repurpose deep networks that have already been trained on large
datasets by fine-tuning them to target datasets/tasks with fewer exemplars. Here, we investigated how this method, called
transfer learning, can aid age category classification and regression based on brain functional connectivity patterns derived
from resting-state functional magnetic resonance imaging. We trained a connectome-convolutional neural network on a
larger public dataset and then examined how the knowledge learned can be used effectively to perform these tasks on
smaller target datasets collected with a different type of scanner and/or imaging protocol and pre-processing pipeline.
Results: Age classification on the target datasets benefitted from transfer learning. Significant improvement (∼9%–13%
increase in accuracy) was observed when the convolutional layers’ weights were initialized based on the values learned on
the public dataset and then fine-tuned to the target datasets. Transfer learning also appeared promising in improving the
otherwise poor prediction of chronological age. Conclusions: Transfer learning is a plausible solution to adapt convolutional
neural networks to neuroimaging data with few exemplars and different data acquisition and pre-processing protocols.
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Background

Deep learning, a branch of machine learning that allows multi-
layered neural network models to learn representing data at in-
creasing levels of abstraction [1], is gaining importance in the
analysis of brain imaging data [2] and has been applied success-

fully in neuroimaging studies of psychiatric and neurological
disorders [3]. As an example, our group has successfully applied
deep learning for functional magnetic resonance imaging (fMRI)-
based classification of amnestic mild cognitive impairment [4].
More specifically, we presented a novel convolutional neural net-
work (CNN) architecture that efficiently distinguished between
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subject groups based on functional connectivity metrics derived
from resting-state fMRI measurements.

While these methods have the potential to revolutionize fMRI
data analysis [2] and provide a conceptual framework for un-
derstanding brain function [5], training deep neural networks
comes at a cost. This is mainly because many examples are re-
quired to properly train these models. A rough rule of thumb is
that to achieve agreeable performance, a supervised deep learn-
ing algorithm requires around 5,000 labeled training examples
per category [6]. Accordingly, datasets used in several areas of
machine learning are often enormous. For example, the AlexNet
[7], a CNN model that achieved a breakthrough in natural image
recognition in 2012 [8], was trained on roughly 1.2 million ex-
amples from the ImageNet database [9]. This is in stark contrast
with the sample size in typical neuroimaging experiments. In a
recent review of more than 200 studies using neuroimaging and
machine learning for the classification of patients with various
brain disorders, the authors found that the median sample size
of all studies was 88 [10]. By contrast, the number of features
(regions or voxels) in neuroimaging experiments is typically far
greater—in the field of functional connectomics, it ranges from
the order of tens to 1 million [11]. Complex models trained under
such circumstances are prone to learn the idiosyncratic details
of the sample data instead of the general functional relation-
ship between brain activation patterns and cognitive states. For
this reason, such models show poor generalization to samples
they have never encountered before, a phenomenon that is com-
monly referred to as “overfitting” [12,13].

Open sharing of neuroimaging data is envisaged by many as
a possible solution to the problem of small sample sizes [10].
Significant progress has been made in this area, as now there
are more than 8,000 shared MRI datasets available online [14].
However, data sharing entails the possibility of introducing un-
desirable variability into data analysis, which is a central issue
in multicenter fMRI studies and is related to differences in scan-
ner types, sequence parameters, stimulus presentation, and im-
age processing between research sites [15]. In addition, the in-
creased computational burden of processing vast amounts of
neuroimaging data should also be taken into account [2]. Con-
sidering these limitations, the question arises as to how data
from different sources can be combined effectively for deep
learning applications in neuroimaging.

In machine learning, it is not uncommon to rely on previous
knowledge instead of training a model from scratch. Transfer
learning [16] refers to the method of training a model on one
dataset (the source domain) and then transferring the acquired
knowledge—that is, in the case of neural networks, manifest
in the learned weights—to train a model on a different dataset
and/or task (the target domain). This method is useful when the
source and target datasets differ in terms of feature space or
data distribution [16] and can be used effectively when the target
dataset is too small to train a large network without overfitting
[17]. As a recent example, Oquab et al. [18] harnessed the image
representations learned by a CNN on a large-scale dataset (the
ImageNet; see above) in order to perform various visual recog-
nition tasks on a dataset with a limited amount of training ex-
amples. In particular, the pre-trained parameters of the inter-
nal layers were transferred to the target task and kept constant,
while the last fully connected layer was replaced by two new lay-
ers that were trained on the target dataset. This transfer learn-
ing method led to enhanced performance when compared to
state-of-the-art models, despite differences in image statistics
and tasks between the two datasets [18]. Other examples include
keeping the weights of the pre-trained layers fixed and training

a linear regression or support vector machine (SVM) classifier on
top to adapt the model to the target domain [19–21].

Yosinski et al. [17] trained a CNN for visual classification on
one dataset and then systematically examined the extent to
which transferring parameters from different layers aids the re-
training of the remaining layers on a similar dataset. The au-
thors found that the first two layers show almost perfect trans-
fer, in line with the frequently observed phenomenon that when
deep neural networks are trained on images, the resulting rep-
resentations in their first layers—i.e., Gabor filters or color blobs
[22]—are general in the sense that they can be applied to many
datasets and tasks. Transferring deeper layers, however, led to a
significant drop in performance due to the representations be-
ing more specific to the source domain as well as due to the loss
of co-adapted representations between successive layers. Inter-
estingly, transferring the weights only to initialize the network
that is then fine-tuned to the target dataset resulted in better
performance than when the network was trained directly on the
target dataset. This suggests that transfer learning may be de-
sirable even when the target domain has sufficient examples to
train the network without overfitting [17].

Taken together, the above results suggest that transfer learn-
ing is beneficial when the sample size in the target domain is
too small to train deep neural networks without overfitting. The
effectiveness of this method depends on the use of knowledge
about the source domain, i.e., which layers are transferred and
whether the weights are fixed or used only to initialize the net-
work when training on the target dataset. While these studies
focused on how to deal with the scarcity of data in specific nat-
ural image recognition tasks, transfer learning has the potential
to alleviate the problem of small sample size in neuroimaging.

In the present study, we performed a systematic investiga-
tion of how knowledge can be extracted effectively from a model
that has already been trained on a publicly available dataset. In
particular, we examined how transfer learning can be used to
adapt a CNN to a relatively small dataset to predict age from
functional neuroimaging data. Predicted brain age is attracting
significant attention due to its potential as a biomarker of in-
dividual brain health [23], and recent results show that deep
learning is effective in predicting age from structural MRI data
[24]. In the current study, region-of-interest-based whole-brain
resting-state functional connectivity matrices acquired in our
own lab from subjects of two age categories (elderly and young)
constituted the target domain. The source domain consisted of
functional connectivity matrices and corresponding chronologi-
cal age labels resulting from the aggregation of publicly available
data. The two datasets differed markedly in size and data acqui-
sition (scanner type and imaging sequence) and pre-processing
parameters. We examined how weights from certain layers of
our CNN model trained on the source dataset can be used to
enhance chronological age classification and regression perfor-
mance on the target dataset. We also investigated how the
contribution of the connectivity fingerprints of brain regions
and networks to classification performance changed in differ-
ent transfer learning conditions. Finally, the generalizability of
the proposed transfer learning method was tested by examin-
ing an alternative target dataset derived from publicly available
data.

Data Description

The source dataset in this study was obtained by aggregating
publicly available datasets (hereafter referred to as the public
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dataset). We used a target dataset that was acquired in our own
lab (the in-house dataset). In addition, to test the generalizability
of the proposed method, we also examined an alternative tar-
get dataset (the Nathan-Kline Institute Rockland Sample [NKI-
RS] subset), which consisted of publicly available data. See the
Methods section for full details of the data acquisition and pre-
processing pipelines.

Public dataset

We used publicly available data from the Consortium for Re-
liability and Reproducibility ([25]): the Ludwig-Maximilians-
University (LMU) 1, 2, and 3 datasets [26,27], and from the In-
ternational Data Sharing Initiative ([28]): the Southwest Univer-
sity Adult Lifespan Dataset (SALD) [29]. The aggregated public
dataset includes 368 resting-state fMRI measurements from 200
subjects (117 females) aged between 19 and 30 years (mean ±
standard deviation [SD] = 23.9 ± 2.4 years; the young age group),
144 measurements from 144 subjects (92 females) aged between
31 and 54 years (mean ± SD = 44.8 ± 6.6 years; the middle-aged
group), and 332 measurements from 237 subjects (141 females)
aged between 55 and 80 years (mean ± SD = 64.2 ± 6.9 years; the
elderly age group). Measurements from the young and elderly
age groups were used for classification. Measurements from the
middle-aged group were omitted from classification. Measure-
ments from all three groups were used for regression.

In-house dataset

A total of 57 subjects with no history of neurological or psychi-
atric diseases and normal or corrected-to-normal visual acuity
participated in the experiment. There were 28 subjects (14 fe-
males) aged between 20 and 33 years (mean ± SD = 23.9 ± 2.7
years; the young age group) and 29 subjects (14 females) aged be-
tween 59 and 90 years (mean ± SD = 68.7 ± 6.1 years; the elderly
age group). Each subject underwent an anatomical scan and a
subsequent 600-sec resting-state fMRI measurement. Subjects
were instructed to lie still while fixating a dark spot in the cen-
ter of the screen on a gray background.

The NKI-RS subset

In addition to the in-house dataset, the proposed method was
tested on an alternative target dataset derived from the en-
hanced NKI-RS [30]. Similar to the in-house dataset, measure-
ments in the NKI-RS dataset were obtained using simultaneous
multi-slice imaging, albeit with different parameters and using
a different type of scanner (see the Methods section for details).
A subset of the participants in the NKI-RS dataset was selected
randomly, with the only constraints being that the size of the
resulting dataset and the age range of the participants match
the in-house dataset as closely as possible. The resulting NKI-
RS subset included 30 young subjects (17 females) aged between
20 and 32 years (mean ± SD = 24.4 ± 3.5 years) and 30 elderly
subjects (18 females) aged between 59 and 80 years (mean ± SD
= 68.2 ± 6.3 years). A single 580.5-sec resting-state fMRI mea-
surement was used for each participant.

The limited size of the NKI-RS subset allowed us to inves-
tigate the potential benefit of transfer learning when dealing
with small samples such as the in-house dataset. Moreover, the
NKI-RS imaging protocol (simultaneous multi-slice imaging) and
the pre-processing pipeline it necessitates (removal of artifacts
using independent component analysis) ensure that, similar to
the in-house dataset, the NKI-RS subset differs from the public

dataset and hence it is suitable for testing the potential of trans-
fer learning to improve performance in functional connectivity
pattern analysis.

Functional connectivity calculation

To calculate region of interest (ROI)-based whole-brain func-
tional connectivity, we used the Harvard-Oxford Atlas included
in the FMRIB Software Library (FSL) [31], consisting of 111
anatomical regions of interest (for the full list of ROIs, see Addi-
tional file 1), to obtain 111 meaningful averaged blood-oxygen-
level-dependent (BOLD) signals in each measurement. From
these 111 time series, we calculated full connectivity matrices
leading to 111∗110/2 = 6,105 independent pairwise connectivity
features.

Analyses
Classification

We determined whether the classification of age category
(young/elderly) based on resting-state functional connectivity
data in a relatively small sample (the in-house dataset) can
be improved by transferring the knowledge learned on a larger
sample (the public dataset). First, we used the in-house dataset
for training a connectome-convolutional neural network (CCNN)
as well as testing its performance with cross-validation, which
served as a baseline. Second, we trained the CCNN on the public
dataset and used the resulting weights and bias terms to either
directly classify the instances in the in-house dataset or to guide
the further training of the network on the in-house dataset. This
resulted in five different transfer learning conditions (Fig. 1); the
classification performances in these conditions were compared
to the baseline, i.e., when the CCNN was trained solely on the in-
house dataset. The network architecture and the different train-
ing conditions are detailed in the Methods section.

The classification results are summarized in Table 1. Above-
chance classification accuracy was observed (84.2%) when
the CCNN was trained exclusively on the in-house dataset
(ConvTrainFullTrain). When the CCNN was trained on the public
dataset and all the resulting weights were used directly to test
the model on the in-house dataset (ConvConstFullConst), a slight in-
crease in performance was observed (86%, P = 0.5). Thus, while
baseline classification performance is encouraging, there is still
room for improvement regarding knowledge transfer.

Importing only the convolutional layers’ weights and biases
and training the fully connected layers from scratch on the in-
house dataset (ConvConstFullTrain) led to a more pronounced im-
provement in classification performance (91.2%), even though
the difference to the baseline condition (ConvTrainFullTrain) did not
reach the level of significance (P = 0.172). When the weights of
the fully connected layers were initialized based on the values
learned on the public dataset (ConvConstFullInit), a similar result
was obtained (91.2%, P = 0.172). Finally, initializing the weights of
the convolutional layers based on previously learned values led
to a significant improvement in classification performance over
the baseline condition (93%, P = 0.031 for both ConvInitFullTrain

and ConvInitFullInit). On the whole, training the CCNN on both
datasets consistently led to better results than when the model
was trained exclusively on one dataset, and a significant im-
provement was observed when the convolutional layers were
fine-tuned on the target dataset after learning from the source
dataset.
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Figure 1: Schematic illustration of the baseline, transfer learning, and back-transfer conditions. Rectangles represent the weights and bias terms in each layer. The
color of the rectangles specifies which dataset the layer was originally trained on (green, in-house dataset; blue, public dataset). Open and closed padlocks indicate
whether the weights and bias terms were used for initialization or kept constant, respectively. The color of the input and output signs indicates which dataset was
used for testing (the target dataset). Subscripts in the condition names indicate whether the weights and biases in the respective layers were kept constant (Const),

initialized on previously learned values (Init), or learned from scratch (Train) when the CCNN was applied to the target dataset. See the Methods section for details.

Table 1: Performance measures of the baseline and transfer learning conditions for the in-house dataset

Classification
ConvTrain

FullTrain

ConvConst

FullConst

ConvConst

FullTrain ConvInit FullInit ConvInit FullTrain

ConvConst

FullInit Back-transfer

Accuracy (%) 84.2 86.0 91.2 93.0 93.0 91.2 60.9
Area under
the receiver
operating
characteristic
curve

0.919 0.959 0.931 0.945 0.950 0.931 0.720

Importantly, when the weights learned on the in-house
dataset were used to classify instances in the public dataset
(back-transfer), performance dropped dramatically (60.9%). As
the CCNN can classify instances of the in-house dataset in

the ConvTrainFullTrain condition with 84.2% accuracy (with cross-
validation), we can claim that the CCNN does not simply over-
fit the small dataset. The poor generalization of these represen-
tations to the public dataset suggests, however, that the CCNN
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probably learned specific details of the in-house dataset. That is,
it relies on connectivity differences between subject groups that
are enlarged due to the parameters of our measurements, such
as the very short repetition time (TR) due to multi-slice imaging.
In contrast, the representations learned on a larger and more di-
verse dataset generalize well to the in-house data, as the classifi-
cation accuracy in the ConvConstFullConst condition was 86%. This
shows that the connectivity differences the CCNN relies on in
this case are substantial regardless of scanner type and imaging
parameters.

ROIs relevant for classification

We investigated the role of the connectivity patterns of in-
dividual brain regions and large-scale brain networks in the
decision-making process when the CCNN was trained on
the public dataset (ConvConstFullConst), on the in-house dataset
(ConvTrainFullTrain), or when it was fine-tuned to the in-house
dataset after training on the public dataset (ConvInitFullTrain and
ConvInitFullInit). To this end, we performed an occlusion test (see
the Methods section for details). Briefly, we replaced the con-
nectivity fingerprints of individual ROIs or groups of ROIs con-
stituting a given brain network with zeros in the input and re-
classified the instances in the in-house dataset, with weights
and bias terms as constants corresponding to the values estab-
lished at the end of the training process in the given condition.
The most important brain regions/brain networks were consid-
ered to be the ones the occlusion of which resulted in a substan-
tial drop in classification accuracy.

Classification performance did not change considerably
when the connectivity fingerprints of individual ROIs were oc-
cluded (Additional files 2 and 3). The only notable effect was an
∼9% drop in accuracy when the anterior division of the right
supramarginal gyrus was occluded in the ConvConstFullConst con-
dition. Otherwise, the mean accuracy change was –0.3% (SD =
1%) across conditions.

Classification performance proved to be more sensitive to
the occlusion of large-scale brain networks. When trained solely
on the in-house dataset (ConvTrainFullTrain), the CCNN seemed to
rely heavily on the connectivity pattern of the default mode net-
work, whose occlusion resulted in a 12.3% drop in accuracy (Fig.
2, right panel). In contrast, when the network was trained on
the public dataset only (ConvConstFullConst), the regions of the vi-
suospatial network turned out to be crucial for classification, as
the occlusion of these regions resulted in below-chance perfor-
mance (56.1%; Fig. 2 left panel). The visuospatial network re-
mained highly important when the CCNN was fine-tuned to the
in-house dataset, along with the executive control network in
the ConvInitFullInit condition (8.8% drop in accuracy; Fig. 3, left
panel) and the sensorimotor network in the ConvInitFullTrain con-
dition (10.5% drop in accuracy; Fig. 3, right panel). The regions
corresponding to these networks are shown in Fig. 4.

Regression

We modified the CCNN model to regress chronological age
against functional connectivity patterns (see Methods section
for details). When the CCNN was trained solely on the in-house
dataset to regress chronological age with the ROIs’ functional
connectivity fingerprints as independent variables, performance
was rather poor (mean absolute error [MAE] = 12.55 years, Pear-
son r = 0.75, R2 = 0.5, root mean squared error [RMSE] = 16.09
years). However, use of the convolutional layer weights learned
on the public dataset for age category classification and then

fine-tuning the fully connected layers to perform regression on
the in-house data resulted in a remarkable improvement in re-
gression performance (MAE = 7.77 years, Pearson r = 0.84, R2 =
0.71, RMSE = 12.39 years; Fig. 5.). The difference in performance
between the baseline and transfer learning conditions was sig-
nificant (t = 3.46, P = 0.001).

The NKI-RS subset

To assess the generalizability of the transfer learning findings
obtained using the in-house dataset, the same transfer learn-
ing conditions were also tested using the NKI-RS subset as
the target dataset. By and large, transferring the knowledge
learned on the public dataset to aid classification performance
on the NKI-RS yielded a pattern of results that was compara-
ble to the one observed in the case of the in-house dataset.
When the CCNN was trained exclusively on the NKI-RS subset
(ConvTrainFullTrain), classification accuracy was 75%. Only a mod-
est increase in performance was observed (76.7%, P = 0.5) when
the CCNN was trained on the public dataset and all the result-
ing weights were used directly to classify instances in the NKI-
RS subset (ConvConstFullConst). Importing only the convolutional
layers’ weights and biases and keeping them constant lead to
a greater increase in performance, although the difference to
the baseline condition (ConvTrainFullTrain) did not reach the level
of significance (ConvConstFullTrain: 85%, P = 0.073; ConvConstFullInit:
81.7%, P = 0.212). Finally, initializing the weights and biases of
the convolutional and fully connected layers based on previ-
ously learned values (ConvInitFullInit) led to a significant improve-
ment in classification performance over the baseline condition
(88.3%, P = 0.004). This suggests that fine-tuning the convolu-
tional layers after learning from the public dataset is important
for improving classification performance significantly, similarly
to the in-house dataset. Initializing only the convolutional lay-
ers’ weights and biases (ConvInitFullTrain) also increased perfor-
mance, although this increase did not reach the level of statisti-
cal significance (85%, P = 0.055).

Examining the role of large-scale brain networks in classifi-
cation using the occlusion test revealed that transfer learning
had a similar effect to the one observed in the case of the in-
house dataset. The CCNN relied heavily on the default mode and
visuospatial networks (8.33% drop in accuracy) when trained
exclusively on the public dataset (ConvConstFullConst; Additional
Fig. 5, left panel) and on the visuospatial and salience networks
(1.67% drop in accuracy) when trained solely on the NKI-RS sub-
set (ConvTrainFullTrain; Additional Fig. 5, right panel). When the
CCNN was fine-tuned to the NKI-RS subset (ConvInitFullInit and
ConvInitFullTrain; Additional Fig. 6), the default mode network be-
came the most important set of brain regions for classification
among the ones that were tested (8.3% and 13.33% drop in accu-
racy, respectively).

As for chronological age regression, performance was ex-
tremely poor when the CCNN was trained solely on the NKI-RS
subset (MAE = 14.97 years, Pearson r = 0.6, R2 = 0.26, RMSE =
19.95 years). Transfer learning improved regression performance
(MAE = 12.25 years, Pearson r = 0.7, R2 = 0.46, RMSE = 17.08
years), albeit the difference between the baseline and transfer
learning conditions did not reach significance (t = 1.53, P = 0.13).

Discussion

In the present study, we trained a connectome-convolutional
neural network to perform binary chronological age category
classification (young/elderly) based on region-of-interest-based
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Figure 2: Network occlusion test results for the ConvConstFullConst and ConvTrainFullTrain conditions performed on the in-house dataset. The percentage of correctly clas-
sified exemplars in the in-house dataset (horizontal axes) are plotted for each occluded functional network (vertical axes). Black dashed lines show the classification
accuracies in the corresponding conditions when no network was occluded. Red dashed lines show the accuracy level corresponding to random classification.

Figure 3: Network occlusion test results for the ConvInitFullInit and ConvInitFullTrain conditions performed on the in-house dataset. The percentage of correctly classi-
fied exemplars in the in-house dataset (horizontal axes) are plotted for each occluded functional network (vertical axes). Black dashed lines show the classification

accuracies in the corresponding conditions when no network was occluded. Red dashed lines show the accuracy level corresponding to random classification.

resting-state functional connectivity patterns derived from fMRI
measurements. Even though baseline classification was well
above chance, we found that performance could be improved
further by training the CCNN model on a larger, publicly avail-
able dataset and then making use of the knowledge learned to
classify instances in the smaller in-house dataset. This has oc-

curred despite the fact that the two datasets differed consider-
ably in terms of the data acquisition protocol (scanner type and
imaging sequence) and pre-processing parameters. A similar re-
sult was obtained when the knowledge learned on the public
dataset was transferred to the NKI-RS subset, suggesting that
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Figure 4: Functional brain networks that strongly contributed to classification by age group performed on the in-house dataset in the baseline and transfer learning
conditions. These networks were defined by mapping the constituent functional ROIs identified by Shirer et al. [32] onto the anatomical ROIs in the Harvard-Oxford

Atlas. The importance of each network was assessed by occluding the connectivity fingerprints of the constituent ROIs in the input correlation matrices and ex-
amining the resulting change in performance when the network classified the in-house exemplars using the weights and biases established in the ConvConstFullConst ,
ConvTrainFullTrain , ConvInitFullInit , and ConvInitFullTrain conditions. The most important networks were considered to be the ones the occlusion of which resulted in the
greatest drop in classification accuracy in the above conditions.

transfer learning is generally applicable for the augmentation of
functional connectivity pattern classification.

Applying the model trained on the public dataset one-in-one
to the in-house dataset or NKI-RS subset resulted in a modest
∼2% increase in performance compared to the baseline con-
dition, i.e., when the model was trained exclusively on either
of the target datasets. This suggests that the representations
learned on the public dataset are rather abstract and general-
ize to other datasets reasonably well; nevertheless, classification
performance could benefit from continued learning on the target
dataset as well. Indeed, a significant improvement in classifica-
tion performance was observed when the convolutional layers’
weights were initialized on the basis of the previously learned
values and then trained on the in-house dataset or the NKI-RS
subset. In general, these results suggest that a handy solution
to repurpose existing convolutional neural network models for
functional connectivity pattern classification is to fine-tune the
convolutional (as well as the fully connected) layers to the target
dataset by initializing the weights with the previously learned
values. This outcome bears a close resemblance with previous
results in the field of natural image recognition. In particular,
Yosinski et al. [17] found that an eight-layer convolutional neural
network trained on a large source image dataset and then fine-
tuned to a target dataset shows better generalization that those
trained directly on a target dataset of the same size. The authors
came to the conclusion that the initialization of network weights
with transferred values might be a generally useful method for
improving CNN performance, even when the target dataset is
large enough to train the network from scratch without overfit-
ting.

Deep learning is a highly promising method for inferring cog-
nitive states and brain pathology from neuroimaging data [2].
In particular, convolutional neural networks have been applied
successfully to make predictions on the basis of brain structure
[24] and functional connectivity patterns [4]. However, a major
drawback of these networks is that their proper training requires
extensive amounts of data [6], which substantially exceeds the
sample sizes in typical neuroimaging experiments [10]. Perform-
ing neuroimaging measurements in the order of thousands to
train deep networks from scratch to answer specific research
questions under specific data acquisition and processing pro-
tocols is impracticable. Nevertheless, with the advent of neu-
roimaging “big data” [14], reusing models that have been trained
on large-scale datasets seems to be a viable solution to tackle
the “data-hungry” nature of CNNs. This situation is compara-
ble to that in natural image recognition, where large-scale an-
notated image sets are available (e.g., [9]) and the weights of
CNNs trained on such datasets can be transferred effectively to
solve visual recognition tasks with limited training data (e.g.,
[18]). There have been several attempts lately that combined
auxiliary datasets for the classification of brain disease states in
SVM [33,34] or multinomial regression [35] settings effectively.
Recently, Mensch et al. [36] used several datasets from different
brain imaging studies simultaneously to train a shared multi-
layered architecture to decode cognitive states from neural ac-
tivity patterns. The authors found that aggregating multiple
datasets boosted decoding performance on a target dataset, and
this gain in accuracy increased with smaller training size. This
offers the potential of learning representations of neural activity
from already existing data repositories that can be generalized to
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Figure 5: Chronological age regression performance with (yellow) and without (orange) transfer learning. Histograms show the distribution of errors in predicted
chronological age in years for the in-house exemplars (vertical axis represents the value of prediction error; horizontal axis represents frequency).

newly acquired fMRI data [36]. Our results suggest that transfer
learning might be a useful method in applying deep neural net-
works that have already been trained on larger datasets to fMRI
data with a limited number of exemplars. More specifically, the
results of the present study also imply that the fine-tuning of
convolutional layers by weight initialization is a handy solution
to adapt a CNN to the target dataset, at least in the domain of
functional connectivity pattern classification.

It is important to note that even though baseline classifi-
cation performance was well above chance, when the model
trained on the in-house dataset was used directly to classify
instances in the public dataset, performance dropped to below
chance level. This is indicative of a special type of overfitting
[12,13]; the CCNN probably learned the idiosyncratic details of
the in-house dataset that correlate with age but came from our
specific measurement parameters instead of the general rela-
tionship between functional connectivity patterns and chrono-
logical age. This implies that even remarkably good performance
should be treated with caution when deep networks are trained
on small datasets, and transfer learning might be beneficial un-
der such circumstances as well.

We also investigated which brain region’s connectivity pat-
terns played an important role in age category classification of
the in-house and NKI-RS exemplars in the different training con-
ditions by examining changes in classification performance re-
sulting from the occlusion of each region’s connectivity finger-

print in the input. It turned out that classification accuracy was
largely unaffected by the occlusion of individual brain regions.
This insensitivity to slight changes in the input might be due to
the use of dropout (with a dropout rate of 0.4), which increased
the robustness of the CCNN to the occlusion of features. How-
ever, removal of the connectivity patterns of large-scale brain
networks from the input had a greater effect on classification
performance. It appeared that the CCNN relied on the connec-
tivity patterns of different brain networks when trained either
on the target or public dataset. This latter set of brain regions
tended to play a dominant role in the classification of target
dataset exemplars when the CCNN was fine-tuned to the tar-
get dataset after training on public data. Thus, it seems likely
that fine-tuning the network to the target dataset entailed the
involvement of a combination of brain regions that are more
generally related to the aging process.

In addition to age category classification, we also trained our
CCNN model to predict chronological age based on brain func-
tional connectivity patterns. When the network was trained ex-
clusively on the in-house dataset, age regression performance
was rather poor. Nonetheless, the application of transfer learn-
ing lead to a significant improvement. In particular, keeping the
convolutional layer weights that were used successfully in cat-
egorization and fine-tuning the fully connected layers to the in-
house dataset for the purpose of regression enabled a more ac-
curate prediction of chronological age. While transfer learning
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also improved age prediction in the case of the NKI-RS subset,
this improvement did not reach the level of significance—this
might be due to the extremely poor baseline performance that
transfer learning could not overcome.

Evidence is mounting that brain age—the predicted age of
an individual that is derived from neuroimaging data—is re-
lated to physical health and brain disease [23]. As such, it is
a promising biomarker for individual brain health. Recently,
Cole et al. [24] predicted chronological age with less than five
years mean absolute error using a CNN trained on T1-weighted
structural MRI scans from 1,601 healthy individuals. The au-
thors found that even though the within-scanner reliability of
brain-predicted age was high, between-scanner reliability was
markedly reduced, especially for T1 scans with minimal pre-
processing. Thus, multi-center reliability seems to be an issue
for CNN-based age estimation, at least when raw structural MRI
scans are used for prediction. The precision of age estimation
in our study remained well below the one reported by Cole et
al. [24]. Regression performance in the transfer learning con-
dition would certainly have benefitted from a larger dataset—
the public dataset in our study was approximately half the size
of the one used by Cole et al. [24]. Nevertheless, our results
suggest that transfer learning is a potentially useful method to
enhance the prediction of chronological age based on resting-
state brain functional connectivity pattern analysis. In particu-
lar, weight transfer in the convolutional layers and fine-tuning
of the fully connected layers to the target dataset seem to repre-
sent a promising solution to adapt CNNs to data acquired with
different scanner types and imaging protocols for the purpose
of predicting brain age. The effectiveness of this method shall
be investigated further with possibly larger source datasets.

Potential implications

We believe that transfer learning has the potential to alleviate
the problem of data scarcity regarding deep learning applica-
tions in neuroimaging. Here, we showed that an already-trained
CNN can be fine-tuned effectively to a fMRI functional connec-
tivity dataset with different data acquisition and pre-processing
parameters. Since the initial convolutional layers in CNNs tend
to learn more general representations [17], it is plausible that
models trained on large datasets can also be repurposed to per-
form a variety of different tasks at relatively low cost.

Methods
Public data acquisition and pre-processing

The LMU 1, 2, and 3 datasets were collected at the Institute
of Clinical Radiology, Ludwig-Maximilians-University, Munich,
Germany. Data from the LMU 1 dataset were acquired using a
Philips Achieva 3T MRI scanner (Best, the Netherlands) and a 32-
channel headcoil. High-resolution anatomical images were ac-
quired for each of the 26 subjects (14 females; age [mean ± SD]
= 24.3 ± 1.9 years) using a T1-weighted 3D TFE sequence (1 mm
isotropic voxels; slice thickness/slice gap = 1/0 mm; TR = 2,375
ms; flip angle [FA] = 8◦; field of view [FOV] = 240 mm; accelera-
tion factor = 2/2.5). A total of 180 functional images over 455 sec
were collected with a BOLD-sensitive T2∗-weighted gradient-
echo-echo-planar imaging (EPI) sequence (slice thickness/slice
gap = 3/0 mm; slice in-plane resolution = 2.95 × 2.95 mm; TR =
2,500 ms; echo time [TE] = 30 ms; FA = 90◦; FOV = 224 × 233 mm;
acceleration factor = 3). Fifty-two axial slices were acquired in
ascending acquisition order covering the whole brain. Each sub-

ject participated in at least five 455-sec resting-state fMRI mea-
surements. Further details are available on the website of the
dataset [37].

Data from the LMU 2 and 3 datasets were acquired us-
ing Siemens Magnetom Verio and TrioTim 3T MRI scanners
(Siemens, Erlangen, Germany), respectively, and 12-channel
headcoils. High-resolution T1-weighted anatomical images
were acquired for each of the 65 subjects (31 females; age [mean
± SD] = 58.1 ± 20.4 years) using a 3D magnetization-prepared
rapid gradient echo (MPRAGE) sequence and 2-fold generalized
autocalibrating partial parallel acquisition (GRAPPA) accelera-
tion with a partial Fourier factor of 7/8 (1 mm isotropic vox-
els; slice thickness/slice gap = 1/0.5 mm; TR = 2,400 ms; TE
= 3.06 ms; FA = 9◦; FOV = 256 ms). A total of 120 functional
images over 366 sec were collected with a BOLD-sensitive T2∗-
weighted gradient-echo EPI sequence (slice thickness/slice gap
= 4/0.4 mm; slice in-plane resolution = 3 × 3 mm; TR = 3,000
ms; TE = 30 ms; FA = 80◦; FOV = 192 mm). A total of 28 and 36
axial slices were acquired in ascending order for the LMU 2 and 3
datasets, respectively. In the LMU 2 dataset, each subject partic-
ipated in four 366-sec resting-state fMRI measurements. In the
LMU 3 dataset, each subject participated in two 366-sec resting-
state fMRI measurements. Further details are available on the
websites of the datasets [38,39].

The SALD was collected at the Southwest University Center
for Brain Imaging using a Siemens Magnetom TrioTim 3T MRI
scanner (Siemens Medical, Erlanger, Germany). High-resolution
T1-weighted anatomical images were acquired for 493 subjects
(306 females; age [mean ± SD] = 45.2 ± 17 years; one subject
lacked functional images and therefore was omitted from the
analysis) using an MPRAGE sequence and 2-fold GRAPPA accel-
eration (TR = 1,900 ms; TE = 2.52 ms; FA = 9◦; FOV = 256 mm;
1 mm isotropic spatial resolution). A total of 242 functional im-
ages over 488 sec were collected using a gradient-echo-EPI se-
quence (32 slices; slice thickness/slice gap = 3/1 mm; TR = 2,000
ms; TE = 30 ms; FA = 90◦; FOV = 220 mm; voxel size = 3.4 × 3.4
× 3 mm). Each subject participated in one 488-sec resting-state
fMRI measurement. Further details are available on the website
of the dataset [40].

The public dataset resulted from the aggregation of the
LMU 1, 2, 3, and SALD datasets. Pre-processing of the imaging
data was performed using the SPM12 toolbox [41] and custom-
made scripts running on MATLAB 2015a (MathWorks Inc., Nat-
ick, MA, USA). Each subject’s functional images were motion-
corrected; the T2∗-weighted functional images in all sessions
were spatially realigned to the first volume. Then, the realigned
functional images were spatially smoothed using a 5-mm full-
width half maximum Gaussian filter. The T1-weighted anatom-
ical images in each session were coregistered to the mean
T2∗-weighted functional images created during the realignment
step. The coregistered anatomical images were segmented using
the unified segmentation and normalization tool of SPM12. The
resulting gray matter (GM) mask was later used to restrict the
analysis of the functional images to GM voxels; while the white
matter (WM) and cerebrospinal fluid (CSF) masks were used to
extract nuisance signals that are unlikely to reflect neural ac-
tivity in resting-state time series. The realigned functional im-
ages were normalized to the MNI-152 space using deformation
field parameters generated during the segmentation and nor-
malization of the anatomical images. After regressing out the
head-motion parameters, the mean WM, CSF, and whole-brain
signals [42], residual time courses from all GM voxels were band-
pass filtered using a combination of temporal high-pass (based
on the regression of ninth-order discrete cosine transform basis
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set) and low-pass (bidirectional 12th-order Butterworth IIR) fil-
ters to retain signals only within the range of 0.009 and 0.08 Hz
[43].

In-house data acquisition and pre-processing

Data were acquired on a Siemens Magnetom Prisma 3T MRI
scanner (Siemens Healthcare, Erlangen, Germany) at the Brain
Imaging Centre, Research Centre for Natural Sciences, Hungar-
ian Academy of Sciences. All head elements of the standard
Siemens 64-channel head-neck receiver coil were applied. The
protocol consisted of T1-weighted 3D MPRAGE anatomical imag-
ing using 2-fold in-plane GRAPPA acceleration (TR/TE/FA = 2,300
ms/3 ms/9◦; FOV = 256 mm; isotropic 1 mm spatial resolution).
A blipped-controlled aliasing in parallel imaging simultaneous
multi-slice gradient-echo-EPI sequence [44] was used for func-
tional measurements with 6-fold slice acceleration, using full
brain coverage with an isotropic 2 mm spatial resolution and a
TR of 710 ms, without in-plane parallel imaging. A partial Fourier
factor of 7/8 was used to achieve a TE of 30 ms. Image reconstruc-
tion was performed using the Slice-GRAPPA algorithm [44] with
LeakBlock kernel [45].

Pre-processing of the imaging data was performed using
SPM12 [41] and FSL 5.0.9 [46] toolboxes as well as custom-made
scripts running on MATLAB 2015a (MathWorks Inc.). The T2∗-
weighted functional images were spatially realigned to the first
volume for motion correction and coregistered with the T1-
weighted anatomical image that was then segmented and nor-
malized to the MNI-152 space using the unified segmentation-
normalization tool of SPM12. The resulting GM mask was later
used to restrict the analysis of the functional images to GM vox-
els, while the WM and CSF masks were used to extract nuisance
signals that are unlikely to reflect neural activity in resting-
state time series. On the realigned and coregistered functional
images, spatial independent component analysis using FSL’s
MELODIC ICA 3.14 [47] was performed at the single-subject level
to remove artifacts due to an interaction of the multi-slice ac-
quisition with head motion [48].

After the ICA-based cleaning procedure, functional images
were normalized to MNI-152 space using deformation field pa-
rameters acquired during the segmentation and normalization
of the anatomical image, followed by a 5-mm isotropic Gaus-
sian smoothing. After regressing out the head-motion parame-
ters, the mean WM and CSF signals [42], residual time courses
from all GM voxels were band-pass filtered using a combination
of temporal high-pass (based on the regression of ninth-order
discrete cosine transform basis set) and low-pass (bidirectional
12th-order Butterworth IIR) filters to retain signals only within
the range of 0.009 and 0.08 Hz [43].

Acquisition and pre-processing of the NKI-RS subset

MRI data from the enhanced NKI-RS [30] were collected using a
Siemens Magnetom Trio Tim 3T MRI scanner (Siemens Health-
care, Erlangen, Germany). High-resolution T1-weighted anatom-
ical images were acquired using an MPRAGE sequence and 2-
fold GRAPPA acceleration (TR = 1,900 ms; TE = 2.52 ms; FA = 9◦;
FOV = 250 mm; 1 mm isotropic spatial resolution). One 580.5-sec
resting-state fMRI measurement with a total of 900 functional
images was used for each individual in the randomly selected
subset of participants. A blipped-controlled-aliasing multiband
EPI sequence [49] was used for functional measurements with
4-fold slice acceleration (40 slices; TR = 645 ms; TE = 30 ms; FA
= 60◦; FOV = 222 mm; voxel size = 3.0 × 3.0 × 3.0 mm). Further

details are available on the website of the dataset [50]. These
measurements were processed in the same way as those in the
in-house dataset.

Connectome-convolutional neural network architecture

We used a slightly modified version of our connectome-
convolutional neural network model that has previously proven
successful in the classification of functional connectivity pat-
terns [4]. In detail, we arranged the connectivity features into
111 × 111 matrices (corresponding to the 111 ROIs) and applied
line-by-line convolution (filter size: 1 × 111) followed by convo-
lution by column (filter size: 111 × 1). Thus, we treated the con-
nectivity fingerprint of each ROI (rows in the input matrix) as
a unit whose weights can be shared across the whole connec-
tivity matrix. This is based on the assumption that the learned
convolutional filter will assign large weights to ROIs that show
altered connectivity between the age groups, and thus connec-
tivity strength with those altered regions will have a large influ-
ence on the output [4].

In the first convolutional layer, we trained 64 filters, i.e., 64
differently weighted sums of each ROI’s connectivity fingerprint
were calculated. In the second convolutional layer, we trained
256 filters. The output of this layer is fed into a fully connected
hidden layer with 96 neurons that are connected to the out-
put layer consisting of two neurons corresponding to the two
classes. We applied rectified linear unit ([51]) non-linearity in
the convolutional neural network and the softmax function [52]
on the output layer to calculate the probability of each instance
belonging to a certain class. The network is trained with cross-
entropy as a loss function [6]. To train a robust classifier, we ap-
plied dropout regularization [53,54] with keep probability of 0.6
and an Adam optimizer [55] with a learning rate of 0.001 and
5,000 training iterations. The two convolutional layers of the
CCNN model include 111∗64+111∗64∗256 = 1,825,728 trainable
weights and 320 bias terms. The fully connected hidden and out-
put layers include 256∗96+96∗2 = 24,768 trainable weights and
98 bias terms.

The CCNN model was implemented in Python using Ten-
sorFlow 1.3. We used a single NVIDIA Quadro M4000 GPU to
train the CCNN. Training on the public dataset for classifica-
tion took 112 sec. Training on the in-house dataset with 10-fold
cross-validation (ConvTrainFullTrain) took 1,127 sec. The computa-
tion times in the classification transfer learning conditions for
the in-house dataset were as follows: 104 sec in ConvConstFUllTrain,
92 sec in ConvConstFullInit, 1,163 sec in ConvInitFullTrain, and 1,104
sec in ConvInitFullInit. Training and evaluation in the baseline and
transfer learning regression conditions took 3,417 and 474 sec,
respectively.

Transfer learning for classification

To establish the baseline classification performance (i.e., when
the in-house dataset is used for both training and testing), we
applied cross-validation. Measurements from the 57 subjects
were randomly divided into 10 folds. Measurements in each fold
constituted the test set for that fold with five or six subjects,
while the remaining measurements constituted the training set.
This same partitioning was used to evaluate all classifiers and
conditions. As in this case, the convolutional as well as the fully
connected layers were trained in each fold; we refer to this con-
dition as ConvTrainFullTrain.

To evaluate the transfer of weights and bias terms from the
public to the in-house dataset, the CCNN was trained on all
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instances of the public dataset in one fold. Measurements in
the in-house dataset were omitted from training. Subsequently,
weights and bias terms learned on the public dataset were trans-
ferred to classify instances in the in-house dataset. In one con-
dition, the resulting weights and bias terms of the convolutional
as well as the fully connected layers were used to classify each
instance in the in-house dataset. Since all layers’ weights and
biases terms were constants based on what had been learned
on the public dataset previously, we refer to this condition as
ConvConstFullConst. In another condition, after training the CCNN
on all instances of the public dataset, the model was further
trained and evaluated on the in-house dataset using the 10-
fold cross-validation scheme. At this stage, the weights and bias
terms of the two convolutional layers were kept constant while
those of the fully connected layers were newly initialized (using
“Xavier” initialization; [56]) and trained in each fold of the cross-
validation (ConvConstFullTrain).

To examine whether the representations learned on the
smaller in-house dataset can be generalized to the larger
dataset, we transferred weights and biases learned on the in-
house dataset to classify instances in the public dataset. We re-
fer to this condition as Back-transfer, as in this case, the direc-
tion of knowledge transfer is the opposite to that in the rest of
the conditions. In particular, this condition is the exact oppo-
site of the ConvConstFullConst condition, inasmuch as the weights
of the convolutional and fully connected layers learned on the
in-house dataset are used as constants when testing on the pub-
lic dataset. Performance in this condition is supposed to indicate
whether the representations learned on such a small dataset are
general in the sense that they concern the relationship between
functional connectivity and age or specific to the characteristic
features of the in-house dataset.

We also examined the effect of weight initialization based
on the public dataset. Similar to the previous ones, the con-
ditions described hereinafter involve the training of the CCNN
on all instances of the public dataset as a first step. In the
second step, instead of keeping the weights and bias terms
learned on the public dataset constant, their values are used
to re-initialize the same weights and bias terms for training
on the in-house dataset in each fold of the cross-validation. In
one condition, all layers’ weights and bias terms were initial-
ized based on what had been learned previously on the pub-
lic dataset (ConvInitFullInit). In an additional condition, only the
convolutional layers’ parameters were initialized based on the
previously learned values, while the weights and biases of the
fully connected layers were newly initialized in each fold using
“Xavier” initialization (ConvInitFullTrain). Finally, we examined per-
formance in a condition in which the weights and biases of the
convolutional layers were kept constant while those of the fully
connected layers were initialized using the values learned on the
public dataset (ConvConstFullInit).

We assessed classification performance with two metrics: ac-
curacy (the proportion of correctly classified instances) and area
under the receiver operating characteristic curve.

To determine the baseline of random classification, we ap-
plied a binomial method [13]. In two class classification, the ran-
dom classifier has P = 50% chance of predicting the true label;
therefore, the probability of obtaining not more than k correct
labels out of n trials can be calculated from the cumulative bino-
mial distribution function:

FBinom (n, k, p) =
k∑

i=0

(
n
i

)
pi (1 − p)n−i

For the threshold of significance, we chose the 95th per-
centile, i.e., we searched for the k value where FBinom(n, k, 0.5)
≈ 0.95. From this, the baseline accuracy can be calculated as k/n.
In the case of the in-house dataset, the calculated baseline ac-
curacy is 63.16% with FBinom(57, 36, 0.5) = 0.969.

Classification performance in each transfer learning condi-
tion was compared separately to the performance obtained in
the baseline condition (ConvTrainFullTrain) using a binomial test
[57]. In particular, we computed the probability that the transfer
model correctly classifies an example that the baseline model
misclassifies at least as many times as observed in the ex-
periment, given the assumption that the two models perform
equally well, using the formula

n∑
s

n!
s! (n − s)!

0.5n

where n is the number of examples for which the two models
gave different predictions and s is the number of cases in which
the transfer model gave a correct prediction and the baseline
model gave an incorrect one. We consider the difference signif-
icant if the calculated P value is less than 0.05.

Evaluating the role of ROIs in classification

To investigate how the connectivity fingerprints of individual
brain regions and large-scale brain networks contribute to clas-
sification performance, we systematically occluded different
parts of the input correlation matrix and examined how perfor-
mance changes as a result, in each condition separately. At this
stage, the weights and bias terms of the CCNN corresponded to
the values learned in the given condition and were kept constant
during testing. For example, when evaluating the importance of
ROIs in the ConvConstFullConst condition, the weights and biases of
the model corresponded to those learned on the public dataset.
A similar approach was adopted previously in a study where the
authors systematically occluded different parts of a natural in-
put image and monitored the output of the CNN [21].

First, we investigated the role of each anatomical ROI in
classification. To this end, we occluded the connectivity fin-
gerprint of the given ROI by setting all the values in the cor-
responding row and column of the correlation matrix to zero.
We then classified each partially occluded correlation matrix
in the in-house dataset and examined classification accuracy.
We repeated this process for each ROI in the ConvConstFullConst,
ConvTrainFullTrain, ConvInitFullInit, and ConvInitFullTrain conditions sep-
arately. The full list of anatomical ROIs is shown in Additional
file 1. It was considered that the occlusion of the connectivity
patterns of brain regions that are crucial for classification would
result in a substantial drop in accuracy. Classification accuracies
resulting from the occlusion of each region’s connectivity finger-
print are displayed in Additional files 2 and 3.

Second, we examined the contribution of networks of brain
regions to classification. This approach was based on the at-
lases of functional ROIs created by Shirer et al. [32]. The authors
identified 90 functional ROIs across 14 large-scale brain net-
works by applying independent component analysis to group-
level resting-state data. Here, we mapped these functional ROIs
onto the anatomical ROIs in the Harvard-Oxford Atlas by visual
inspection to define the corresponding brain networks. These
networks, the constituent anatomical ROIs, and their functional
counterparts are listed in Additional file 4. To investigate the role
of these networks in age category classification, we occluded
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the connectivity fingerprints of all ROIs constituting the given
network (by setting all the values in the corresponding rows
and columns of the correlation matrix to zero; see above) and
examined the resulting change in performance. We repeated
this process for each network and condition separately. Some
of these networks were unified pairwise prior to the occlusion
test: the dorsal and ventral default mode networks, the primary
and higher visual networks, the anterior and posterior salience
networks, and the left and right executive control networks. It
was considered that the occlusion of the connectivity patterns
of networks of brain regions that are crucial for classification
would result in a substantial drop in accuracy. These brain net-
works are displayed in representative sections of the MNI brain
template (Fig. 4). Classification accuracies resulting from the oc-
clusion of each network’s connectivity fingerprints are displayed
in Figs. 2 and 3.

Transfer learning for regression

The CCNN was modified to implement a regression model with
the functional connectivity fingerprints of ROIs as independent
variables and chronological age as the dependent variable. To
this end, the number of neurons in the output layer was reduced
to 1. The total number of trainable weights in the fully con-
nected layers changed accordingly to 24,672 plus 97 bias terms.
To train the network, we used mean squared error as the loss
function and Adam optimizer with a learning rate of 0.0005 and
15,000 training iterations. Dropout regularization with a keep
probability of 0.6 was applied. Baseline regression performance
was established using the in-house dataset and a 10-fold cross-
validation scheme.

To examine how transfer learning from the public dataset
aids regression when using the in-house data, the convolutional
layer weights and bias terms that had been learned previously
on the public dataset to perform binary age category classifica-
tion were used as constants. First, the fully connected layers of
the CCNN were trained on the public dataset to regress chrono-
logical age. Second, the fully connected layers were trained to
perform regression on the in-house dataset. In this second step,
the weights and biases of the fully connected layers were initial-
ized with the values learned on the public dataset in the previ-
ous step. Regression performance on the in-house dataset was
established using the 10-fold cross-validation scheme.

We evaluated regression performance using the MAE, the
correlation between chronological and predicted age (Pearson
r), the coefficient of determination (R2), and the RMSE. We com-
pared the prediction errors (the absolute value of the difference
between the true age and the predicted age in years for each ex-
emplar) between the baseline and transfer learning conditions
using a paired t test.

The NKI-RS subset

Transfer learning for age category classification, chronological
age regression, and the brain network occlusion test for the NKI-
RS subset was implemented in the same way as when the in-
house dataset was targeted.

Availability of source code and requirements

Project name: Transfer learning for CCNN-based resting-state
functional connectivity pattern analysis

Project home page: https://github.com/vaklip/transfer learn
ing ccnn

Operating system(s): Platform independent
Programming language: Python
Other requirements: TensorFlow 1.3
License: MIT
RRID:SCR 016590
The codes used for the pre-processing of the imaging data

are available in a separate repository:
Project home page: https://github.com/vaklip/rsfmri fconn
Operating system(s): Platform independent
Programming language: MATLAB
Other requirements: SPM 12; Tools for NIfTI and ANALYZE

image
License: MIT
RRID:SCR 016591

Availability of supporting data

The T1-weighted and T2∗-weighted MRI scans, connectivity ma-
trices, and labels are available in the GigaScience repository, Gi-
gaDB [58].

Additional files

Additional file 1. The list of regions of interest in the Harvard-
Oxford Atlas used to calculate ROI-based whole-brain functional
connectivity.

Additional file 2. ROI occlusion test results for the
ConvConstFullConst and ConvTrainFullTrain conditions performed
on the in-house dataset. The percentage of correctly classified
exemplars in the in-house dataset (horizontal axes) are plotted
for each occluded ROI (vertical axis). See Additional file 1. for the
identification number of each region of interest. Black dashed
lines show the classification accuracies in the corresponding
conditions when no ROI was occluded. Red dashed lines show
the accuracy level corresponding to random classification.

Additional file 3. ROI occlusion test results for the
ConvInitFullInit and ConvInitFullTrain conditions performed on
the in-house dataset. The percentage of correctly classified
exemplars in the in-house dataset (horizontal axes) are plotted
for each occluded ROI (vertical axis). See Additional file 1. for the
identification number of each region of interest. Black dashed
lines show the classification accuracies in the corresponding
conditions when no ROI was occluded. Red dashed lines show
the accuracy level corresponding to random classification.

Additional file 4. Brain networks examined in the occlu-
sion test performed on the in-house and NKI-RS dataset. The
functional networks (left column) were defined by Shirer et al.
[32]. The constituent functional ROIs (middle column) and their
anatomical counterparts in the Harvard-Oxford Atlas (right col-
umn) are listed for each network. Anatomical ROIs correspond-
ing to a given functional network were occluded to investigate
the contribution of that particular network to age category clas-
sification. Note that some of these networks were unified pair-
wise prior to the occlusion test: the dorsal and ventral default
mode networks; the primary and higher visual networks; the
anterior and posterior salience networks; and the left and right
executive control networks.

Additional file 5. Network occlusion test results for the
ConvConstFullConst and ConvTrainFullTrain conditions performed on
the NKI-RS subset. The percentage of correctly classified exem-
plars in the NKI-RS subset (horizontal axes) are plotted for each
occluded functional network (vertical axes). Black dashed lines
show the classification accuracies in the corresponding condi-

https://github.com/vaklip/transfer_learning_ccnn
https://scicrunch.org/resolver/RRID:SCR_016590
https://github.com/vaklip/rsfmri_fconn
https://scicrunch.org/resolver/RRID:SCR_016591
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tions when no network was occluded. Red dashed lines show
the accuracy level corresponding to random classification.

Additional file 6. Network occlusion test results for the
ConvInitFullInit and ConvInitFullTrain conditions performed on the
NKI-RS subset. The percentage of correctly classified exemplars
in the in- NKI-RS subset (horizontal axes) are plotted for each
occluded functional network (vertical axes). Black dashed lines
show the classification accuracies in the corresponding condi-
tions when no network was occluded. Red dashed lines show
the accuracy level corresponding to random classification.
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puting. NATO ASI Series (Series F: Computer and Systems
Sciences), vol. 68, Berlin, Heidelberg: Springer; 1990. p. 227–
36.

53. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a sim-
ple way to prevent neural networks from overfitting. J Mach
Learn Res. 2014;15:1929–58.

54. Wager S, Wang S, Liang PS. Dropout training as adaptive reg-
ularization. In: Burges CJC, Bottou L, Welling M et al.editors.
Advances in Neural Information Processing Systems 26, Red
Hook, New York: Curran Associates, Inc.; 2013. p. 351–9.

55. Kingma DP, Ba J. Adam: a method for stochastic optimiza-
tion. arXiv preprint: arXiv:1412.6980. 2014.

56. Glorot X, Bengio Y. Understanding the difficulty of training
deep feedforward neural networks. In: Teh YW, Titterington
M . editors. Proceedings of the Tirteenth International Con-
ference on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, Chia Laguna Re-
sort, Sardinia, Italy: PMLR, 2010;249–56.

57. Salzberg SL. On comparing classifiers: pitfalls to avoid
and a recommended approach. Data Min Knowl Discov.
1997;1:317–28.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/lmu_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/lmu_2.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/lmu_3.html
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://fcon_1000.projects.nitrc.org/indi/enhanced/index.html


Vakli et al. 15
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