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Diabetes has become the second most severe disease to human health. Probiotics
are important for maintaining gastrointestinal homeostasis and energy balance and
have been demonstrated to play a positive role in the prevention and treatment of
metabolic syndromes, such as obesity, inflammation, dyslipidemia, and hyperglycemia.
The objective of this study was to screen potential antidiabetic strains in vitro and
evaluate its effects in vivo. For the in vitro section, dipeptidyl peptidase IV (DPP-IV)
inhibitory and antioxidant activities of 14 candidate Lactobacillus spp. strains were
tested. Then hydrophobicity and acid and bile salt tolerance assays were determined.
The most promising in vitro strain was further evaluated for its antidiabetic properties
in vivo using type 2 diabetes mice induced by high-fat diet and intraperitoneal
injection of streptozotocin (STZ). The reference strain for this study was Lactobacillus
rhamnosus GG. Results showed that cell-free excretory supernatants and cell-free
extracts of Lactobacillus acidophilus KLDS1.0901 had better DPP-IV inhibitory activity,
antioxidative activities, and biological characteristics than other strains. At the end of
the treatment, we found that L. acidophilus KLDS1.0901 administration decreased the
levels of fasting blood glucose (FBG), glycosylated hemoglobin, insulin in serum and
AUCglucose, and increased the level of glucagon-like peptide 1 in serum compared
with diabetic mice (p < 0.05). Moreover, L. acidophilus KLDS1.0901 supplementation
increased the activities of superoxide dismutase, glutathione peroxidase, the level of
glutathione, and reduced the level of malondialdehyde in serum. These results indicated
that L. acidophilus KLDS1.0901 could be used as a potential antidiabetic strain; its
application as food supplement and drug ingredient is thus recommended.
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INTRODUCTION

Diabetes remains a global health problem today, with sufferers
having either type 1 diabetes (T1D, insulin-dependent) or
type 2 diabetes (T2D, non-insulin-dependent) (Imamura et al.,
2011). According to the International Diabetes Federation
(IDF), the global prevalence of diabetes in adults is about
8%, which is projected to increase to >10% by 2040 (Lascar
et al., 2018). Diabetes sufferers face high risks of many
other life-threatening challenges, often leading to high medical
costs, lowered life qualities, and early mortality statistics (Cho
et al., 2018). T2D is a multifactorial disorder caused by
genetic, epigenetic, and environmental factors. The deficiency
in islet β-cell secretion, insulin resistance, hyperglycemia,
systemic inflammation, and oxidative stress is the important
pathophysiological manifestations (Mengual et al., 2010; Donath
and Shoelson, 2011; Cani, 2012).

A number of antidiabetic agents have been developed over
the years to treat T2D, with dipeptidyl peptidase IV (DPP-IV)
inhibitors being one of the most recent agents to combat it
(Gherardo et al., 2011; Akoumianakis et al., 2018; Musoev
et al., 2019). They function by enhancing the incretins effect
of glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide-1 (GLP-1) (Karagiannis et al., 2012). These
incretins could promote glucose-dependent insulin secretion and
suppress the release of pancreatic glucagon and slow gastric
emptying (Thoma et al., 2003; Verdenelli et al., 2009). To
enhance the effect of GLP-1, a number of synthetic DPP-IV
inhibitors (vildagliptin, saxagliptin, alogliptin, and linagliptin)
have been developed, having fewer side effects compared to
many traditional antidiabetic agents (Bo et al., 2000; Reimer
et al., 2002). DPP-IV inhibitors from natural sources seem to
be more safe and desirable. Interestingly, some recent studies
have indicated that some Lactobacillus spp. strains could inhibit
DPP-IV activity (Zhu et al., 2016).

A large number of studies have reported that the oxidative
stress status of the body was upregulated in diabetic patients
than that in normal subjects (Jain, 1989; Bloch-Damti and
Bashan, 2005; Wang X. et al., 2017). Hyperglycemia, a typical
clinical characteristics of diabetes, could increase the levels of
oxidative stress markers, which was positively related to blood
glucose and HbA1c levels in diabetic patients (Jain et al., 1989;
Kolati et al., 2015; Behl et al., 2016). Additionally, previous
studies have also reported that oxidative stress could cause
insulin resistance and impair β-cell structure and function
and result in T2D, but the molecular mechanisms are still
unclear (Eriksson, 2007). One of the important impaired
mechanisms was inducing insulin receptor substrate (IRS)
serine/threonine phosphorylation, disturbing insulin signaling by
reactive oxygen species (ROS) (Morino et al., 2006). Previous
studies have revealed that a number of strains of Lactobacillus
had antioxidative activity in vitro (Chen et al., 2014c; Tang
et al., 2017) and significantly decreased the oxidative stress
in vivo, showing antidiabetic effects (Ejtahed et al., 2012; Singh
et al., 2016; Kumar et al., 2017). Based on current research
states, the application of probiotics to ameliorate T2D has
bright prospects.

In recent years, probiotics have been used in developing
functional foods or dietary supplements (Kerry et al.,
2018; Betoret et al., 2019). Probiotics are defined as “live
microorganisms which when administered in adequate amounts
confer one or more health benefit on the host” (Araya et al.,
2015). Recent data suggest that the administration of probiotics,
especially Lactobacillus substrains, can prevent or delay the onset
of diabetes by decreasing the level of blood glucose, HbA1c,
insulin resistance, and oxidative stress in animal experiments
and clinical trials (Zhang et al., 2016; Kim et al., 2017; Liu et al.,
2017; Tonucci et al., 2017b). Lactobacillus rhamnosus GG is an
important commercial strain with good biological characteristics
(acid and bile salt tolerance and cell adhesion) and probiotic
properties (antioxidant and anti-inflammatory activity).
Additionally, a study has demonstrated that L. rhamnosus GG
could reduce blood glucose and HbA1c levels and increase
insulin sensitivity in streptozotocin (STZ)-induced diabetic
rats compared with diabetic rats (Tabuchi et al., 2003; Groele
et al., 2017). Assessing potential novel strains that possess the
abovementioned features is thus necessary to broaden the use of
probiotics in treating T2D.

The present study thus aims to screen potential antidiabetic
Lactobacillus spp. strains based on DPP-IV inhibitory
activity, antioxidative activity, and biological characteristic
including acid and bile salt tolerance and cell surface
hydrophobicity in vitro and evaluate antidiabetic effects in
T2D mice induced by high-fat diet (HFD) and intraperitoneal
injection of STZ.

MATERIALS AND METHODS

Chemicals and Reagents
Gly-Pro-p-nitroanilide and DPP-IV were purchased from
Sigma Chemical (St. Louis, MO, United States). Diprotin
A was obtained from Shanghai Qiangyao Bioengineering
Institute (Shanghai, China). All other chemicals and reagents
were purchased from the Tianli Chemical Reagent Company
(Tianjin, China) unless otherwise stated. Kits used to measure
the levels of superoxide dismutase (SOD), GSH peroxidase
(GSH-Px), glutathione (GSH), and malondialdehyde (MDA)
were purchased from the Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Enzyme-linked immune sorbent
assay (ELISA) kits for HbA1c, GLP-1, and insulin were
purchased from the Beijing Chenglin Bioengineering Institute
(Beijing, China).

Bacterial Strains and Growth Conditions
All Lactobacillus spp. strains used in this study were isolated from
traditional fermented products and stored in the Key Laboratory
of Dairy Science (KLDS) of the Northeast Agricultural University
(NEAU), Ministry of Education, China. L. rhamnosus GG (ATCC
53103; Valio Ltd., Helsinki, Finland) served as the reference
strain. All strains were anaerobically incubated in de Man
Rogosa and Sharpe (MRS) broth (2% v/v) at 37◦C for 18 h and
subcultured twice prior to use.

Frontiers in Microbiology | www.frontiersin.org 2 January 2020 | Volume 10 | Article 2855

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02855 December 26, 2019 Time: 17:26 # 3

Yan et al. Probiotics Ameliorate Type 2 Diabetes

Preparation of Cell-Free Supernatants,
Extracts, and Excretory Supernatants
After incubation, the cell-free supernatant (CFS) was harvested
by centrifugation at 8,000 × g for 15 min at 4◦C. The intact
cells were washed three times with phosphate-buffered saline
(PBS) solution (pH 7.4), after which the cells were resuspended
in PBS and adjusted to 1.0 × 109 CFU/ml. After that, cell-free
extracts (CFE) were obtained by ultrasonic, which worked in 3–5-
s pulses for 15 min in an ice bath. The cell fractions were removed
by centrifugation at 8,000 × g for 15 min. The CFS and CFE
were filter-sterilized with 0.22-µm filter membranes and stored
in−80◦C for further assays.

Cells of the strains were harvested by centrifugation (15 min,
8,000 × g, 4◦C) after incubation at 37◦C for 18 h. The cell pellets
were rinsed three times with PBS and adjusted to 1× 109 CFU/ml
and further incubated for 12 h. Cell-free excretory supernatants
(CFES) were obtained by centrifugation at 8,000 × g for 15 min
and kept in−80◦C for further assay.

Determination of DPP-IV Inhibition
The effect of the Lactobacillus on DPP-IV activity was determined
by following the method of Lacroix and Li-Chan (2013) with
some modifications. Briefly, in a 96-well microplate, 25 µl
gly-pro-p-nitroanilide (0.2 mM, Sigma–Aldrich, St. Louis, MO,
United States) and 25 µl bacterial sample (CFES, CFE) or 25 µl
PBS as a control or diprotin A as a reference inhibitor were
preincubated at 37◦C for 10 min. Afterward, 50 µl DPP-IV
(0.01 U/ml) was added and incubated at 37◦C for 60 min. The
reactions were terminated by addition of 100 µl sodium acetate
buffer (1 M, pH 4.0), and the absorbance of the samples was
measured at 405 nm by Infinite@ M1000 PRO ELISA plate reader
(Tecan, Switzerland). Each sample was measured in triplicate,
and the absorbance values were normalized to sample blanks
in which DPP-IV was replaced with Tris–HCl buffer (100 mM,
pH 8.0). The negative control (no DPP-IV activity) and positive
control (DPP-IV activity with no inhibitor) were prepared by
using Tris–HCl buffer (100 mM, pH 8.0) in place of the sample
and DPP-IV solution, respectively. The DPP-IV inhibition rate
(DIR) was calculated as follows:

DIR(%) =

(
1−

Asample − Asample blank

Apositive control − Anegative control

)
× 100

Determination of Antioxidative Activity of
Lactobacillus Strains
Reducing Activity of Strains
Reducing activity was assessed as previously described (Oyaizu,
2010). First, 0.5 ml of samples was mixed with 0.5 ml of potassium
ferricyanide (1%) and PBS (pH 6.6). The mixture was incubated
at 50◦C for 20 min and cooled rapidly, after which 0.5 ml of
10% trichloroacetic acid (TCA) was added. Next, the solution was
centrifuged at 3,000 × g for 5 min. The supernatant (1.0 ml) was
then mixed with 1.0 ml of 0.1% ferric chloride. The absorbance
was measured at 700 nm after the mixture stood for 10 min.
L-Cysteine hydrochloride was used as the standard expression for
the reducing activity.

1,1-Diphenyl-2-Picryl-Hydrazyl Free
Radical-Scavenging Activity
The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical-
scavenging capacity of strains was determined using a modified
method as previously described (Lin and Yen, 1999). Briefly,
1.0 ml of the CFS, CFE, or PBS (control group) was mixed with
1.0 ml of ethanolic DPPH radical solution (0.2 mM) or ethanol
(blank group). The reaction solution was mixed and incubated
at room temperature in the dark for 30 min. The scavenged
DPPH was determined by measuring the decrease in absorbance
at 517 nm after centrifugation at 6,000 × g for 10 min. The
scavenging ability was calculated as follows:

Scavenging activity(%) =

(
1−

Asample − Ablank

Acontrol

)
× 100

Hydroxyl Radical Scavenging Activity
The hydroxyl radical scavenging ability was analyzed by an assay
as earlier described (Gutteridge, 1987). The reaction mixture
contained 1.0 ml of 1,10-phenanthroline solution (2.5 mM),
1.0 ml of PBS (pH 7.4), 1.0 ml of samples, and 1.0 ml of
FeSO4 (2.5 mM). Then, the reaction was initiated by the
addition of 1.0 ml of 20 mM H2O2 and incubated at 37◦C
for 90 min. The absorbance of the solution was measured at
517 nm. The scavenging ability of hydroxyl radical was expressed
as follows:

Scavenging effect(%) =

(Asample − Ablank)/(Acontrol − Ablank)× 100

Superoxide Anion Radical Scavenging Activity
The superoxide anion radical scavenging ability was evaluated
following the method of Li et al. (2012), with some modifications.
First, 1.0 ml of the sample or deionized water (control group)
was added to 3.0 ml of Tris–HCl solution (pH 8.2). The reaction
mixture was incubated at 25◦C for 20 min. In the following,
0.4 ml of pyrogallol (25 mM) was added, and the mixture was
maintained at room temperature for 4 min. Then, reactions were
terminated by adding 0.5 ml of HCl, and the absorbance was
measured at 325 nm. The superoxide anion radical scavenging
activity was defined as:

Scavenging activity(%) =

(
1−

Asample

Ablank

)
× 100

Lipid Peroxidation Inhibiting Capacity
The lipid peroxidation inhibition capacity was conducted
as earlier described by Lin and Chang (2000), with slight
modifications. Briefly, 0.5 ml of PBS (pH 7.4), 1.0 ml of linoleic
acid emulsion, 0.2 ml of FeSO4 (0.01%), 0.2 ml of ascorbic acid
(0.01%), and 0.5 ml of samples were mixed and incubated at 37◦C
for 12 h. Then, 2.0 ml of 0.8% TBA, 0.2 ml of 4% TCA, and
0.2 ml of butylated hydroxytoluene (BHT) were added, and the
mixture was incubated at 100◦C for 30 min in a water bath. After
cooling, 2.0 ml of chloroform was added, and the upper extract
was obtained by centrifugation at 6,000 × g for 10 min. The
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inhibition of linoleic acid peroxidation was expressed as follows:

Inhibiting effect(%) =

(Acontrol − Asample

Acontrol

)
× 100

Acid Resistance of Strains
Resistance to acidic conditions was assessed by a modified
method as previously reported (Buntin et al., 2008). Cells that
were cultured in MRS broth overnight at 37◦C were collected
by centrifugation (8,000 × g) for 15 min and then resuspended
in PBS (pH 3.0 or 2.0). The tubes were incubated at 37◦C, and
the viable cells were counted by serial dilution and the pour plate
method on MRS agar at 0, 1, 2, and 3 h.

Bile Tolerance of Strains
Bile tolerance of the strains was determined using a modified
method as recently described (Guo et al., 2016). Lactobacillus
strains were grown at 37◦C for 18 h in MRS broth without
bile and then cells were resuspended in MRS broth with
or without bile salt concentrations of 0.3% (w/v) at 37◦C.
Absorbance at 620 nm was measured every hour. The bile
tolerance of each strain was based on the time required to
increase the absorbance at 620 nm by 0.3 units. The delay
of growth in time between the culture media was defined as
the lag time (LT).

Hydrophobicity of Strains
This was evaluated using p-xylene and ethyl acetate by a modified
method as previously reported (Rosenberg et al., 2010). Briefly,
the cell suspension was adjusted to an absorbance value (A 610)
of approximately 0.8–1.0. The bacterial suspension (3.0 ml)
was mixed with 1.0 ml of hydrocarbons, and the mixture
was preincubated at 37◦C for 10 min and then vortexed for
120 s. The suspension was then maintained at 37◦C for 1 h.
The aqueous phase was removed carefully, and the absorbance
was measured using spectrophotometer (DU 800, Beckman
Coulter, United States). Cell surface hydrophobicity (% CSH) was
expressed as:

%CSH =
ODInitial −ODFinal

ODFinal
× 100

where OD initial and OD final are the absorbance before and after
extraction with the two hydrocarbons.

Animals Studies
Male C57BL/6J mice (3 weeks old) were purchased from the
Vital River Laboratory Animal Technology Company (Beijing,
China). The model of mice with T2D was induced by HFD and
intraperitoneal injection of STZ (Srinivasan and Ramarao, 2007;
Chen et al., 2014a). All mice were housed in a special room
with controlled temperature (22 ± 2◦C), humidity (55 ± 5%),
and light (7:00–19:00). All animals were fed ad libitum for
1 week, and then 15 mice were fed normal chow diet (NCD)
and 45 mice were fed HFD (Supplementary Table S2). The
dietary treatments continued for 5 weeks of the study. After
4 weeks of dietary intervention, all mice received intraperitoneal
injection after fasting for 12 h. The NCD-fed mice received

intraperitoneal injection with 50 mmol/L citrate buffer (pH 4.5),
and the HFD-fed mice received STZ (Sigma, St. Louis, MO,
United States), which dissolved in 50 mmol/L citrate buffer
at a dose of 100 mg/kg of body weight (BW). A week later,
tail blood glucose level was determined by glucometer (Roche
Diagnostics, Germany). Mice with FBG level ≥ 11.1 mmol/L
were defined as T2D.

Experimental Design
Type 2 diabetes mice were randomly divided into three groups
(n = 8 each): diabetes control group (DC), L. acidophilus
KLDS1.0901-treated group (LA, 1 × 109 CFU/day), and
L. rhamnosus GG-treated group (LG, 1 × 109 CFU/day). Eight
mice fed with NCD served as the normal control group (NC).
The DC and NC groups were treated with sterile PBS. All
treatments were conducted with 10 ml per kilogram BW by
oral gavage once daily for 6 weeks (Tian et al., 2016; Tonucci
et al., 2017a). During weeks 6–11, all mice were fed a normal
diet. BW, food consumption, and FBG were monitored
weekly after fasting overnight. The NEAU Institutional
Animal Care and Use Committee approved this study
(Approval No.: SRM-06).

Collection and Processing of Samples
After 12 weeks of treatment, all mice were sacrificed with ether
anesthesia. The serum samples were obtained by centrifugation
at 4,000× g for 10 min and stored at−80◦C for further analyses.

Oral Glucose Tolerance Test
After a 12-h fasting period, an oral glucose tolerance test (OGTT)
was performed on the last day of weeks 5 and 11. Glucose
(2 g/kg BW) was orally administered to the mice. Blood samples
were collected from the tail at 0, 30, 60, 90, and 120 min after
glucose load, and glucose levels were measured. The area under
the curve (AUC) was calculated by the linear trapezoid method
(Reed et al., 2000).

Biochemical Parameters
The levels of serum insulin, HbA1c, and GLP-1 were determined
using ELISA kits (Beijing Chenglin Bioengineering Institute,
Beijing, China) according to the manufacturer’s instructions.
The activities of SOD and GSH-Px and level of GSH and
MDA in the serum were measured with the assay kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) following
the manufacturer’s instructions.

Statistical Analysis
Data are expressed as the mean ± standard deviation (n = 3
independent experiments) in vitro and (n = 8 independent
experiments) in vivo. Statistical significance of difference was
determined using one-way analysis of variance (ANOVA,
SPSS 17.0) followed by multiple comparisons with Duncan’s
multiple range test. Values of p < 0.05 were considered to be
statistically significant.

Frontiers in Microbiology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 2855

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02855 December 26, 2019 Time: 17:26 # 5

Yan et al. Probiotics Ameliorate Type 2 Diabetes

RESULTS

DPP-IV Inhibition by Lactobacillus
The DPP-IV inhibitory activities of the strains are shown in
Table 1. The DIRs of the CFES samples ranged from 0 to 7.13%,
with L. acidophilus KLDS1.1003 showing significantly higher
level of inhibition (p < 0.05), while L. rhamnosus GG exhibited
no inhibition activity. The range of DIR of CFE was from 0 to
55.42%. The greatest inhibitory activity (p < 0.05) was found
in L. acidophilus KLDS1.0901 and followed by L. acidophilus
KLDS1.1003. However, the CFE of L. rhamnosus GG performed
lower DPP-IV inhibitory potential.

Assay of Antioxidative Activity of
Lactobacillus Strains
Reducing Activity
Strains exhibited varying degrees of reducing activity (Table 2).
The CFE of L. acidophilus KLDS1.0902 exhibited the reducing
activity that was equivalent to159.69 mmol of cysteine,
significantly higher than that of L. rhamnosus GG (71.92 mmol)
(p < 0.05). The CFS of L. acidophilus KLDS1.1003 possessed
the highest reducing activity by 189.69 mmol of cysteine,
no significant difference with that of L. rhamnosus GG
(185.81 mmol). L. plantarum KLDS1.0317 showed the lowest
reducing activity (73.31 mmol).

DPPH Free Radical-Scavenging Ability
In this study, all tested strains exhibited distinct DPPH radical-
scavenging activity (Table 2). The CFE of L. bulgaricus
KLDS1.0207 had the highest DPPH radical-scavenging
activity with 34.46%, followed by L. acidophilus KLDS1.0901
(32.85%); L. plantarum KLDS1.0317 exhibited the lowest DPPH

TABLE 1 | Dipeptidyl peptidase IV (DPP-IV) inhibition (%) by Lactobacillus strains.

Strains DPP-IV inhibition rate (%)

CFES CFE

L. rhamnosus GG ND 6.2 ± 1.4f,g

L. rhamnosus KLDS1.0205 3.0 ± 0.2c 10.0 ± 1.4d,e,f

L. rhamnosus KLDS1.0911 ND 11.1 ± 1.4d,e

L. rhamnosus KLDS1.0912 1.9 ± 0.2d,e 8.8 ± 1.8e,f

L. plantarum KLDS1.0317 1.9 ± 0.1d,e 9.5 ± 2.0d,e,f

L. plantarum KLDS1.0318 2.2 ± 0.2d 6.9 ± 0.6e,f,g

L. plantarum KLDS1.0344 ND 7.3 ± 0.9e,f,g

L. plantarum KLDS1.0386 0.4 ± 0.1g 3.6 ± 0.3g

L. acidophilus KLDS1.1003 7.1 ± 0.3a 50.1 ± 3.3b

L. acidophilus KLDS1.0901 1.7 ± 0.3e 55.4 ± 3.6a

L. acidophilus KLDS1.0902 1.2 ± 0.1f 13.1 ± 1.0d

L. paracasei KLDS1.0351 2.6 ± 0.2c 8.8 ± 1.9e,f

L. helveticus KLDS1.0903 3.1 ± 0.3c 21.1 ± 2.7c

L. bulgaricus KLDS1.0207 5.5 ± 0.3b ND

CFE, cell-free extract; CFES, cell-free excretory supernatant; ND, not detected.
Values are expressed as mean ± SD (n = 3 independent experiments). Significant
differences (p < 0.05) among different strains are indicated with different
superscript letters. TA
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radical-scavenging activity (12.93%). Moreover, the CFS of
strains exhibited higher DPPH radical-scavenging activity
than that of CFE.

Hydroxyl Radical Scavenging Ability
The CFS and CFE of all strains possessed the ability to
eliminate the hydroxyl radical (Table 2). Among these strains, the
CFE of L. plantarum KLDS1.0318, KLDS1.0386, L. acidophilus
KLDS1.0901, L. rhamnosus KLDS1.0912, and L. helveticus
KLDS1.0903 had better abilities to eliminate the hydroxyl
radical, showing higher values than that of L. rhamnosus GG
(p < 0.05). The results also showed that the CFS of L. acidophilus
KLDS1.0901 and KLDS1.1003 had higher scavenging ability on
the hydroxyl radical than that of L. rhamnosus GG.

Superoxide Anion Radical-Scavenging
Ability
In this study, strains showed different O2-scavenging activity
ranging from 12.17 to 43.28% of CFE and 2.56 to 22.61% of CFS
(Table 2). Among these strains, O−2 -scavenging activity of CFE of
test strains was higher than that of L. rhamnosus GG, except three
strains (L. acidophilus KLDS1.0902, L. plantarum KLDS1.0344,
and L. bulgaricus KLDS1.0207).

Lipid Peroxidation Inhibition Capacity
There were significant differences in the lipid peroxidation
inhibition capacities of the screened strains (Table 2). The CFE
of L. bulgaricus KLDS1.0207 had highest inhibition capacity of
51.04%. On the other hand, L. plantarum strains KLDS1.0317,
KLDS1.0318, and KLDS1.0386 exhibited lower inhibition rates
(<10%). In addition, the CFS of all Lactobacillus strains showed
lower inhibition capacity than that of the reference strain
L. rhamnosus GG.

Principal Component Analysis
Principal component analysis (PCA) was used to evaluate
the antioxidative activities of all strains in this study. Two
independent principal components (PCs) were extracted. As
shown in Figure 1A, PC1, which explained 40.35% of the
total variance, was characterized by reducing activity of CFS,
DPPH free radical scavenging of CFE, and superoxide anion
radical scavenging of CFE. PC2, which accounted for 26.10%
of the total variance, was mainly related to reducing activity of
CFS and hydroxyl radical-scavenging ability of CFE. The strain
score plot for PC1 versus PC2 is presented in Figure 1B. In
addition, the total score was used to classify all tested strains
(Supplementary Table S1). The total scores of L. rhamnosus
GG, L. plantarum KLDS1.0344, L. acidophilus KLDS1.1003,
L. acidophilus KLDS1.0901, and L. bulgaricus KLDS1.0207 were
1.91, 0.85, 0.92, 1.23, and 1.60, respectively, which were higher
than those of other strains. Based on these results, these five
strains were selected for further study.

Acid and Bile Salt Tolerance of Strains
Acid tolerance patterns of the Lactobacillus strains were assessed
in vitro (Figure 2). The survival rates of the five Lactobacillus

strains were close to 100% at pH 3.0. In acidic environment
with at pH 2.0, the survival rates of the five Lactobacillus
strains decreased significantly within 3 h; only L. acidophilus
KLDS1.0901 could survive for 3 h under this environment.
These results suggested that L. acidophilus KLDS1.0901 had
better acid resistance than other strains. All studied strains
were tolerant to 0.3% (w/v) of bile salt (Table 3). The LTs
of L. rhamnosus GG, L. plantarum KLDS1.0344, L. acidophilus
KLDS1.1003, L. acidophilus KLDS1.0901, and L. bulgaricus
KLDS1.0207 were 2.06, 2.46, 2.26, 2.44, and 3.27 h, respectively.
The results suggested that L. rhamnosus GG had better bile salt
resistance than other strains. In addition, there was no significant
difference between L. acidophilus KLDS1.0901 and L. acidophilus
KLDS1.1003 (p > 0.05).

Hydrophobicity of Strains
The hydrophobicity levels of the five selected strains are
also reported (Table 3). Strains’ CSH values were higher
in xylene solution than in ethyl acetate solution. In xylene
solution, the CSH of strains ranged from 0 to 134.33%.
It is interesting to note that L. acidophilus KLDS1.1003
(134.33%) and L. acidophilus KLDS1.0901 (130.58%) had
higher hydrophobicity than the reference strain L. rhamnosus
GG (4.71%). In ethyl acetate solution, the CSH of strains
ranged from 17.75 to 42.42%, and the hydrophobicity levels
of two test strains, L. acidophilus KLDS1.0901 (30.84%) and
L. plantarum KLDS1.0344 (42.42%), were higher than that
of L. rhamnosus GG (17.75%). These results suggested that
L. acidophilus KLDS1.0901 had a better average hydrophobicity
level than other strains.

In vivo Effect of Lactobacillus on
Diabetic Mice
Effect of Lactobacillus on Body Weight and Food
Consumption
Based on the in vitro results, L. acidophilus KLDS1.0901 was
selected to further evaluate its antidiabetic effects in vivo. Changes
in BW and food intake of study animals were recorded for
12 weeks (Figure 3). After STZ injection, weight loss was
observed in all HFD groups. However, the T2D mice that
received L. acidophilus KLDS1.0901 or L. rhamnosus GG showed
a significant (p < 0.05) increase in BW compared to the DC
group. This trend was observed until the end of the experiment
(Figure 3A). The T2D mice had a significant (p < 0.05)
increase in food intake compared with the normal mice from
weeks 1 to 4. Administering STZ injection induced higher food
intake in HFD mice, whereas food intake of the LA group
was significantly lower compared with the DC group from
week 6 to week 11.

Effect of Lactobacillus on Glucose Tolerance and
FBG
At week 5, the blood glucose level at different times and
AUCglucose of the DC groups were higher than those in the
NC group (Figures 4A,B). These results indicated that glucose
tolerance was impaired in the DC group, and the diabetic models
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FIGURE 1 | Loading and score plots of principal component analysis. (A) Loading plot for results of five different antioxidant assays. RACFS (CFE), reducing activity
of cell-free supernatant (CFS) [cell-free extract (CFE)]; DPPH CFS (CFE), 1,1-diphenyl-2-picryl-hydrazyl (DPPH)-scavenging activity of CFS (CFE); HRCFS (CFE),
hydroxyl radical-scavenging activity of CFS (CFE); SARCFS (CFE), superoxide anion radical-scavenging activity of CFS (CFE); LPCFS (CFE), lipid peroxidation
inhibition capacity of CFS (CFE). (B) Score plot of the antioxidative properties of Lactobacillus strains. PC1, first principal component; PC2, second principal
component.

FIGURE 2 | Effect of pH 2.0 and pH 3.0 on viability of Lactobacillus strains. Graph (A) presents the effect of pH 2.0 on viability of Lactobacillus strains whereas
Graph (B) presents the effect of pH 3.0 on viability of Lactobacillus strains. Values represent mean ± SD (n = 3 independent experiments). Significant differences
(p < 0.05) among different groups are indicated with different superscript letters.

were established. At week 11, the glucose tolerance was clearly
improved by L. acidophilus KLDS1.0901 and L. rhamnosus GG
administration (Figures 4C,D). The glucose tolerance of the
NC group remained stable. Furthermore, the blood glucose and
AUCglucose levels of the LA group were lower than that in the LG
group, indicating that the glucose tolerance of the LA group was
better than that of the LG group.

Fasting blood glucose level of the HFD groups was increased
after STZ injection (Figure 5A). Administration of L. acidophilus
KLDS1.0901 or L. rhamnosus GG decreased FBG level from week
6 to week 11. At the end of week 11, the levels of FBG in the LA
and LG groups were significantly lower than that in the DC group
(p < 0.05), but still higher than that in the NC group.

Effect of Lactobacillus on HbA1c, Insulin, and GLP-1
of Blood Levels
At the end of the treatment, the levels of HbA1c and insulin
in the DC group were significantly higher than that of the NC
group (p < 0.05), whereas oral administration of L. acidophilus
KLDS1.0901 or L. rhamnosus GG significantly reduced the
HbA1c level in the LA and LG groups (p < 0.05) (Figures 5B,C).
Moreover, the level of GLP-1 was significantly reduced in the DC
group (p < 0.05) than that in the NC, LA, and LG groups. In
addition, the level of GLP-1 in the LA group was higher than
that in the LG group (p < 0.05) (Figure 5D). These again suggest
that L. acidophilus KLDS1.0901 was more effective in attenuating
HbA1c, insulin, and GLP-1 levels.
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TABLE 3 | Comparison of Lactobacillus for their bile salt and acid tolerance
and hydrophobicity.

Strains Bile salt tolerance (T/h) Hydrophobicity

Xylene Ethyl acetate

LGG 2.0 ± 0.16c 4.71 ± 0.37b 17.75 ± 1.07c

KLDS1.0344 2.46 ± 0.12b ND 42.42 ± 2.03a

KLDS1.1003 2.26 ± 0.13b,c 134.33 ± 1.13a 20.51 ± 0.54c

KLDS1.0901 2.44 ± 0.10b 130.58 ± 2.82a 30.84 ± 2.07b

KLDS1.0207 3.27 ± 0.10a 2.51 ± 0.04b 18.30 ± 0.89c

T (h)-required for absorbance at 620 nm to increase by 0.3 units in each medium.
Each value in the table is the mean ± SD (n = 3 independent experiments).
Means with different superscript letters in the same column per treatment indicate
significant difference (p < 0.05).

Effect of Lactobacillus on Oxidative Stress Status of
Mice Serum
Oxidative stress parameters (SOD, GSH-Px, GSH, and MDA)
in serum are presented in Figure 6. The activities of SOD
(378.93 U/mg protein) and GSH-Px (91.39 µmol/g protein) and
the level of GSH (0.92 µmol/g protein) were significantly reduced
(p < 0.05), and the level of MDA (1.51 nmol/g protein) was
significantly increased in the DC group compared with the NC
group (p < 0.05) (Figure 6). Also, the activities of SOD and GSH-
Px were increased in the LA and LG groups compared with the
DC group (p < 0.05). However, the level of GSH was higher in
the LA group than that in the LG group. Moreover, lower MDA
contents in the LA and LG groups were observed compared to
the DC group, whereas no significant differences were observed
between the LA and LG groups (p > 0.05).

DISCUSSION

A growing body of evidence suggests that consumption of some
strains of Lactobacillus (L. paracasei, L. plantarum, L. acidophilus,

L. rhamnosus, and L. acidophilus) or its fermentation products
could alleviate diabetes (Tabuchi et al., 2003; Yadav et al.,
2007; Li et al., 2014; Dang et al., 2018). Additionally, among
these Lactobacillus spp. strains, several strains were obtained
from traditional fermented products. In the present study,
antidiabetic strains were selected from 14 Lactobacillus spp.
strains, which were obtained from traditional fermented dairy or
vegetable products. Previous study showed that the method of
screening for hypoglycemic probiotics based on antioxidative and
α-glucosidase inhibitory activity was reliable (Chen et al., 2014c).
It is generally known that α-glucosidase, distributed on the brush
border membrane of the small intestine, catalyzes the digestive
process of carbohydrates (Hansawasdi et al., 2001). However,
probiotics play a major role in the large intestine.

The DPP-IV enzyme is expressed in a variety of cells,
particularly on epithelial tissues (Lambeir et al., 2003;
Nongonierma and FitzGerald, 2016). It could inactivate
GLP-1, which is important for glucose metabolism regulation.
Additionally, DPP-IV inhibitors are the newest and most
promising antidiabetic drugs and have fewer side effects
compared with other agents (Reimer et al., 2002; Akoumianakis
et al., 2018; Musoev et al., 2019). In recent years, DPP-IV
inhibitors from natural sources have gradually become a safe
and potential treatment for patients with hyperglycemia (Li N.
et al., 2018; Parmar et al., 2012). Previous studies have reported
that Bacillus and Streptomyces spp. showed DPPIV inhibitory
activity. Diprotin A (DPP-4 inhibitor) was isolated from culture
filtrates of Bacillus cereus BMF673-RF1 (Umezawa, 1984).
Sulfostin S, a novel DPP-IV inhibitor, was isolated from the
culture broth of Streptomyces sp. MK251-43F3 (Abe et al., 2005).
Additionally, it has been demonstrated that hydrolysates and
peptides from cow’s milk, bovine meat, and salmon (Lacroix
and Li-Chan, 2012) were able to inhibit the activity of DPP-
IV in vitro. In the present study, DPP-IV inhibitory activity
was used as an indicator to screen antidiabetic strains. Most
Lactobacillus spp. strains showed higher DPP-IV inhibitory

FIGURE 3 | Effect of probiotics feeding on (A) body weight and (B) food intake. NC, normal control group; DC, diabetic control group; LG, DC plus L. rhamnosus
GG; LA, DC plus L. acidophilus KLDS1.0901.
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FIGURE 4 | The effect of probiotic treatments on oral glucose tolerance (OGTT) and AUCglucose at weeks 5 and 11. NC, normal control group; DC, diabetic control
group; LG, DC plus L. rhamnosus GG; LA, DC plus L. acidophilus KLDS1.0901. (A) OGTT at week 5. (B) AUCglucose at week 5. (C) OGTT at week 11.
(D) AUCglucose at week 11. All data are expressed as the mean ± SD (n = 8 independent experiments). Groups without common letters differ significantly from one
another (p < 0.05).

activity with L. acidophilus KLDS1.1003 and L. acidophilus
KLDS1.0901, which was consistent with other studies (Panwar
et al., 2015; Zhu et al., 2016). However, it was observed that
DPP-IV inhibitory levels were higher in previous studies;
this may be due to different concentrations of bacteria or
sources of DPP-IV. Findings from a previous study showed
that porcine DPP-IV showed higher inhibition levels than the
human DPP-IV (Lacroix and Li-Chan, 2015). In addition,
the DPP-IV inhibitory activity of the CFS was not affected by
temperature and pH; however, it was sensitive to proteases. Some
casein or whey protein-derived peptides, such as dipeptides,
tripeptides, and tetrapeptides, possessed DPP-IV inhibitory
activity, suggesting that peptides might be responsible for
DPP-IV inhibitory activity and that residual peptide levels
in the CFES or CFE may have enzyme inhibitory activity
(Lacroix and Li-Chan, 2013; Nongonierma and Fitzgerald, 2013).
Furthermore, X-prolyl-dipeptidylamino-peptidase (PepX), a
proline-specific peptidase, was almost identical to DPP-IV
(Meyer-Barton et al., 1993). Interestingly, the PepX gene or
PepX activity have been observed in Lactobacillus spp. strains,

including L. casei, L. delbrueckii, L. helveticus, and L. rhamnosus
(Habibi-Najafi and Lee, 1994; Savijoki et al., 2006), which may
also provide a possible explanation for the DPP- IV inhibitory
activity of bacteria.

Oxidative stress is thought to be a major characteristic in the
development of diabetes (Rains and Jain, 2011). Previous studies
have shown that lactic acid bacteria, especially Lactobacillus
spp. strains, possess antioxidant activity (Tonucci et al., 2017a;
Heshmati et al., 2018). The intact cells, CFE, and CFS,
of L. casei CCFM0412 and L. rhamnosus CCFM0528 were
found to scavenge hydroxyl radicals and DPPH-free radicals,
inhibit linoleic acid peroxidation in vitro, and enhance the
antioxidative activities of mice in vivo (Chen et al., 2014b,c).
Studies have demonstrated that the antioxidant mechanisms
of probiotic include chelating metal ion, possessing own
antioxidant enzymatic systems, and producing metabolites with
antioxidative activity, such as GSH, butyrate, and folate (Wang
Y. et al., 2017). In this study, L. bulgaricus KLDS1.0207,
L. acidophilus KLDS1.0901, and L. acidophilus KLDS1.1003 had
higher antioxidative activity than other strains.

Frontiers in Microbiology | www.frontiersin.org 9 January 2020 | Volume 10 | Article 2855

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02855 December 26, 2019 Time: 17:26 # 10

Yan et al. Probiotics Ameliorate Type 2 Diabetes

FIGURE 5 | Effects of probiotics on fasting blood glucose (A), serum HbA1c (B), insulin (C), and GLP-1 (D) levels. NC, normal control group; DC, diabetic control
group; LG, DC plus L. rhamnosus GG; LA, DC plus L. acidophilus KLDS1.0901. Data are expressed as the mean ± SD (n = 8 independent experiments). Values
with different letters are significantly different (p < 0.05).

Surviving under gastrointestinal tract (GIT) conditions and
colonizing the intestine are important for probiotics to offer
health benefits to the host. In the present study, five strains
of Lactobacillus have acid and bile salt tolerance (Table 3 and
Figure 2). Moreover, adhesion to intestinal epithelial cells is an
important prerequisite for colonizing probiotic strains in the GIT
(Pedersen and Tannock, 1989; Carmen et al., 2009; Argyri et al.,
2013). Previous studies have posited a direct correlation between
hydrophobicity and adhesion to intestinal epithelial cells (Re
et al., 2010). In this study, L. acidophilus KLDS1.0901 exhibited
the best hydrophobicity, indicating that it may have the potential
to colonize the intestine.

Lactobacillus with acid-tolerant, bile salt-tolerant, and good
hydrophobic properties has potential for adhesion to or
colonization of the host intestine and could continually play a role
in improving immunity parameters. However, the therapeutic
effect of CFE administration is short-lived and requires regular
replenishing. Additionally, some studies have indicated that a
part of LAB could be broken up in intestinal tract and release
intracellular substances (Lin and Yen, 1999; Lin and Chang,
2000). Furthermore, many recent studies have reported that
LAB could modulate gut microbiota, promoting the growth of
the beneficial bacteria and inhibiting the growth of pathogens
(Li et al., 2017; Li B. et al., 2018; Qu et al., 2018). In recent
years, a large body of studies have also demonstrated that
the occurrence and development of T2D were related to gut
microbiota (Qin et al., 2012; Karlsson et al., 2013). Therefore,
in the present study, living L. acidophilus KLDS1.0901 was
selected as a candidate for further study in the T2D mice

model. Previous studies have reported that oral administration
of probiotics could reduce FBG and HbA1c levels, ameliorate
oxidative stress, and improve insulin resistance of T2D mice
(Manaer et al., 2015; Tonucci et al., 2017a). Therefore, in
the present study, living strain was selected to feed mice.
Results showed that L. acidophilus KLDS1.0901 treatment could
significantly decrease food intake and FBG level and increase
BW (Figure 3A), which is consistent with other studies (Li
et al., 2016). HbA1c, which is a clinical diagnostic parameter
for diabetes, reflects the average plasma glucose concentration
over a period of time. L. acidophilus KLDS1.0901 significantly
reduced the level of HbA1c, which indicated that L. acidophilus
KLDS1.0901 could relieve long-time high blood glucose status.
These results suggest that this strain could effectively improve
T2D, and the methods of screening for antidiabetic probiotics
in vitro were effective.

Insulin resistance is known to accelerate the occurrence and
development of T2D, a typical characteristic of T2D (Liu et al.,
2015). OGTT, which has often been used to estimate insulin
resistance, is a well-established diagnostic criterion for T2D
(Sharma and Srinivasan, 2009). In this study, after 6 weeks of
treatment, the glucose intolerance was significantly improved in
the LA and LG groups (Figure 4). Insulin is an important protein
hormone that functions in the regulation of glucose metabolism
and maintains a balance blood glucose level. Administration
of L. acidophilus KLDS1.0901 significantly reduced the fasting
insulin level than that of the DC group (Figure 5C). Moreover, it
was reported that reduction in the levels of insulin and AUCglucose
is associated with improving insulin resistance. Thus, these
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FIGURE 6 | Effect of probiotic feeding on oxidative stress in blood. (A) Superoxide dismutase (SOD). (B) Glutathione peroxidase (GSH-Px). (C) Glutathione (GSH).
(D) Malondialdehyde (MDA). NC, normal control group; DC, diabetic control group; LG, DC plus L. rhamnosus GG; LA, DC plus L. acidophilus KLDS1.0901. Values
are expressed as mean ± SD (n = 8 independent experiments). Values with different superscript letters are significantly different (p < 0.05).

results indicated that L. acidophilus KLDS1.0901 could ameliorate
insulin resistance in T2D mice.

Glucagon-like peptide-1, an important incretin secreted by
intestinal L-cells, plays an important role in approving T2D by
lowering blood glucose and preserving pancreatic β-cell function
(Puddu et al., 2014). DPP-IV, a proconvertase, inactivates the
GLP-1 by removing the first two N-terminal amino acid residues
(Nauck, 2011). Interestingly, L. acidophilus KLDS1.0901 and
L. rhamnosus GG with DPP-IV inhibitory activity in vitro could
increase the GLP-1 level in T2D mice. In addition, the level of
GLP-1 in the LA group was significant higher than that in the
LG group (Figure 5D). These results suggested that the screened
strains were good DPP-IV inhibitors in vitro and could increase
the level of GLP-1 in vivo.

It has been reported that oxidative stress plays an important
role in the development of T2D. Hyperglycemia could increase
oxidative stress; the imbalance of oxidative stress status could
impair the living cell membrane and further promote the
occurrence and development of diabetes (Hariom et al., 2007).
Previous studies reported that abnormal SOD and GSH-Px
activities as well as GSH and MDA level were found in
STZ-induced diabetic rats or mice (Lee, 2006). MDA, a lipid
peroxidation marker and an end-product of lipid peroxidation

process, is toxic to DNA and protein (Li et al., 2014). The
MDA level increases in the blood and organ under oxidative
stress conditions (Niedowicz and Daleke, 2005). In our study,
oral administration of L. acidophilus KLDS1.0901 in diabetic
mice increased activities of SOD and GSH-Px and decreased
the level of MDA (Figure 6D), which was in consonance with
previous studies (Chen et al., 2014a). These results indicated that
L. acidophilus KLDS1.0901 could ameliorate T2D by reducing
oxidative stress status. Additionally, a recent study showed
that L. acidophilus KLDS1.0901 could improve the epithelial
barrier function, lower inflammation cytokines, and reshape the
structure and composition of the gut microbiota, increasing the
relative abundance of SCFA-producing bacteria and the level of
SCFAs, especially butyric acid. Subsequently, butyric acid targets
liver via the portal vein and activates the glucose and lipid
metabolism-related signaling pathways (Yan et al., 2019).

CONCLUSION

The need to explore potential anti-diabetic LAB strains is an
important objective of many recent research interventions. This
study showed that L. acidophilus KLDS1.0901 possesses high
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DPP-IV inhibitory activity and probiotic properties in vitro.
Administration of L. acidophilus KLDS1.0901 could maintain the
balance of blood glucose and ameliorate insulin resistance and
oxidative stress in mice with T2D. Thus, this strain can serve
as a novel probiotic in the manufacture of probiotic products,
medications, and functional food that can lower FBG levels and
attenuate T2D biomarkers.
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