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Abstract: Although many preventive and treatment approaches have been proposed, cardiovascular
disease (CVD) remains one of the leading causes of deaths worldwide. Current epidemiological data
require the specification of new causative factors, as well as the development of improved diagnostic
tools to provide better cardiovascular management. Excessive accumulation of adipose tissue among
patients suffering from obesity not only constitutes one of the main risk factors of CVD development
but also alters adipokines. Increased attention is devoted to bioactive adipokines, which are also
produced by the adipose tissue. The retinol-binding protein 4 (RBP4) has been associated with
numerous CVDs and is presumably associated with an increased cardiovascular risk. With this in
mind, exploring the role of RBP4, particularly among patients with obesity, could be a promising
direction and could lead to better CVD prevention and management in this patient group. In our
review, we summarized the current knowledge about RBP4 and its association with essential aspects
of cardiovascular disease—lipid profile, intima-media thickness, atherosclerotic process, and diet.
We also discussed the RBP4 gene polymorphisms essential from a cardiovascular perspective.

Keywords: atherosclerosis; RBP4; cardiovascular disease; obesity; metabolic syndrome;
lipoprotein metabolism

1. Introduction

Cardiovascular disease (CVD) constitutes the most common cause of death in European countries,
accounting for 2.2 million deaths in females (47% of all-cause of deaths) and 1.9 million deaths in
males (39% of all-cause of deaths) [1–4]. Additionally, it is responsible for 37% and 34% of all years lost
(measured by potential years of life lost, PYLL) among females and males, respectively [1]. Not only is
CVD a health issue, but it also involves a significant socio-economic impact [1]. It is estimated that
by 2030 the total cost of CVD will rise to USD 1044 billion [5]. Currently, more than half (55%) of the
costs is derived from direct healthcare (report on Accident and Emergency departments, medications;
inpatient-, outpatient-and primary care) and 45% of the costs originate from the informal care and
productivity loss due to morbidity and mortality [4]. The major risk factors of CVD development have
been identified in the Framingham Heart Study and INTERHEART case-control study [6,7]. Eight
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risk factors and health behaviors (hypertension, dyslipidemia, diabetes, obesity, smoking, alcohol,
diet, sedentary lifestyle) are the World Health Organization’s (WHO) targets for reduction by 2025 [8].
Obesity is a serious health problem and, if the current trends continue, in the next ten years, almost 40%
and 20% of the global adult population will be suffering from overweight and obesity, respectively [9].
Currently, it is estimated that over 3 million patients worldwide die due to excessive body weight [10].
Moreover, obesity may influence cardiovascular risk by means of the presence of obesity-related
comorbidities, hemodynamic repercussions, body fat mass content and distribution [11–13]. All-cause
mortality increased log-linearly throughout the overweight range, with the hazard ratio (HR) of 1.39
per 5 kg/m2 [14]. Excessive accumulation of adipose tissue, particularly visceral fat (VF), contributes
to a higher prevalence of hypertension, dyslipidemia, and glucose intolerance, which lead to CVD
development [15–17]. Adipose tissue also regulates many systemic and pathological processes due
to the secretion of bioactive proteins—adipokines [18]. Most of them—e.g., tumor necrosis factor-α
(TNF-α); IL-6: interleukin (IL-6)—have pro-inflammatory properties and have been associated with
vascular and atherothrombotic complications in atherosclerosis, since they influence the function of
endothelial cells, arterial smooth muscle cells, and macrophages in the vessel walls [19–23]. However,
few of them may have a protective effect in CVD (e.g., adiponectin). In fact, among patients with
obesity, the secretion of adipokines is frequently abnormal [24]. In this non-systematic review, we have
characterized one of the novel adipokines—retinol-binding protein 4 (RBP4), with a particular emphasis
on its role in obesity and CVD development. However, there is an ongoing controversy with regard to
any RBP4 role in both inflammation and CVD prediction. Thus, more reviews and research studies are
still necessary.

2. Role and Structure of RBP4

Retinol-binding protein 4 (RBP4), presented in Figure 1, belongs to the lipocalin family and has
a tertiary structure known as the ‘lipocalin fold’ which facilitates the binding of small hydrophobic
molecules, such as lipids [19]. RBP4 is synthesized and secreted in the liver (mostly) and other
tissues, such as adipose tissue [24]. It transports vitamin A (retinol) from the liver to target tissues
and constitutes a major regulator of circulating levels of retinol [25]. RBP4 is transferred within the
bloodstream in combination with transthyretin (TTR), which prevents kidney filtration and catabolism
of RBP4 [26]. The receptor proteins for RBP4 are STRA6 (stimulated by retinoic acid gene 6) and RBPR-2
(RBP4-receptor 2) [26]. In fact, urinary excretion of RBP4 may be a useful marker for the detection of
renal dysfunction [27,28]. In patients with chronic kidney disease (CKD), higher serum RBP4 levels
were associated with a higher rate of cardiovascular events and higher mortality, which suggests
that RBP4 levels may indicate an increased risk of cardiovascular risk within this group [29]. In the
Bobbert et al. study, serum RBP4 levels were also higher in diabetic patients compared to nondiabetic
individuals, although not in terms of the levels of retinol and transthyretin [30]. Nevertheless, it should
be emphasized that RBP4, retinol, and retinoic acid can differentially affect CVD and metabolic
diseases [31]. Therefore, vitamin A metabolism should be taken into consideration when investigating
the role of RBP4 since it can act by itself or affect retinol metabolism and retinoic acid signaling [32].
Additionally, vitamin A deficiency reduces serum RBP4 levels, and, hence, it is essential to evaluate not
only the metabolism of vitamin A but also its dietary intake when assessing RBP4 concentrations [33].
A decrease in adipose tissue GLUT4 expression, which is the major glucose transporter protein
mediating glucose uptake, leads to increased serum RBP4 levels associated with the induction of
insulin resistance in the liver and muscle [34]. It has been shown that moderate weight reduction
lowers serum RBP4 levels in nondiabetic subjects [27]. However, new evidence suggests that RBP4
plays a more significant role in the lipid metabolism than in insulin resistance [35]. One of the questions
regarding RBP4 is which of its serum concentrations are normal, and which are pathological. In healthy
individuals, normal serum RBP4 ranges from 10 to 50 µg/mL (without vitamin A deficiency), but among
individuals with Type 2 diabetes, CVD or obesity, it may reach up to 150 µg/mL [26,30,33,34,36–39].
In the study led by Farjo et al., the most substantial influence on pro-inflammatory molecules was
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achieved with RBP4 serum concentrations of 100 µg/mL [40]. However, lower concentrations in the
range of 10 to 25 µg/mL were also shown to be enough to influence pro-inflammatory molecules,
which suggest that endothelial cells may be responsive to even small elevations in serum RBP4
concentrations [33,40,41]. RBP4 is also known as a negative acute-phase reactant, and hospitalization
may decrease its serum levels [33]. Therefore, the choice of the assay employed in the measurement
of serum RBP4 levels should also be careful. As Graham et al. presented in their study, quantitative
Western blotting is the most reliable method for assaying serum RBP4 elevations associated with insulin
resistance [39]. However, other measurement methods—e.g., ELISA (enzyme-linked immunosorbent
assay), EIA (enzyme immunoassay)—are also widely used in various populations [42]. Additionally,
RBP4 concentrations were found to be different among men and women. Some research studies
indicated that RBP4 was significantly higher in men than in women, including adolescent boys and
girls, whereas no such association was observed in other studies [35,43,44]. This could be explained
by different amounts and distribution of the adipose tissue (including liver fat), the influence of
the sex hormones, and iron metabolism [44–46]. RBP4 levels were also markedly different between
premenopausal and postmenopausal healthy women, with higher levels among the second group [47].
The summary of measurement methods and serum RBP4 range in the selected studies, according to
CVD risk assessment, are listed in Table 1.
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Table 1. The summary of measurement methods and serum retinol-binding protein 4 (RBP4) range in studies assessing cardiovascular (CV) risk.

Authors Study
Population

Groups, Sex
(Group Size, n) Age (Years) BMI

(kg/m2)
CV Risk

Assessment Method
CV Risk

(Group Size, n)

RBP4
Measurement
Method (Unit)

RBP4
Specimen

Serum
RBP4 Range

Relation between
RBP4 and CV Risk

Feng et al. 2015 [48] T2DM
498 F;
578 M
(1076)

62.80 ± 13.60
27.50 ± 4.20

cIMT (mm)

G 1 (332): no
abnormalities ELISA (mg/L) serum

G 1
32.10 ± 10.3

+

27.90 ± 3.40 G 2 (386): ≥ 1 G 2
38.20 ± 8.30

27.60 ± 3.60 G 3 (358): ≥ 1.5 G 3
46.90 ± 7.60

Xiao et al. 2013 [19] T2DM
140 F;
144 M
(284)

35.00–70.00
25.10 ± 2.80 cIMT (mm)

fIMT (mm)
iIMT (mm)

subAS (78)
cIMT 0.94 ± 0.34
fIMT 0.97 ± 0.33
iIMT 1.13 ± 0.28

ELISA with
monoclonal

antibodies (mg/L)

serum
37.1

(32.3–40.8) +

24.50 ± 2.80

Non-subAS
cIMT 0.70 ± 0.11
fIMT 0.70 ± 0.11
iIMT 0.76 ± 0.10

23.2
(20.1–29.2) +

Won et al. 2012 [49] Healthy
175 F;
116 M
(291)

40.00 ± 11.00
27.00 ± 2.60 The Framingham Risk

Score

MetS (57)
Framingham

risk: 2.0, 0.0 to
>30.0

Framingham
score: 9.0, −7.0

to 17.0

EIA (µg/mL) plasma
MetS

65.1 ± 26.8 +

23.60 ± 3.00

Non-MetS (234)
Framingham

risk: 0.5, 0.0 to
20.0

Framingham
score: 3.0, −9.0

to 18.0

Non-MetS
52.2 ± 20.0

Su et al. 2020 [29] CKD
58 F;

111 M
(169)

59.50–78.00
27.40 ± 2.90 CV events (fatal and

nonfatal)

(total 80)
CV events: 41

CV mortality: 10
ELISA (mg/L) serum >33.86

+
(higher rates of CV
events than RBP4 <

33.86)

25.90 ± 2.10
(total 89)

CV events: 11
CV mortality: 4

<33.86 +
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Table 1. Cont.

Authors Study
Population

Groups, Sex
(Group Size, n) Age (Years) BMI

(kg/m2)
CV Risk

Assessment Method
CV Risk

(Group Size, n)

RBP4
Measurement
Method (Unit)

RBP4
Specimen

Serum
RBP4 Range

Relation between
RBP4 and CV Risk

Solini et al. 2009 [38] HYP 35 F 47.40 ± 5.00 25.00 ± 1.60 cIMT (mm) 0.54 ± 0.15 ELISA (µg/mL) plasma

Median
value
38.75

+

CTL 35 F 46.90 ± 6.30 25.70 ± 1.40 0.5 ± 0.13
Median
value
10.00

None

Mansouri et al. 2012
[50] T2DM

53 F;
48 M
(101)

53.60 ± 8.40 27.70 ± 4.10 cIMT (mm) 0.8 ± 0.2 ELISA (µg/mL) serum 71.9 ± 35.6 None

Bobbert et al. 2010 [30] T2DM and
non-T2DM

52 F;
44 M
(96)

55.00 ± 1.30 30.80 ± 0.70 cIMT (mm) 0.72 ± 0.02 ELISA (µmol/L) serum 1.89 ± 0.05 +

Chu et al. 2011 [51]
T2DM with

CKD 86 (sex NM) 70.00 ± 11.00 26.20 ± 6.20 cIMT (mm) 0.75 ± 0.16 ELISA (µg/mL) serum 44.8 ± 6.4 None

T2DM
without

CKD
153 (sex NM) 60.00 ± 12.00 26.30 ± 5.90 0.69 ± 0.14 39.5 ± 4.9 None

Li et al. 2020 [52] CHF
227 F;
707 M
(934)

≥60 22.49–26.67
MACE

(Multivariable Cox
regression)

- ELISA (µg/mL) serum 46.66 ± 12.38

+ (log RBP4
associated with 1.6
times higher risk of

MACE)

Bachmayer et al. 2013
[53]

Patients
with obesity

65 F;
27 M
(92)

43.00 ± 10.00 50.00 ± 7.00
Endothelial dysfunction:
CRAE (µm); CRVE (µm);

AVR

CRAE 178 ± 19
ELISA (ng/mL) NM

24,773 ±
14,025

None

CRVE 221 ± 24 None

AVR 0.81 ± 0.09 None

F—female, M—men, ± SDs, T2DM—Type 2 diabetes mellitus, G—group, ELISA—enzyme-linked immuno-absorbent assay, CV—cardiovascular, IMT—intima-media thickness,
cIMT—carotid intima-media thickness, fIMT—femoral intima-media thickness, iIMT—common iliac intima-media thickness, subAS—subclinical atherosclerosis, EIA—enzyme
immunoassay, MetS—metabolic syndrome, CKD—chronic kidney disease, HYP—hypertensive, CTL—normotensive, +—positive, NM—not mentioned, CHF—chronic heart
failure, MACE—major adverse cardiac event(s) (cardiovascular death and rehospitalization due to the deterioration of CHF), CRAE, CRVE—central retinal artery/vein
equivalent, AVR—arterio–venous-ratio.
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3. RBP4 Gene—Structure and Polymorphism vs. CVD in Obesity

RBP4 protein is encoded by the same name gene—RBP4 (MIM 180250) located on chromosome 10
(10q23.33) between coordinates 93,591,694 and 93,601,744 bp according to human genome reference
assembly GRCh38.p13 (Figure 2). It encompasses 10,050 bp of genomic DNA and consists of 6 exons,
including five coding fragments. Transcript length is 1070 bp, and the translation product consists of
201 amino acids.
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Since RBP4 may be correlated with conditions related to Type 2 diabetes mellitus (T2DM),
obesity, or CVD, the RBP4 gene may constitute the gene carrying obesity-related implications [54].
Additionally, the RBP4 gene location is close to a region linked with an increased risk of T2DM and
elevated fasting blood glucose levels [55–57]. Thus, it has been proposed that functional RBP4 gene
polymorphisms influence a higher obesity incidence, insulin resistance, hyperinsulinemia, T2DM,
and artery thickness [26]. These hypotheses were confirmed by research carried out in recent years
by several research teams. The most significant RBP4 gene variants connected with CVD and its
markers are summarized in Table 2 and presented in Figure 2, with the distribution of each locus and
the minor allele frequency (MAF) occurrence in the world population based on 1000 Genomes Project
data (phase 3; https://www.internationalgenome.org/). It is worth noting that all of the listed variants
are located outside the coding gene region and that there can be a potential relationship between the
regulation and the change in gene expression levels.

Table 2. RBP4 gene variants investigated as risk factors of cardiovascular diseases in obesity.

Variant Genetic
Location

Study Group Pathophysiology
Association

Reference
n (Total) Diagnosis

rs10882280
g.6681G > T

c.355+837G > T
(intronic)

1422 F;
414 M (1836)

healthy
(metabolic,

cardiovascular,
or endocrine

disease excluded)

Higher high-density
lipoprotein level

associated with minor
allele T (p = 0.043) and C
(p = 0.042), respectively

Shea et al. 2010
[58]

rs11187545
g.8889T > C

c.355+3045T >
C (intronic)

rs10882283

g.5030T > G
c. −55T > G

(5’ UTR
variant)

457 F;
477 M (934);

716 CTL
T2DM

G-allele associated
with a higher body-mass
index and waist-to-hip
ratio values (p < 0.05).

Kovacs et al. 2007
[59]

https://www.internationalgenome.org/
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Table 2. Cont.

Variant Genetic
Location

Study Group Pathophysiology
Association

Reference
n (Total) Diagnosis

rs10882273
g.27484T > C
c.*1539T > C

(3′ UTR
variant)

457 F;
477 M (934);

716 CTL
T2DM

C-allele
associated with an

increased BMI, plasma
insulin,

and circulating free fatty
acid concentrations

(p < 0.05)

Kovacs et al. 2007
[59]

1787 F;1423 M
(3210)

Chinese Hans
population

50–70 years old

Higher body-mass index
values. Higher insulin

and free fatty acids
levels.

Association with plasma
RBP4 levels (p = 0.005).

Wu et al. 2009
[60]

rs10882272
g.26761T > C
c.*816T > C

(3′ UTR
variant)

593 F;
454 M
(947)

French-Canadian
founder

population
12–18 years old

Association with
circulating retinol levels.

Modulation between
vitamin A intake and
abdominal adiposity.

Goodwin et al. 2015
[61]

5 006

Caucasian
cohorts from
Finland, USA,

and Italy

Association with
circulating retinol levels.

Mondul et al. 2011
[25]

rs3758538
g.3944A > C

c.697–1781A >
C

(upstream
transcript
variant)

97 with obesity;
83

normal-weight

Spanish
Caucasian
children

Association with
triglycerides levels and
plasma RBP4 levels. C
allele associated with

obesity and higher BMI
z-score.

Codõner-Franch et al.
2016
[54]

1787 F;
1423 M (3210)

Chinese Hans
population

50–70 years old

Association with
hypertriglyceridemia

and plasma RBP4 levels.

Wu et al. 2009
[60]

rs3758539
g.4406G > A

c.697-2243G >
A

(upstream
transcript
variant)

97 cases
83 CTL

Obesity,
Spanish

Caucasian
children

Association with
triglycerides levels in

children.

Codõner-Franch et al.
2016
[54]

66 F;
63 M
(129)

192 CTL

Obesity,
cohort from

Iran

Association with an
increased susceptibility

for obesity and an
increased BMI.

Shajarian et al. 2015
[55]

rs12265684
g.12177G > A
c.356-25G > A

(intronic)
97 cases
83 CTL

Obesity,
Spanish

Caucasian
children

Association with
triglycerides levels and

blood pressure.
Codõner-Franch et al.

2016
[54]

rs34571439

g.14684T > G
c.697-12521A >

C
(upstream
transcript
variant)

Association with
triglycerides and plasma

RBP4 levels as well as
plasma C-reactive

protein values.

rs7094671
g.10377C > T

c.356-1825C > T
(intronic)

297 M;
217 M CTL

CAD, Chinese
patients

G allele associated with a
higher risk of CAD

Wan et al. 2014
[62]

rs—number of the reference sequence in the National Center of Biotechnological Information database,
UTR—untranslated region, F—female, M—men, CTL—controls, T2DM—Type 2 diabetes mellitus, CAD—coronary
artery disease.

4. RBP4, Obesity, and Metabolic Syndrome

As mentioned before, the secretion of adipokines is frequently abnormal among patients with
obesity. Adipocyte hypertrophy, ectopic fat accumulation, and adipose tissue inflammation may cause
adverse adipokine secretion, which, in turn, can be associated with a number of health consequences,
including metabolic, inflammatory, or cardiovascular diseases [63]. However, in several studies, RBP4
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levels were higher among individuals with obesity in comparison to control groups. In other studies,
no such correlation has been found. In the Korek et al. study, RBP4 levels did not correlate with BMI
or fat mass and did not differ between individuals with obesity and those without obesity—RBP4
levels in both groups were 33.93 ± 4.46 and 32.53 ± 2.53 µg/mL, respectively [64]. Similar results
were reported by other authors [65–68]. On the other hand, certain studies demonstrate increased
RBP4 concentrations among individuals with obesity, as well as the association between RBP4 and
BMI [36,69]. Therefore, it has been suggested that RPB4 concentrations may not be related necessarily
to obesity itself, but to the location of the adipose tissue. The expression seems to be higher in visceral
(VF) than in the subcutaneous tissue (SF); thus, RBP4 levels are more closely associated with VF levels
and appear to constitute the best indicator of intra-abdominal adipose mass [35,70,71]. RBP4 may
be the mechanistic link between the visceral adiposity and increased cardiovascular risk associated
with this type of adipose tissue [49,71]. In the study by Lee et al., RBP4 levels were correlated with
visceral fat areas, but not with the total body fat (wt.%), and, as the authors suggested, RBP4 could
be the link between visceral obesity and atherosclerotic vascular changes [72]. Furthermore, RBP4
levels may also be prone to weight loss. In fact, serum RBP4 levels decreased considerably by 25.5%
after weight reduction—almost 11% of weight loss in the course of a 16-week program [27]. However,
it is essential to point out that in addition to a reduced caloric intake by 600 kcal/day, sibutramine
was also used. Interestingly, the statistically significant increase in RBP4 levels was also observed
in patients undergoing bariatric surgery—RBP4 levels (ng/mL) were 22,456.5 ± 13,158.8 and 31,342.2
± 8172.5 in pre-and post-bariatric periods, respectively [68]. In two different studies, RBP4 levels
decreased significantly following bariatric surgery [69,70]. According to Zachariah et al., participants
with serum (log-transformed) RBP4 levels at the 4th quartile presented a 75% higher risk of developing
the metabolic syndrome when compared to patients in the 1st quartile [73]. Moreover, in the study
by Karamfilova et al., RBP4 levels ≥55 mcg/mL were associated with a 3.1 higher risk of developing
metabolic syndrome [74]. Other studies also have confirmed the relationship between the components
of metabolic syndrome and RBP4 levels [65,66]. Additionally, RBP4 can also be a predictor for the
diagnosis of metabolic syndrome and weight regain [70,74,75]. In fact, Vink et al. demonstrated that
RBP4 was a predictor of weight regain—stronger in men and individuals following a low-calorie diet
than in women and individuals following a very-low-calorie diet [75].

Possible explanations regarding different concentrations or changes in RBP4 may include both
ethnic and age differences (e.g., presence of renal dysfunction) [66]. Despite different data, there is still
a strong association between RBP4 and obesity.

5. RBP4 and Lipid Metabolism

RBP4 and retinoids are involved in the lipid status since they influence the metabolism of
triglycerides [26]. RPB4 levels are associated with dyslipidemia, which is a known risk factor for
atherosclerosis. Strong, positive correlations between RBP4 levels and triglycerides, which constitute
two major lipid abnormalities in both T2D and metabolic syndrome individuals, were observed in
patients with and without obesity [64]. Higher RBP4 levels were correlated with higher levels of
triglycerides and lower levels of high-density lipoprotein (HDL) cholesterol [66,76], as shown in
Figure 3. Rocha et al. demonstrated that triglycerides were an independent predictor for RBP4
levels [35]. High RPB4 levels may be involved in the pro-atherogenic plasma lipoprotein profile.
In T2DM patients, RBP4 and retinol were positively correlated with triglycerides, total cholesterol, apoB,
and non-HDL and low-density lipoprotein (LDL)-cholesterol [65]. Additionally, positive univariate
correlations were observed with LDL-P, very-low-density lipoprotein (VLDL)-P, small LDL and HDL,
and large and medium VLDL (including chylomicrons if present) [65]. According to Ingelsson et al.,
RBP4 levels were poorly correlated with the total cholesterol and triglycerides and were not associated
with HDL-and LDL-cholesterol [37]. Conversely, in other studies, RBP4 levels were not statistically
significant with respect to lipid metabolism [19,52].
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Although RBP4 may be involved in different periods of the atherosclerotic process, its role in lipid
metabolism remains unclear and should constitute the focus of further research.

6. RBP4 and the Endothelium

Chronic vascular inflammation plays a critical role in the development of atherosclerosis [77].
It begins with the endothelial secretion of pro-inflammatory cell surface adhesion molecules and
soluble pro-inflammatory factors—endothelial-leukocyte adhesion molecule (E-selectin), intercellular
adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), interleukin-6 (IL-6),
monocyte chemoattractant protein 1 (MCP-1) [18,42]. RBP4 may also be involved in oxidative stress
and in the initiation of endothelial inflammation [33,42,78]. In T2DM patients, RBP4 levels were
positively correlated with sICAM-1 and sE-selectin, which were related to the progression of vascular
complications associated with diabetes [76]. In the same study, RBP4 levels were significantly and
strongly negatively correlated with the flow-mediated vasodilatation (FMD). However, this study
included a population with newly diagnosed T2DM without the use of any medications which could
potentially affect the endothelial function. The negative correlation between RBP4 and FMD may
reflect the endothelial function as a result of nitric oxide (NO production, which is a major vasodilatory
substance in the endothelium) [79]. As Takebayashi et al. study showed, RBP4 has a major effect of
increasing NO production due to the stimulation of the part of the PI3K/Akt/eNOS pathway and the
inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion leading to vasodilatation [79].
Elevated RBP4 levels may contribute to sustaining or initiating the pro-inflammatory status by
activating macrophages, and it is mediated partially through the c-Jun-N-terminal protein kinase (JNK)
and Toll-like receptor 4 (TRL4) pathways, independent of retinol-binding to RBP4 and STRA6 [80,81].
However, the RBP4 effects are not fully blocked in TLR4-/macrophages, which suggests that alternative
pathways may be considered [80]. In the study by Farjo et al., RBP4-mediated endothelial inflammation
was also independent of retinol and STRA6 and was acting via NADPH oxidase-and NF-β-dependent
pathways [40]. Moreover, RBP4 induced expression and secretion of pro-inflammatory cytokines
in macrophages, including MCP-1, TNF-α, IFN-γ (interferon-gamma), IL-6, IL-2, IL-1β, IL-12p70,
GM-CSF (granulocyte macrophage-colony stimulating factor) [80]. On the other hand, RBP4 signaling
in adipocytes was retinol and STRA6 dependent [82]. Another study showed that serum RBP levels
were independently and inversely associated with E-selectin in rheumatoid arthritis (RA) patients
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aged ≤55 years with two or more traditional CV risk factors, abdominal obesity and RA of over ten
years’ duration [83]. RPB4 levels were not associated with VCAM-1, ICAM-1, and MCP-1 levels.

As the research studies have demonstrated, RBP4 is associated with insulin resistance (IR), which is
further associated with chronic subclinical inflammation and can promote vascular inflammation [36,84–87].
Moreover, RBP4 can induce IR by developing the inflammatory state in the adipose tissue due to the
activation of pro-inflammatory cytokines in macrophages. Holo-RBP4 (not bounded to the retinol) induces
IR by binding to the STRA6 in the adipocytes through JNK. RBP4 also suppresses insulin signaling by
inducing suppressor of SOCS3 (suppressor of cytokine signaling 3) [26,42]. Additionally, it can inhibit
insulin signaling by means of the activation of TLR4 pathways independent of the STRA6 [80]. Either
RBP4 bounded (apo-RBP4), or not bounded to the retinol could induce IR and, consequently, endothelial
inflammation. In the Framingham Heart Study (third generation cohort), increased levels of RBP4 and
fetuin-A were observed, which was associated with the incidence of metabolic syndrome, regardless of
obesity [73]. These results could suggest that the association between adverse adipokine profile and the
incidence of metabolic syndrome is the result of overlaying other mechanisms, such as insulin resistance.
Similarly, circulating RBP4 levels predicted the development of metabolic syndrome and its components,
including IR, in adolescents, irrespective of obesity [88]. As the authors suggested, this mechanism is
strongly associated with RBP4 as an indicator of IR. According to Jialal et al., the RBP4/adiponectin ratio
correlated significantly with a high-sensitivity CRP (C-reactive protein), but not with HOMA-IR [89].
However, other studies have failed to find the association between insulin resistance and RBP4; therefore,
the question of whether RBP4 is the causative factor, or the result of the insulin resistance should be
investigated further.

7. RBP4 and Intima-Media Thickness

As has already been mentioned, the prevalence of CVD, of which atherosclerosis is the major
component, is still increasing. There is a strong need for undertaking both standard and novel diagnostic
methods among men and women for an early prevention plan to be implemented. Identification of
atherosclerosis at the subclinical stages would primarily promote earlier diet prevention and a selection
of more effective treatment methods, which may lead to a better prognosis [19]. Ultrasonography is
more common, non-invasive, and one of the most effective methods in the diagnosis of early structural
changes in the artery wall, even before the disease symptoms are present [90]. The intima-media
thickness is the distance from the lumen–intima interface to the media–adventitia interface of the
artery wall, as measured in noninvasively obtained ultrasonographic images of the carotid arteries.
Carotid-wall intima-media thickness (cIMT/IMT) is one of the methods used to measure atherosclerosis
associated with both cardiovascular factors and their outcomes [91,92]. In addition, IMT measurement
is of low-cost, and is performed without the need to use a contrast medium, and is characterized by
high recurrence as well as high-quality imaging [93].

Although the intima-media thickness measurement is a well-established method, its correlation
with serum RBP4 levels is not quite well understood and remains undefined. To evaluate whether there
is any interaction between these two parameters, further research is still necessary. In the Mansouri et al.
study, there was no correlation between cIMT and RBP4 levels in Type 2 diabetes patients (T2DM) [50].
Similar result was reported by other authors [33,51,67,76,94]. In the study conducted by Huang et
al., it was observed that both low and high RBP4 levels could be associated with coronary artery
calcification [67]. On the other hand, according to Feng et al., a high RBP4 level was one of the seven
factors associated with the elevated CIMT, and, as the author suggested, it could be used as an early
predictor of CVD in Type 2 diabetes patients [48]. Comparable results were reported with regard to
serum RBP4 and lipocalin-2 levels in newly diagnosed T2DM [19]. In both type 1 and type 2 diabetes
patients, the use of glucose-lowering medications, or their combinations, could affect IMT either
positively or negatively [95–99]. Burchardt et al. claimed that the adjunctive use of metformin in type
1 diabetes patients led to a reduction of the maximum cIMT after six months, in contrast to patients
receiving only insulin whose IMT increased [100]. However, similar results were not found in T2DM
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patients during the Copenhagen Insulin and Metformin Therapy trial [101]. Additionally, some studies
questioned whether glucose-lowering medications would also affect RBP4 levels. In the polycystic
ovary syndrome patients, simvastatin alone, or with metformin, did not affect serum RBP 4 levels [102].
On the other hand, in an animal study conducted by Abbas et al., metformin, liraglutide, and sitagliptin
decreased serum RBP4 levels following eight weeks of treatment [103]. Moreover, RBP4 levels were
also associated with IMT among women with untreated essential hypertension [38]. In the study
by Bobbert et al., retinol was inversely correlated with IMT [30]. In addition, the retinol/RBP4 ratio
indicating the saturation of RBP4 with retinol was strongly associated with intima-media thickness.
Thus, it suggests that retinol-free RBP4 may be involved in the atherosclerosis process. The potential
pathomechanism of RBP4’s impact on atherosclerosis and CVD risk is presented in Figure 4.
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8. Diet and Its Influence on RBP4 Levels

Nutritional and lifestyle care are some of the essential approaches to CVD management and
prevention. Standard dietary patterns, such as the Dietary Approach to Stop Hypertension (DASH)
or Mediterranean diet (MeD), as well as the new plant-based diets, are recommended in CVD risk
reduction [11]. The question of whether nutritional compounds, particularly anti-inflammatory, or the
general lifestyle features can affect RBP4 levels should be addressed when considering the possible
association between RBP4 and CVD.

Compliance with the DASH diet was independently associated with lower RBP4 serum levels
among middle-aged and elderly adults [104]. Furthermore, higher compliance with the MeD resulted in
lower RBP4 levels, regardless of weight loss or caloric restriction [105]. On the other hand, a high-quality,
plant-based diet was associated with lower plasma levels of several adipokines, but not with RBP4
levels and inflammatory markers [106]. Similar results were shown in other studies [107,108]. It has
been suggested that protein intake is more crucial than the caloric intake for RBP4 levels [109]. In fact,
an energy-restricted diet with a higher protein intake was associated with a 30% greater decrease in
RBP4 levels (35% compared with 20% of protein intake) [110]. In another study, serum RBP4 levels
decreased more in the course of a hypocaloric carbohydrate-restricted diet than during a hypocaloric
low-fat diet [111]. However, in both diets, changes in RBP4 were associated with changes in LDL
particle size—essential in the atherosclerotic process and associated with IMT. According to Daneshzad
et al., RBP4 levels were positively associated with vitamin A intake among patients with obesity [112].
This result could be explained by the fact that a higher vitamin A intake would require higher RBP4
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levels for transportation, storage, and metabolization. As the Zhou et al. study showed, RBP4
was a predictor for developing diabetic atherosclerosis in an animal model, and its levels decreased
following a vitamin D supplementation [113]. Omega-3 supplementation decreased RBP4 levels
among adolescents with obesity; however, the effect was not statistically significant when compared
to lifestyle intervention alone [114]. It has been shown that the intake of selenium, an antioxidant
mineral, is inversely associated with RBP4 levels [115]. Nevertheless, data concerning weight-loss and
its influence on the changes in RBP4 levels are contradictory, and this aspect should be investigated
further [70,105,109]. However, it is essential to keep in mind that weight loss does not have to affect
the hepatic production of RBP4, although it may impact adipose tissue RBP4-production. Interestingly,
RBP4 possibly correlates with an increased regain of lost weight and is one of the predictors of
metabolic syndrome among people with excessive body weight [70,75]. Lifestyle features, such as
smoking or physical activity, were associated positively and negatively with plasma RBP4 levels,
respectively [115,116]. The lifestyle factors affecting RBP4 levels are schematically presented in Figure 5.
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9. Can RBP4 Be Used as a Biomarker in CVD?

Current studies are focused on finding new biomarkers which would provide an added value
to the well-known CVD risk factors and could serve as a diagnostic tool. Retinol-binding protein 4
should be investigated from the biomarker perspective since RBP4 levels were observed to be higher
among individuals with CVD and could be involved in the atherosclerotic process.

According to Alkharfy et al., serum RBP4 levels correlated significantly well with the existing risk
factors of cardiovascular disease in women, regardless of body weight [117]. This result could suggest
that RBP4 measurement in women can be a reliable predictor of the developing CV events, and could
provide prognostic knowledge. The comparable result was obtained in the study by Pala et al., where
RBP4 levels were statistically increased among individuals with incidental fatal or nonfatal ischemic
heart disease, or the cerebrovascular disease, when compared to the control group [118]. Furthermore,
the RBP4/adiponectin ratio was significantly increased among individuals with nascent metabolic
syndrome and, thus, could constitute a predictor of CVD in this patient group in large, prospective
studies [89]. RBP4 was also up-regulated in the pre-term group of neonates, and, as the authors
suggested, it should be included in the detection of neonates at higher risk of developing CVD [119].
Cabré et al. suggested that type 2 diabetic participants with RBP4 plasma levels in the fourth quartile
presented an over two and a half-fold increased risk of developing CVD, irrespective of bad metabolic
control [28]. On the other hand, Kim et al. concluded that RBP4 could be used as a diagnostic marker
of CVD among non-diabetic individuals [120]. Opposite results were obtained by Patterson et al.,
who reported that higher RBP4 levels were associated with a decreased risk of non-CVD mortality [121],
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whereas Liu et al. showed that RBP4 levels were inversely (but not significantly) associated with CVD
mortality [122].

10. Conclusions

Retinol-binding protein 4 is one of the adipokines potentially associated with an increased risk
of developing cardiovascular disease, particularly among patients with obesity. The role of RBP4 in
the atherosclerotic process is mainly associated with an increased expression of pro-inflammatory cell
surface adhesion molecules and soluble pro-inflammatory factors. RBP4 has also been connected with
an unfavorable lipid profile and an increased intima-media thickness; however, these associations
should constitute the focus of further extensive research. To investigate the role of RBP4 in CVD more
precisely, other factors, such as diet or RBP4 gene polymorphisms, should also be included in the
extensive studies.

It is difficult to determine at this point whether RBP4 could constitute a novel biomarker useful in
CVD and which pathological process it could represent (e.g., inflammation, metabolic or oxidative
stress). Additionally, further research should be conducted to confirm whether RBP4 is yet another risk
factor of CVD, as RBP4 can represent a promising indicator in the treatment and diagnosis of CVD.
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