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HIV superinfection (infection of an HIV positive individual with another strain of the virus)

has been shown to result in a deterioration of clinical status in multiple case studies.

However, superinfection with no (or positive) clinical outcome might easily go unnoticed,

and the typical effect of superinfection is unknown. We analyzed mathematical models

of HIV dynamics to assess the effect of superinfection under various assumptions. We

extended the basic model of virus dynamics to explore systematically a set of model

variants incorporating various details of HIV infection (homeostatic target cell dynamics,

bystander killing, interference competition between viral clones, multiple target cell types,

virus-induced activation of target cells). In each model, we identified the conditions for

superinfection, and investigated whether and how successful invasion by a second viral

strain affects the level of uninfected target cells. In the basic model, and in some of

its extensions, the criteria for invasion necessarily entail a decrease in the equilibrium

abundance of uninfected target cells. However, we identified three novel scenarios

where superinfection can substantially increase the uninfected cell count: (i) if the rate

of new infections saturates at high infectious titers (due to interference competition

or cell-autonomous innate immunity); or when the invading strain is more efficient at

infecting activated target cells, but less efficient at (ii) activating quiescent cells or (iii)

inducing bystander killing of these cells. In addition, multiple target cell types also allow

for modest increases in the total target cell count. We thus conclude that the effect of

HIV superinfection on clinical status might be variable, complicated by factors that are

independent of the invasion fitness of the second viral strain.

Keywords: HIV superinfection, AIDS, mathematical model, virus dynamics, invasion analysis

1. INTRODUCTION

HIV superinfection occurs when a person already infected with HIV acquires a second (unrelated)
strain of the virus. While estimates for the incidence of superinfection vary widely [from
virtually zero (Gonzales et al., 2003; Tsui et al., 2004) to rates comparable to that of initial
infection (Piantadosi et al., 2008; Redd et al., 2011; Kraft et al., 2012)], the ubiquitous imprint
of recombination on the global evolution of HIV diversity (Rambaut et al., 2004; Vuilleumier
and Bonhoeffer, 2015) indicates that superinfection cannot be very rare. At the population level,
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superinfection might affect the evolution of virulence (Nowak
and May, 1994; van Baalen and Sabelis, 1995; Alizon and van
Baalen, 2008), it might potentially contribute to the spread of
drug resistance (Chakraborty et al., 2004; Smith et al., 2005),
and, in the case of HIV, it also allows for recombination
between distant lineages, which might facilitate adaptation
and evolutionary innovation in the virus (Vuilleumier and
Bonhoeffer, 2015).

Superinfection can also have an impact on the health status
of the affected individual. A number of studies have reported
either abrupt deterioration of clinical status (a drop in the CD4+
T cell count and/or increase in the virus load), or accelerated
disease progression following superinfection (Altfeld et al., 2002;
Jost et al., 2002; Gottlieb et al., 2004, 2007; Yerly et al., 2004;
van der Kuyl et al., 2005; Clerc et al., 2010; Cornelissen et al., 2012;
Brener et al., 2018). However, there are also counterexamples,
where superinfection did not have a negative impact (Casado
et al., 2007) or the effect was only transient (Rachinger et al.,
2008). Furthermore, superinfection events with no (or, possibly,
beneficial) effects might often go unnoticed, as the detection
of superinfection requires the sequencing of the viral genome,
which is rarely done in unproblematic infections. This led the
authors of a comprehensive review on HIV superinfection to
conclude that “the full extent and potency of the detrimental
effects of superinfection remain unclear and might depend on
several viral and host factors” (Redd et al., 2013).

Here, following up on Fung et al. (2010), we use simple
mathematical models of HIV infection to analyze a set of
biologically relevant scenarios with respect to the possible
outcomes of superinfection. Mathematical modeling has been
used to study various aspects of the complexity of HIV infection
(Nowak and May, 2000; Perelson, 2002; Müller and Bonhoeffer,
2003), including within-host evolution (e.g., Iwasa et al., 2004,
2005) and some scenarios for superinfection (Fung et al., 2010).
From an ecological perspective, both cases can be regarded as
“invasion tests” (Chesson, 2000): is the second strain (the mutant
or the “invader”) able to spread in the steady state (chronic
infection) established by the first strain?We use invasion analysis
to determine under what conditions a second strain of the
virus can establish superinfection, either coexisting with, or
excluding the original strain. For the cases where superinfection
is successful, we assess the range of possible effects on the
uninfected target cell count, which serves as a proxy for the
clinical status (health) of the patient. We find that, contrary to
intuition, there are biologically plausible scenarios that allow
superinfection not only to decrease, but also to increase the target
cell count.

2. MODELS AND METHODS

The mathematical framework of virus dynamics describes the
interactions between relevant cell and virus types within an
infected individual (see e.g., Nowak and May, 2000). Models
consist of differential equations that describe the rate of change of
each cell and virus type (the variables of the model). We extended
the basic model of virus dynamics to explore systematically

a set of model variants incorporating various details of HIV
infection.

Exposure to superinfection can be implemented by adding
a low initial inoculum of a second viral strain to a chronic
(steady-state) infection established by the first strain in the
models (equivalent to modeling the outcome of within-host
mutation events Iwasa et al., 2004). Three outcomes are possible:
(i) successful invasion and exclusion of the resident strain;
(ii) successful invasion, followed by stable coexistence of both
strains; (iii) unsuccessful invasion, the system remains in the
original equilibrium with only the resident strain. The invasion
is successful (superinfection occurs) if the initial growth rate of
the new strain is positive when introduced into the established
steady state of the original strain. Exclusion of the original strain
occurs if the steady-state cell count of the original strain is zero in
the presence of the new strain. Finally, successful invasion results
in coexistence if both strains can grow when introduced into
a steady-state infection established by the other strain (mutual
invasibility).

The impact of superinfection on clinical status can be
approximated by comparing the steady-state level of uninfected
cells (corresponding to functional CD4+ T cells) before
and following the invasion of the superinfecting strain. The
possible range of outcomes can be determined by analyzing
whether and how the conditions for superinfection constrain
the relation of prior and subsequent steady-state target cell
levels. In particular, superinfection is strictly associated with
the deterioration of clinical status when the (mathematical)
conditions for superinfection unambiguously imply that the
stable steady-state level of the uninfected cells will be lower in
the presence of the invading strain. In this case, only strains that
reduce the steady state and thus have negative clinical impact will
be able to establish superinfection.

In some of the models, the steady states (equilibrium
points) of the system, and the conditions for invasion (and
superinfection) could be readily calculated and characterized
analytically. In the cases where the analytical approach was
impractical due to the complexity of the equations, we employed
numerical simulations. We selected credible intervals for all
parameter values (Table A5 in Appendix), and then sampled
the parameters from their respective intervals independently
for each simulation run. We integrated the set of equations
corresponding to the uninfected system until equilibrium, then
Strain 1 was added. After the system attained steady state (and
stable infection with Strain 1 was verified), Strain 2 was added
with a low concentration as an invader; the parameters for
Strain 2 were selected with the same procedure (including the
requirement to establish stable infection given its independently
generated set of both viral and host parameters). In case of
successful superinfection, we recorded the steady-state level of
uninfected target cells both before and after superinfection,
along with the corresponding parameter values. We repeated
the simulations until we obtained 20000 independent runs with
successful superinfection. Numerical integration was performed
with the SUNDIALS/CVODE package (Hindmarsh et al., 2005)
(C source code is available upon request). In each simulation, we
verified the local asymptotic stability of the final steady states by
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computing the leading eigenvalue of the corresponding Jacobian
matrix.

In the following we illustrate the analytical method on a
slightly simplified version of the basic model of virus dynamics,
then introduce the model variants that we have tested in our
analyses.

2.1. Basic Model
As a starting point, we use a two-strain variant of the established
model of virus dynamics, consisting of uninfected target cells (T)
and two types of infected cells (I1 and I2) that harbor the resident
and the invading strain of the virus, respectively. The dynamics
has the form:

Ṫ = σ − (β1I1 + β2I2)T − δTT (1)

İ1 = β1TI1 − δ1I1 (2)

İ2 = β2TI2 − δ2I2, (3)

where σ is the influx rate, δT is the death rate of uninfected cells,
respectively. βi denotes the infection efficiency of the ith viral
strain, and δi is the death rate of cells infected with strain i. This
is a slightly reduced form of the “basic model of virus dynamics”
(Nowak and May, 2000), as it does not explicitly follow the levels
of virus particles. This established simplification is justified by
the faster turnover of free virions (compared with infected cells),
which implies that the concentration of free virions follows (in a
quasi steady state) the level of virus producing cells, and the rate
of new infections can be made a function of the level of infected
cells without loss of generality (Nowak and May, 2000).

The equilibrium values of the target cells can be determined
analytically. If infected cells are not present, the system reduces
to Equation (1), and the equilibrium value of uninfected cells is
T̂() = σ

δT
, where empty brackets in the superscript denote the

absence of infection.
If only Strain 1 is present, the corresponding system is

Equations (1, 2), and the equilibrium values are: T̂(I1) = δ1
β1

and

Î
(I1)
1 = σ

δ1
−

δT
β1
. Substituting the uninfected steady state into

Equation (2), it follows that infection can be established only if
σ
δT

> δ1
β1
, implying

T̂() > T̂(I1). (4)

That is, infection always decreases the uninfected target cell
count. Because of the symmetry in the dynamics of infected cells,
the same result is obtained for the situation when Strain 2 is
present alone. Finally, because İ1 = 0 and İ2 = 0 are satisfied
at different target cell levels (except for the special case when
δ1
β1

= δ2
β2
), there is no generic equilibrium point with both strains

present. The equilibrium values are listed in Table 1.
To illustrate the method, in the following we analyze the

possibility and the possible outcomes of superinfection in this
basic model. The criterion of successful invasion by Strain 2 is the
positivity of the growth rate of I2 (İ2 > 0) in a chronic infection

established by the first strain (ES2: T̂(I1), Î(I1)1 ). By substituting

T̂(I1) into Equation (3), it follows that the condition for successful

TABLE 1 | The equilibrium states (ES) of the basic model.

T̂ Î1 Î2

ES1 () σ
δT

0 0

ES2 (I1)
δ1
β1

σ
δ1

−
δT
β1

0

ES3 (I2)
δ2
β2

0 σ
δ2

−
δT
β2

The viral strain present in each state is indicated in brackets; empty brackets in ES1 ()
denote the absence of infection.

invasion is δ1
β1

> δ2
β2
, which can be rewritten in terms of the

equilibrium target cell counts as:

T̂(I1) > T̂(I2), (5)

implying that successful superinfection always decreases the
uninfected target cell count at steady state, because only strains
that lower the count can establish superinfection. The criterion
for the stable coexistence of both types of infected cells is
a positive growth rate of each type of infected cells in the
established population of the other. However, mutual invasibility
cannot be satisfied as Equation (5) and its reverse cannot be
satisfied simultaneously. As a consequence, successful invasion
results in the extinction of the resident strain, and the lower
steady-state cell count associated with the superinfecting strain
is attained.

In this simple system the coexistence of both strains in
not possible, and the impact of superinfection is unequivocal.
However, implementing some aspects of the complexity of HIV
infection can open up the possibility of more complicated
behavior in the models. In the following, we introduce extended
models of HIV dynamics that incorporate homeostatic target
cell dynamics, bystander killing (with or without inducible HIV-
specific immunity), interference competition in the infection
process, multiple target cell types, or the virus-induced activation
of quiescent target cells. The analysis of these models, following
the procedure described above, is presented in the Results.

2.2. Homeostatic Target Cell Dynamics
The basic model of virus dynamics assumes a constant rate of
influx for the susceptible target cells. However, at least some of
the new production is likely to arise from the division of existing
target cells, and this process must then inevitably be regulated to
maintain stable cell counts. Such homeostatic dynamics can be
described by a logistic growth term that is a decreasing function
of the current size of the cell pool, and we employed the following
equation to describe such self-limiting dynamics for the target
cells:

Ṫ = rT

(

1−
T

K

)

− (β1I1 + β2I2)T − δTT. (6)

Here r defines the maximal per capita growth rate of the
uninfected target cells, and K is the “carrying capacity” at which
divisions stop entirely. Note that we have retained the simple
exponential death term (δTT) for consistence with the basic
model, and the dynamics of the infected cells remain unchanged
(cf. Equations 2, 3).
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2.3. Models With Bystander Killing of
Uninfected Cells
Accumulating evidence indicates that the killing of uninfected
cells (induced, primarily, by pyroptosis (Doitsh et al., 2014; Ke
et al., 2017) might be a major mechanism of HIV-associated
loss of CD4+ T lymphocytes. Viral strains are likely to differ in
their ability to induce bystander killing, which gives rise to the
following model variant:

Ṫ = σ − [(β1 + γ1)I1 + (β2 + γ2)I2]T − δTT (7)

İ1 = β1TI1 − δ1I1 (8)

İ2 = β2TI2 − δ2I2. (9)

where the loss of target cells depends not only on the infection
efficiency of the strains (βi, cf. section 2.1), but also on the
strength of the bystander killing effect of the infected cells (γi).

In addition, inducible immunity that is activated proportional
to the level of the antigen can have a profound effect on the
equilibria and behavior of the models (De Boer and Perelson,
1998), and indeed on the competition of distinct viral strains
(Iwasa et al., 2004). To investigate whether strain-specific
immune responses can alter the invasion dynamics of viral strains
with varying levels of bystander killing, we combined the earlier
model of Iwasa et al. (2004) with bystander killing to obtain the
following set of equations:

Ṫ = σ −
∑

i = 1,2

(βi + γi)IiT − δTT (10)

İi = βiTIi − kiEiIi − δiIi (i = 1, 2) (11)

Ėi = αiIiEi − δEiEi (i = 1, 2). (12)

In this model, the two viral strains (i.e., the cells infected by them)
activate, and are targeted by, two different populations of effector
cells that are specific to the strains. The effector cells proliferate
proportional to the level of infected cells with rate constants αi,
die at rates δEi , and they kill infected cells in a concentration
dependent manner, with rate constants ki. The scheme of the
models is shown in Figure 1A.

We also tested model variants with alternative immune
effector mechanisms. Cytotoxic lymphocytes might be able to
kill newly infected cells before they could start producing virus
(Klenerman et al., 1996), which can be implemented by making
the fraction of newly infected cells that enter the virus-producing
cell population a decreasing function of the immune response:

İi =
βiT

1+ fiE(i)
Ii − δiIi (i = 1, 2). (13)

The same equation applies also if some effector cells exert a non-
cytotoxic effect that reduces the rate of new infections (Levy et al.,
1996); in this case the reduction in the infection terms involves
also the loss of uninfected cells:

Ṫ = σ −
∑

i = 1,2

βiIi

1+ fiE(i)
T − δTT (14)

FIGURE 1 | The schemes of the models with (A) bystander killing and (optional) strain-specific cytotoxic immunity, (B) saturating dynamics of new infections,

(C) multiple target cell types, and (D) HIV induced activation of target cells. New infections occur proportional to the level of infected cells in all models; the level of

infectious virions is assumed to follow that of the infected cells, with a proportionality constant implicit in the infection parameter (β). The processes and parameters

are explained in the text.
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2.4. Saturating Dynamics of New Infections
Two biological scenarios can be implemented by the following
formalism:

Ṫ = σ −

(

∑

i = 1,2 βiIi

1+
∑

i = 1,2 ǫiIi

)

T − δTT (15)

İi =
βiTIi

1+
∑

i = 1,2 ǫiIi
− δiIi (i = 1, 2), (16)

in which the rate of new infections increases slower than linearly
with increasing infectious titer, and saturates at high titers; ǫi
parameters characterize the strength of the effect. First, this
can be regarded as a “functional response” in the infection
term, acknowledging that the linear proportionality between
the rate of infections and the level of infected cells cannot be
valid indefinitely as the level of the infected cells increases: at
high levels, competitive saturation occurs due to interference
(crowding) effects (Schoener, 1978). Alternatively, the same
model structure applies also if the presence of the virus induces
innate antiviral mechanisms in the target cells (e.g., in the
context of abortive infections). HIV is known to be affected
by several cell-autonomous innate immune mechanisms (Zheng
et al., 2012), some of which are likely to be inducible. In this
setting, the effective infection ratemight decrease already at lower
levels of the infected cells. Figure 1B illustrates the scheme of this
model.

2.5. Multiple Target Cell Types
Strains of HIV can differ in their target cell tropism, which might
also have an effect on their competition dynamics. With regard to
the blood CD4+ T cell count (which we use as a proxy for clinical
status), the major distinction lies between cells expressing either
the CCR5 or the CXCR4 coreceptor (Bleul et al., 1997). Some viral
strains are specific for the former, but dual-tropic viruses often
evolve during the course of disease progression, with varying
levels of affinity for the two coreceptors (Connor et al., 1997).
For simplicity, we here investigate two target cell types that are
produced independently of each other at rates σi, and can be
infected by one or both viral strains with coefficients βij:

Ṫi = σi − Ti

∑

j = 1,2

βijIj − δTiTi (i = 1, 2; j = 1, 2) (17)

İj =
∑

i = 1,2

βijTiIj − δjIj (i = 1, 2; j = 1, 2) (18)

The total target cell level comprises
∑

i Ti; the scheme of the
model is shown in Figure 1C.

2.6. HIV-Induced T-Cell Activation
Our last scenario implements some of the complexity in the
dynamics of the target cells of HIV infection. While the majority
of CD4+ T cell cells in the body are in a quiescent state, HIV
infects only activated cells efficiently (Bukrinsky et al., 1991; Chiu
et al., 2005). In addition, the presence of the virus itself might
increase the rate of activation, which complicates the dynamics
and brings up the possibility that the impact of superinfection

might also be affected. Building on earlier models (e.g., Bartha
et al., 2008), we consider the following system of equations:

Q̇ = σ − δqQ− (α +
∑

i = 1,2

κiIi)Q+ rT (19)

Ṫ =



α +
∑

i = 1,2

κiIi



Q− (r + δT)T −
∑

i = 1,2

βiIiT (20)

İi = βiIiT − δiIi (i = 1, 2), (21)

where T now denotes activated CD4+ T cells (corresponding,
as before, to the susceptible target cells in the system), and Q
indicates quiescent CD4+ T cells that are in a resting state.
Quiescent cells are generated at a constant rate σ , and die
at a rate δQQ. They become activated at a rate composed of
an HIV-independent component, αQ, and an HIV-dependent
component that is proportional to the level of infected cells, κiIiQ,
where κi denotes the efficiency of activation mediated by the ith
viral strain. Activated target cells (T) revert to quiescent state
at the rate rT; the death and infection of target cells, and the
dynamics of infected cells are the same as in the basic model (see
Figure 1D).

Because the dynamics of infected cells is unchanged from
the basic model, here, too, coexistence of the two strains is
not possible, and successful superinfection always decreases the
count of susceptible target cells (T). However, in this model
the total CD4+ T cell count includes also the quiescent cells,
and for this total, the outcome can be different. For details, see
section 3.4.

In each scenario we followed the method introduced above,
i.e., we investigated the criteria for invasions (mutual invasibility)
and the positivity of the steady-state cell levels. We distinguished
the possible equilibrium states based on which cell types are
present with nonzero steady-state levels at the equilibrium point;
we present the distinct equilibrium states of all models in Table 2

for easy reference.

3. RESULTS

In Models and Methods we showed that in the basic model
of virus dynamics superinfection always entails a decrease in
the uninfected target cells. This followed because the criteria
for invasion in that model can be fulfilled only for strains that
ultimately establish a new steady state of the target cells that is
lower than the one set by the resident virus before the invasion.
In the following, we use the same methodology of invasion
analysis on multiple variants of the HIV dynamics model. The
model variants are extensions to the basic model, incorporating
various aspects of the complexity of HIV infection. The main
results are presented here, while the details of the calculations and
simulations are presented in the Appendix. We refer the non-
mathematical reader to the beginning of the Discussion, where
we summarize the main results in intuitive non-mathematical
terms.
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TABLE 2 | Summary of the possible equilibrium states in the analyzed models, showing the cell types that are present in each equilibrium point.

For analytical forms see Appendix 1–4. Note, that “homeostatic dynamics” refers to the self-limiting dynamics of uninfected target cells, whereas “saturating dynamics” refers to the
dynamics of new infections. In the case of multiple target cell types (denoted by ∗), T refers to the simultaneous presence of both target cell types T1andT2.

3.1. Models With Uniform Negative Effect
of Superinfection
We first briefly discuss the scenarios (model variants) where
superinfection either always decreases the uninfected target cell
count (as in the basic model), or it might leave the count
unchanged in some cases.

3.1.1. Homeostatic Target Cell Dynamics
The equilibrium points of the model are listed in (Table 3). The
target cell count in the absence of infection, and the steady
states of infected cells differ from those of the basic model of
virus dynamics. However, the criteria for successful invasion
by a second viral strain, and the steady-state target cell counts
before and after superinfection, are derived from the dynamical
equations of the infected cells, which are the same as in the
basic model. As a consequence, this model variant also predicts a
uniform negative impact of superinfection on the target cell level
(cf. Equation 5).

We also tested models that combined homeostatic target cell
dynamics with other extensions if the basic model, and found
that the effect of superinfection was generally independent of the
choice between homeostatic dynamics and constant influx of new
cells. In the following we therefore present models employing the
simpler approximation of constant influx for the uninfected cells,
consistent with the basic model.

3.1.2. Bystander Killing of Uninfected Cells
We then studied models that allow for the bystander killing of
uninfected cells, which appears to be a major factor in the loss of
CD4+ T cells in HIV infection (Doitsh et al., 2014). We aimed
to investigate whether differences in the rate of bystander killing
can influence the impact of superinfection on clinical status.

TABLE 3 | The equilibrium states (ES) of the basic model with homeostatic target

cell dynamics.

T̂ Î1 Î2

ES1 ()
K(r−δT )

r 0 0

ES2 (I1)
δ1
β1

(T̂ () − T̂ (I1 )) r
Kβ1

0

ES3 (I2)
δ2
β2

0 (T̂ () − T̂ (I2 )) r
Kβ2

TABLE 4 | Equilibrium states in the case of bystander killing of uninfected cells

without immune response.

T̂ Î1 Î2

ES1 () σ
δT

0 0

ES2 (I1)
δ1
β1

(T̂ ()−T̂ (I1) )δT
T̂ (I1) (β1+γ1 )

0

ES3 (I2)
δ2
β2

0
(T̂ ()−T̂ (I2) )δT
T̂ (I2) (β2+γ2 )

Without immune response the dynamics of the system is
described by Equations (7–9). The equilibrium points of the
system are easily computed (Table 4), revealing that the steady-
state counts of uninfected cells remain the same as in the basic
model, and only the steady states of the infected cells are different.
The relations determining the positivity of the infected cell
counts, and the criteria for successful invasion (superinfection)
are also unchanged: successful invasion always decreases the
uninfected target cell count in this implementation of bystander
killing of uninfected target cells.

3.1.3. Bystander Killing With Strain-Specific

Cytotoxic Immunity
We next investigated whether an inducible immune response
against the virus [which can change the equilibria and behavior
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of the models profoundly (De Boer and Perelson, 1998)] can
affect the outcome of superinfection. Because cross-reactive
immunity (that targets both strains) has already been shown
to allow for both increasing and decreasing target cell counts
after successful invasion (Iwasa et al., 2004), we combined
strain-specific immunity with bystander killing. Strain-specific
immunity, by itself, does not allow for increasing target cell
counts (Iwasa et al., 2004); we aimed to investigate whether
immune control by strain-specific immunity might allow for the
invasion of a viral strain with reduced bystander killing, possibly
increasing the target cell count.

In brief, we found that in models with bystander killing
of uninfected cells and strain-specific immunity, superinfection
imposed on a steady state with induced immunity always
decreases the target cell count (for details see Appendix 1).
In the case with an initial virus that is not able to elicit an
immune response, superinfection with a fitter virus can result in
a situation with stable coexistence, an immune response against
the second strain, and no change in the target cell level. Finally,
we also tested alternative action mechanisms for the immune
response (early cytotoxicity, non-cytotoxic immunity); however,
the results of the previous analyses remained robust irrespective
of the effector mechanism.

3.2. Saturating Dynamics of New Infections
We next explored whether implementing interference
competition between the viral strains can influence the outcome
of superinfection. Such competition arises from a “crowding
effect” that reduces the per capita rate of new infections at high
virus load, acknowledging that the rate of new infections cannot
increase indefinitely with the level of infected cells. Alternatively,
the same model applies also if innate antiviral mechanisms are
activated in the target cells proportional to the virus load they
are exposed to.

In this model variant there is no immune control and infected
cell originate from a single pool of target cells (see Figure 1B);
the coexistence of both strains is therefore not possible. The
dynamics of the system is described in Equations (15, 16), where
the rate of new infections increases slower than linearly with
increasing infectious titer, and saturates at high titers. The three
possible equilibrium points are listed in Table A2 in Appendix
2.1. In the case of successful superinfection the new strain
excludes the old one. The condition of successful invasion by the
second strain has the same form as in the basic model (for details,
see Appendix 2.2):

δ1

δ2
>

β1

β2
. (22)

However, in this model, the total target cell count can both
decrease and increase after successful superinfection. The count
increases if the following relation holds:

(δ1β2 − δ2β1)+ δT(δ1ǫ2 − δ2ǫ1)+ σ (ǫ1β2 − ǫ2β1) < 0. (23)

As the expression in the first pair of brackets must be positive
for superinfection to occur (c.f. Equation 22), the relation can
hold if the sum of the remaining two expressions is negative

and of greater magnitude. If σ ≫ δT (which is a realistic
assumption) the condition is mainly affected by the ǫi coefficients
of interference and the βi coefficients of infection efficiency,
yielding the following necessary (though not sufficient) condition
for an increase in the target cell count after superinfection:

ǫ1

ǫ2
<

β1

β2
. (24)

If σ≪δT the condition ismainly affected by the δi rates of infected
cell turnover, in addition to the coefficients of interference, and
an increase in the target cell count is possible only if

ǫ1

ǫ2
<

δ1

δ2
. (25)

In general, superinfection can increase the level of uninfected
target cells, if the relative difference between the two strains is
smaller with respect to the coefficients of interference than with
respect to the relative difference in the infection efficiency and/or
in the infected cell turnover. As interference by a “crowding
effect” is likely to be relatively invariable, this condition might
often be fulfilled under this scenario.

As the above calculations are only approximate, we also
carried out a series of numerical simulations to investigate the
effect of superinfection on the uninfected target cell count. We
fixed the parameters of the uninfected cells such that σ ≫ δT ,
when the condition for increasing target cell count is expected to
be approximated by ǫ1

ǫ2
<

β1
β2
; all other parameters were chosen

randomly from the intervals presented in Table A5 in Appendix.
Overall about 50% of the invasion tests resulted in successful
superinfection (from a random pair of strains, one can always
exclude the other, except for the degenerate case when β1/δ1 =

β2/δ2). In each run the increase/decrease of the uninfected
target cell counts after the superinfection and the ratios of βi

and ǫi parameters were recorded. Figure 2 shows the results
from a randomly selected subset of simulations with successful
superinfection (300 cases of both increasing and decreasing target
cell counts), confirming the validity of the approximate criterion;
the distribution of the relative change in the cell count is shown
for the whole set of 20,000 simulation runs with successful
superinfection.

3.3. Multiple Target Cell Types
This model variant was motivated by the observation that
different virus strains can differ in their target cell tropism (e.g.,
Bleul et al., 1997), which might influence their competition
dynamics by introducing multiple resources into the system. The
scheme of the model is shown in Figure 1C. With two target
cell types, exposure to a second strain can lead to three different
outcomes: unsuccessful invasion; successful superinfection with
exclusion of the original strain; and successful superinfection
followed by the coexistence of both strains. There are four
equilibrium states of the system, but the complexity of their
form (c.f. Appendix 3.1) precludes an analytical investigation of
the effect of superinfection. We therefore assessed the impact of
superinfection with numerical simulations of the model, using
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FIGURE 2 | The top panel shows the change in the uninfected target cell

count after superinfection as a function of the relative differences in the

interference (ǫ) and infection efficiency (β) parameters of both strains; results

from 600 randomly selected simulation runs of the saturating infection

dynamics model (300–300 runs with both increasing and decreasing cell

counts) are shown. Red circles represent runs with increasing uninfected

target cell count; green triangles represent runs with decreasing cell counts.

The blue dashed line of the diagonal corresponds to
ǫ1
ǫ2

=
β1
β2

; Equation (24) is

fulfilled above the diagonal. In all runs we set σ = 10 cells per day and

δT = 0.1 per day; all other parameters were drawn randomly with uniform

distribution from the intervals presented in Table A5 (Appendix). The lower

panel shows the histogram of the (log-transformed) ratios of the uninfected

target cell counts after and before superinfection, from 20,000 simulation runs

with successful superinfection.

parameters sampled randomly from credible intervals (see Table
A5 in Appendix), and recording the total number of target cells
(T1+T2) before and after a successful superinfection (seeModels
andMethods for details). The ratio of simulations with successful
superinfection was again, as expected, close to 50%. In 20,000
simulation runs with successful superinfection, themost frequent
scenario was the exclusion of the first strain accompanied by
a decrease in the total uninfected target cell count (T1 + T2);
however, amodest increase in the total count was also observed in
some of the cases (Table 5), and coexistence of the two strains was
also possible with both increasing and decreasing total uninfected
target cell counts. We found no parameters or simple parameter
combinations that could predict the increase or decrease of total
counts.

TABLE 5 | The observed frequencies of the possible outcomes of successful

superinfection, and the median and interquartile range of the ratio of change in the

uninfected target cell count for each case, calculated from 20,000 simulation runs

with successful superinfection (50% of the total number of runs) in the multiple

target cell types model.

Outcome Frequency Median ratio

of change (Q1–Q3)

Exclusion–increasing total count 0.005 1.029 (1.010− 1.062)

Exclusion–decreasing total count 0.815 0.467 (0.290− 0.672)

Coexistence–increasing total count 0.020 1.010 (1.003− 1.033)

Coexistence–decreasing total count 0.160 0.889 (0.759− 0.965)

3.4. HIV-Induced Activation of Target Cells
Our final extension of the basic model takes into account that
only activated CD4+ T cells are highly susceptible to HIV
infection, while the majority of the CD4+ T cells are in a resting
or quiescent state. By equating the susceptible target cells (T)
with activated T cells, the model can preserve much of the
basic architecture, while adding a new variable for the levels of
quiescent cells (Q) allows it to track the total CD4+ T cell count
with more realism. An important feature of the system is that
HIV itself contributes to the activation of quiescent cells. The
dynamics of the system is described by the set of differential
equations introduced in Equations (19–21); the scheme of the
model is shown in Figure 1D. The three equilibrium states (ES1,
ES2, and ES3; see Table 2, but note that Q is also present) and the
corresponding equilibrium values of different cell counts can be
found in Appendix 4.1.

As there is no immune control, and both strains of the virus
infect the same pool of (activated) target cells, coexistence of
strains is not possible, analogous to the basic model (cf. section
2.1). In the case of successful invasion, the original strain is
excluded, and the level of activated target cells decreases, in line
with the results of the basic model: T̂(I2) < T̂(I1), see Equation (5).
In the equilibrium states with infection, the steady-state values of
susceptible target cell levels, T, are the same in the basic model
and this model; however, the addition of quiescent cells allows
for a more complicated behavior of the total uninfected target cell
count (Q + T) in this case. From Equation (19), the steady-state
level of quiescent cells can be expressed in the following way:

Q̂(Ii) =
rT̂(Ii) + σ

δq + α + κi Î(Ii)
. (26)

While the complexity of the fully expanded formula of the steady
state (see Appendix 4.1) precludes a fully analytical study of
the possible consequences of superinfection, the possibility of
increasing cell count can be gleaned by expressing the increase
of the total CD4+ T cell count (Q̂(I2) + T̂(I2) > Q̂(I1) + T̂(I1)) in
the following form:

δ2

β2
+

r δ2
β2

+ σ

δq + α + κ2 Î(I2)
>

δ1

β1
+

r δ1
β1

+ σ

δq + α + κ1 Î(I1)
. (27)
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Although the level of activated target cells decreases, (i.e.,
δ2/β2 < δ1/β1), the inequality can be fulfilled if the invading
Strain 2 exerts a (sufficiently) lower level of virus-mediated
target cell activation (κ2 Î2 < κ1 Î1), which might be possible
for some parameter combinations. We tested this by numerical
integration of the set of differential equations Equations (19–
21), following the method used in the previous two scenarios
(for details see section 2). In about 10% of the cases, with
single infection the system attained stable oscillations with large
amplitude in all variables, which is biologically unrealistic; we
have therefore excluded these cases from further analysis. We
performed invasion tests with pairs of strains that both attained
stable equilibria in single infections; of these tests, about 11%
resulted in successful superinfection. This is considerably lower
than the “neutral” expectation observed in the other models, and
can be explained by the additional positive feedback of infected
cell levels on the supply of susceptible (activated) cells. The
second strain still has 50% probability to have higher replicative
fitness (β/δ) than the resident strain; however, in some of these
cases it has too low activation potential to sustain infection in the
new host. The results of 20,000 successful invasions are presented
in Figure 3.

In line with the qualitative predictions, the total target cell
count increased for some cases of superinfection where the
(κ1I1)/(κ2I2) ratio was greater than 1. The κ1/κ2 ratio was also
a good proxy: substantial increase in the total target cell count
seems to be possible only if κ1/κ2 > 1, i.e., when the invading
strain is less efficient at activating quiescent target cells. Based
on these numerical results, we conclude that the total uninfected
cell count can both decrease and increase after superinfection, if
the dynamics of target cell activation and quiescence is taken into
account.

Finally, we also tested a minor variant of this model, in which
quiescent cells affected by the virus die instead of entering the
pool of activated target cells [i.e., the κiIi terms appear only in the
equation of quiescent cells (Equation 19) but not in the equation
of activated cells (Equation 20)]. This formalism corresponds to
a mechanism of bystander killing that affects resting uninfected
cells, which might apply to the pyroptotic pathway in particular
(Doitsh et al., 2014). The behavior of this model was analogous
to the structurally similar case of HIV-induced T cell activation:
superinfection with a strain that has higher replicative capacity
but a lower rate of HIV-induced bystander killing of the quiescent
cells, compared with the resident strain, can increase the total
CD4+ T cell count.

4. DISCUSSION

Using simple models of HIV infections, we demonstrated
that superinfection with a second strain of HIV can, under
different assumptions, result in both a deterioration, but also
an improvement of clinical status (approximated by uninfected
target cell counts in the models). This runs counter to the
widespread view that associates superinfection with a negative
outcome. In our exploration of biologically motivated extensions
to the basic model of HIV dynamics, we have identified four new

FIGURE 3 | Relative change of the total uninfected target cell count (Q̂+ T̂ )
after and before successful superinfection, plotted against the total rates of

activation (κ1 Î1)/(κ2 Î2) (top) or the ratio of the activation parameters κ1/κ2

(bottom) of the two virus strains in the HIV-induced activation model. The

results of 20,000 simulation runs with successful superinfection are shown. In

each run, all parameters were drawn randomly with uniform distribution from

the intervals presented in Table A5 (Appendix); the cases with healthy

(uninfected) cell counts between 500 and 1,500 per µL were used for the

analyses. Both axes are logarithmic.

scenarios in which superinfection can also have a positive impact
on the level of uninfected target cells.

The first scenario assumed interference competition for the
susceptible target cells between the competing viral clones.
Such interference is almost inevitable at high densities of a
predator or infectious agent (Schoener, 1978): the rate of new
infections cannot grow indefinitely with increasing infectious
titer. Furthermore, the same model structure is applicable also
if inducible mechanisms of innate antiviral defense reduce the
susceptibility of uninfected cells upon exposure to the virus that
does not result in productive infection. Interference competition
(saturating infection dynamics) can therefore be expected to
occur, although the magnitude of the effect is unclear. In this
model, the total uninfected target cell count increased upon
superinfection when the relative difference between the two viral
strains was smaller with respect to the coefficients of interference
than with respect to the relative difference in the infection
efficiency and/or in the infected cell turnover.
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Variable tropism for multiple distinct cell types also allowed
for increasing total uninfected cell counts, although in this case
the increase was modest and it occurred in only a minority of the
simulation runs with randomized parameters. Larger increases
in the total count were possible in models that distinguished
between activated (susceptible) and resting (non-permissive)
target cells, and included an effect of the virus on the resting cell
pool (activation to susceptible state or bystander killing). In these
models, “invasion fitness” of a virus strain is independent of its
effect on quiescent cells, allowing for superinfection with strains
that induce less depletion of this cell pool, which constitutes the
dominant component of the total CD4+ T cell count.

In all scenarios that allow for increasing target cell level after
superinfection, this positive outcome is expected to arise (in some
of the cases) when there are independent sources of variability
in the relevant parameters, e.g., if the intensity of interference
effects, or the potential for immune activation can vary, at least
in part, independent of the components of replicative fitness
(production and infectiousness of virions, turnover rates of
infected cells and virus particles). Since a complete coupling is
not expected between the parameters, the possibility of increasing
target cell levels is likely if any of the relevant structural features
of these scenarios is indeed important in vivo. This is a robust
result, independent of the uncertainties in the parameters of both
viral and host immune dynamics.

Our results add to the earlier modeling work of Fung et al.
who found that HIV superinfection can occur with a less fit (and
virulent) strain if target cells can be multiply infected (which
reduces or eliminates competition for this resource) (Fung et al.,
2010). Furthermore, since exposure to superinfection is fully
analogous to the appearance of new virus strains by mutation,
earlier modeling results pertaining to the within-host emergence
and competition of new strains are also applicable in the context
of superinfection (e.g., Iwasa et al., 2004, 2005; Ball et al., 2007),
and vice versa. Altogether, there are now five mechanisms known
to allow for a positive impact of HIV superinfection on clinical
status (uninfected target cell count): in addition to the four
cases identified in this paper, the earlier work of Iwasa et al.
(2004) identified cross-reactive immunity as a mechanism that
is also compatible with a positive outcome – all of these scenarios
could, in principle, also allow for evolution toward decreasing
HIV virulence within the host. We summarize the predictions of
various mathematical models with regard to the impact of HIV
superinfection on clinical status in Table 6.

While modeling suggests that HIV superinfection could
have counterintuitive beneficial effects by several possible
mechanisms, the data are not sufficient to predict how often this
might occur. Elucidating the true distribution of outcomes might
be elusive in the era of broadly accessible antiretroviral therapy,
but it might be possible through the retrospective identification
of superinfection events from stored samples. Finding cases
where the CD4+ T cell count improved, at least temporarily,
after superinfection, would indicate that at least one of the
complicating factors that allow such an effect are indeed at
work in the infection. Insights from the models and a detailed
examination of these cases could narrow down the list of possible
mechanisms, and improve our understanding of the within-host
dynamics of HIV infection.

TABLE 6 | Possible outcomes of HIV superinfection on the total uninfected target

cell count.

Scenario After superinfection Source

the target cell count

Basic model Always decreases Iwasa et al.,

2004

Homeostatic target cell dynamics Always decreases This paper

Strain-specific immunity Decreases or unchanged Iwasa et al.,

2004

Cross-specific immunity Can decrease or increase Iwasa et al.,

2004, 2005

Multiple infection of target cells Decreases or unchanged∗ Fung et al.,

2010

Bystander killing

of susceptible target cells Always decreases This paper

of non-permissive target cells Can decrease or increase This paper

Saturating infection dynamics Can decrease or increase This paper

Multiple target cell types Can decrease or increase This paper

HIV-induced T-cell activation Can decrease or increase This paper

∗Fung et al. (2010) used a non-steady-state model of disease progression: when dual
infection of the target cells was allowed to occur unhindered, the rate of disease
progression was unaffected or slightly accelerated after superinfection.

Finally, our results might also have some relevance with
regard to the impact of superinfection on the evolution of HIV
virulence at the population level. The possibility of ambiguous
outcomes implies that superinfection might contribute to the
spreading of not only virulent, but also of attenuated strains
under some circumstances. We also note that even in the
scenarios when superinfection could spread only strains with
higher virulence, this predicted effect could be mitigated
by factors that were not incorporated in our models. For
example, the initial dissemination of the virus is likely to
be aided considerably by the large susceptible population of
CD4+CCR5+ T cells in the gut-associated lymphoid tissue
(Mehandru et al., 2004). This pool is quickly and irreversibly
depleted when an individual first becomes infected with HIV,
and the absence of this readily infectable cell population
might reduce the probability of successful superinfection upon
subsequent exposure to other viral strains. This and other factors
(e.g., cross-specific immunity) might inhibit superinfection,
which would constrain the spreading of strains with higher
within-host fitness also at the population level (Ferdinandy
et al., 2015). Furthermore, the current broad application of
antiretroviral therapy is likely to reduce also the incidence of
superinfection, especially considering that therapeutic guidelines
increasingly advise the treatment of all diagnosed individuals.
In principle, superinfection by drug resistant viruses could still
occur (Chakraborty et al., 2004; Smith et al., 2005), but currently
available evidence suggests that such events are extremely rare
(Bartha et al., 2013). Finally, the population-level dynamics
and evolution of HIV is also influenced by factors that act on
between-host transmission (Nowak and May, 1994; van Baalen
and Sabelis, 1995; Alizon and van Baalen, 2008), and trade-
offs between viral traits might also complicate the evolutionary
dynamics (Ball et al., 2007).

Frontiers in Microbiology | www.frontiersin.org 10 July 2018 | Volume 9 | Article 1634

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Móréh et al. Modeling Outcomes of HIV Superinfection

In summary, we have shown that the effect of HIV
superinfection on clinical status is not straightforward: while
the simplest models predict that only a more virulent strain
can successfully establish superinfection, adding biologically
relevant details of HIV infection opens up the possibility that
superinfection might also improve clinical status in some cases.
The impact of superinfection at the population (epidemic) level
is likely to be modulated by further factors.
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