

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Karyological and bioinformatic data on the common chameleon *Chamaeleo chamaeleo*

Marwa Sidhom^a, Khaled Said^a, Noureddine Chatti^a, Fabio M. Guarino^{b,*}, Gaetano Odierna^b, Agnese Petraccioli^b, Orfeo Picariello^b, Marcello Mezzasalma^{b,c}

^a Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de

Monastir, Université de Monastir, Avenue Taher Hadded (B.P 74) Monastir 5000, Tunisie

^b Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 26, 80126 Napoli, Italy

^c Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK

ARTICLE INFO

Article history: Received 6 March 2020 Revised 9 April 2020 Accepted 24 April 2020 Available online 30 April 2020

Keywords: Karyotype C-banding DNA Chameleons Reptiles

ABSTRACT

The data presented in this paper stand as supplementary information of the associated article "Karyological characterization of the common chameleon (Chamaeleo chamaeleon) provides insights on the evolution and diversification of sex chromosomes in Chamaeleonidae" [1]. This work provides (i) raw experimental data on the karyology of the common chameleon Chamaeleo chamaeleon and (ii) the results of bioinformatic analysis on sex-specific and repeated DNA sequences found in the same species. The karyological information here presented includes traditional staining method (Giemsa staining) and sequential C-banding + fluorochromes performed on Tunisian samples of the species. The sequence data include the alignments of the isolated DNA sequences with homologous sequences found in squamate Short Read Archives (SRAs) and the results of searches in public nucleic acid databases.

© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author: Fabio M. Guarino. *E-mail address:* fabio.guarino@unina.it (F.M. Guarino).

https://doi.org/10.1016/j.dib.2020.105640

2352-3409/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

S	pecif	ications	5 Table

Subject	Agricultural and Biological Sciences
Specific subject area	Animal Science and Zoology
	Ecology, Evolution, Behaviour and Systematics
Type of data	Image
	Figure
How data were acquired	Karyological data were acquired using different staining/banding techniques
	(Giemsa staining, sequential C-banding + fluorochromes) followed by
	observations with optical (Giemsa staining) and epifluorescence
	(C-banding + fluorochromes) microscope.
	Molecular data were acquired by sequencing the amplicons obtained using
	the primers reported in [2] from DNA of a male of C. chameleo. The obtained
	sequences were manually edited with Chromas Lite 2.1.1. (Technelysium Pty
	Ltd, South Brisbane, AU) and assembled with BioEdit 7.2.5. [3]
Data format	Raw
	Analyzed
	.tif images
Parameters for data collection	Metaphase plates were searched at 10x and 20x magnification and recorded
	at 100x magnification either with optical or epifluorescence microscopy.
	Observations in epifluorescence were carried out using filter cubes for
	Chromomycin A ³ (CMA) and DAPI (excitation/emission wavelength, 445 nm
	/575 nm and 358 nm/ 461 nm, respectively).
Description of data collection	Data were collected through optical (Giemsa staining) and epifluorescence
	(C-banding + fluorochromes) microscope. Collection of molecular data was
	performed by search for identity of the obtained sequences [1] using BLAST
	Short Read Sequences (SRA) Archive of male 4 of C. calyptratus (Accession
	number SRX3547644) [2]. Alignments among C.Cham-RADseq of C.
	chamaeleon and SRA sequences of C. calyptratus were performed using
	BioEdit [3]
Data source location	Latitude and longitude (and GPS coordinates) for collected samples: Agareb
	(Tunisia) 34°25′60" N, 10°10′60" E (32 S 608722.99 m E, 3810839.52 m N);
	Tourief (Tunisia) 36°20'18 N, 8°35'9" E (32 S 462833.91 m E, 4021866.03 m
	N); Zéramdine (Tunisia) 35°34'16" N, 10°44'6" E (32 S 631429.31 m E,
	3911883.93 m N)
Data accessibility	Raw karyological data can be found with this article.
	Sequence data can be found as reported in [1].
Related research article	Sidhom M., Khaled S., Chatti N., Guarino F.M., Odierna G., Petraccioli A.,
	Picariello U., Mezzasalma M. Karyological characterization of the common
	chameleon (Chamaeleo chamaeleon) provides insights on the evolution and
	diversification of sex chromosomes in Chamaeleonidae. Zoology. In press
	https://doi/10.1016/j.zool.2019.125738

Value of the Data

The karyological data presented here show undifferentiated karyotypes, in terms of chromosome number, morphology and distribution of heterochromatin, between different sexes of *C. chamaeleon*, indicating that sex chromosomes are at an early evolutionary stage.

- Cytogeneticists as well as evolutionary and molecular biologists can benefit from these data. Further comparative karyological analyses on other species and genera of Chamaeleonidae can highlight differences in chromosome number/morphology, heterochromatin content and distribution, and distinct sex determination systems.
- The alignments with the newly generated DNA sequences, previously isolated in *C. calyptratus*, show their conservation in *C. chamaeleon*.
- Comparative molecular and bioinformatic analyses on the isolated DNA sequences will add information about their conservation and distribution in other chameleon, squamate and vertebrate taxa.

Fig. 1. Metaphase plate of a male specimen of C. chamaeleon from Agareb (Tunisia) stained with 5% Giemsa solution.

Fig. 2. Metaphase plate of a female specimen of C. chamaeleon from Tourief (Tunisia) with C-banding + CMA3.

1. Data Description

The data presented in this paper include the supplementary information of a thorough karyological characterization, molecular and bioinformatic analyses on Tunisian samples of the common chameleon *C. chamaeleon* described in the associated paper [1]. Figure 1 shows a metaphase plate with 2n=24 chromosomes stained with Giemsa solution of a male common chameleon specimen. Figure 2 and 3 represent a sequential C-banding + CMA3 (Fig. 2) and + DAPI (Fig. 3), performed on a metaphase plate from a female specimen of the common chameleon. Figure 4 shows the distribution of best hits from query of the Cham 57 sequence isolated in [1] on SRA (Short Read sequence Archive) sequences of males 1 - 8 of *C. calyptratus* reported in [2]. Figure 5 shows the alignment with C.cham-RADseq (Restriction site-Associated sequence)_M2 sequence isolated in [1] and homologous sequences found in squamate SRAs [2]. Figure 6 shows the alignment with C.cham-RADseq_M3 sequence isolated in [1] and homologous sequences found in squamate SRAs [2]. Figure 7 shows the alignment with C.cham-RADseq_M12 sequence isolated in [1] and homologous sequences found in squamate SRAs [2]. Figure 8 shows the alignment with C.cham-RADseq_M13 sequence isolated in [1] and homologous sequences found in squamate SRAs [2]. Figure 7 shows the alignment with C.cham-RADseq_M13 sequence isolated in [1] and homologous sequences found in squamate SRAs [2]. Figure 8 shows the alignment with C.cham-RADseq_M13 sequence isolated in [1] and homologous sequences found in squamate SRAs [2].

Fig. 3. Metaphase plate of a female specimen of C. chamaeleon from Zéramdine (Tunisia) with C-banding + DAPI.

Fig. 4. Distribution of best blast hits of Cham 57 sequence isolated in [1] on SRA sequences of males 1 - 8 of *C. calyptratus* (Accession numbers SRX3547644 - SRX3547651) [3].

2. Experimental Design, Materials, and Methods

We performed different chromosome staining techniques and banding methods to determine the number and morphology of chromosomes and to characterize heterochromatin distribution of the study specimens of the common chameleon. Chromosomes were obtained from cell suspensions using the air-drying method [4]. Specimens were injected with 0.01ml/ g body weight of a 0.1% vinblastine solution (Sigma), and after 2 h they were deeply anaesthetized by exposure to profound exposition to ethyl ether vapours. Chromosomes were obtained from bone marrow using the air-drying method, namely: 5 ml of a hypotonic solution of KCl 0.075 M were injected through medullar canal of femurs and cells collected in a test tube. After centrifugation at 1000 rpm, cells were fixed in methanol-acetic solution (3:1) and dropped (20 microliter) on a slide. Chromosomes were stained with conventional technique (5% Giemsa solution at pH 7 for 10 min.) and with sequential C-banding + CMA+DAPI following [5-7]. In brief, chromosomes were incubated in BA(OH)₂ at 40°C (2 min.), washed first in HCl 0.2N and then in distilled water, then incubated in 2xSSC (Sodium Saline Citrate) for 15 min. After washing in distilled water, chromosomes were stained for 20 min in CMA (50 μ m/ml in Mcllvaine buffer pH7), then washed

	10	20	30	40	50	60	70	80	90	100
C.cham-RADseq_M2	ctgaaagacaaco	accaagcgCT	TGTTAGTCTG	ACTGCTGAC	AACCATTCCCC	CCTTTAAAGC	TTTCGAGGCA	TGCAGCAATT	ITGTGATTTTG	ATGTGC
-	піппіппп	111111111		11111111			1111111111			111111
SRA1	CTGAAAGACAACC	ACCAAGCGCT	TGTTAGTCTG	ACTGCTGAC	AACCATTCCCC	CCCTTTAA-GC	TTTCGAGGCA	TGCAGCAATT	ITGTGATTTTG	SATGTGC
						ппппп	111111111			111111
					SRA2 TCCCC	CCTTTAAAGC	TTTCGAGGCA	TGCAGCAATT	TTGTGATTTTC	ATGTGC
	110	120	130	140	150	160	170	180	190	200
C.cham-RADseq M2	ACAATGTCCTTGT	TGACTCCAGA	GCTGTGCAAA	ATTATTCTT	TTCTGCTCCTC	GTGCAAAGCC	AGCACTTCAA	AGGATGAAGC	ICTGGCTTGGT	TTAGTA
-	11111111111111	1111111111					1111111111			111111
SRA1	ACAATGTC	SRA3 CCAGA	GCTGTGCAAA	ATTATTCTT	TTCTGCTCCTC	GTGCAAAGCC	AGCACTTCAA	AGGATGAAGC	ICTGGCTTGGT	TTAGTA
	11111111111111	1111111111		111111111						
SRA2	ACAATGTCCTTGT	TGACTCCAGA	GCTGTGCAAA	ATTATTCTT	TTCTGCTCCTC	GTGCA				
Ditil										
	210	220	230	240	250	260	270	280	290	300
C. cham-RADseg M2	СТСТССААТСТТА	CCAGGCACAT	GAATTTGGAG	CCAGATTAT	AGTTTCTGAG		CTGTCTCAAC	TAAATGAGAA	TCCTGAGAGGZ	TATTAT
o.c.a. habbed							11111111111			111111
SBA3	СТСТССААТСТТА	CCAGGCACAT				SRA	5 GTCTCAAC	TAAATGAGAA	TCCTGAGAGG	TATTAT
bidib										
SDAA	CTCTCCAATCTTA	CCACCCACAT	233TTTTCC3C	CCACATTAT	AGTTTCTCAG	I I I I I I I I I I I I I I I I I I I	CTCTCTCTCAAC	TAAATCACAA	TCCTCACACC	
51044	CICICCARICITA	CCAGGCACAT	SAATTIGGAG	CCAGATIAI	AGIIICIGAGI	ICCICACAACC	CIGICICANC	IMMIGAGAA.	ICCIGNONOGA	1141 141
	310	320	330	340	350	360	370	380	390	400
C cham-PADsec M2	TTTTTATCTTACCT	CTCTTTTTTT		AAACTCCTT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CTACTTCACA	ATCTTCCCAA	ATTCACACCA	CCCAACTACC	CTTCCT
e.c.d. hubbed_in										
SDA	ጥጥጥጥአጥ			SBA6 COTT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CTCTTCCCAA	11111111111 3777C3C3CCC3	CCCAACTACC	CTTCCT
SIM	1111111111111111			IIIIIIIIII			IIIIIIIIIII	II	JOCCARCIAGO	GIIGCI
CDAE								11		
SKAS	IIIIAIGIIACCI	CICITIIIAA	GAGAIIIAA	AAAGIGGII		CIACIICACA	AIGIIGGCAA	AI		
	410	420	430	440	450					
C cham-PADcog M2	410 TCACCTCTCTATC	320 TCCTTTCAAT	TCACCator	440	450					
C. Cham-RADseq_Mz	IGACGICIGIAIG	ILLIIIGAAI								
CD36										
SRAD	TGAAGICTGTATC	TGGIITGAAT	GIGAGGATCA	caccaatgg	catgeeta					

Fig. 5. Alignment of Short Read Archive (SRA 1-6) of RAD seq of *C. calyptratus*: male 4 (Accession number SRX3547644) [3] versus the sequence C.cham-RADseq_M2 of male (Cham57) of *C. chamaeleon* (99% identity) isolated in [1]. Primer pairs are indicated in lower cases.

to the second of	10	20	30	40	50	60	70	80	90	100
C.cham-RADseq_	13 aggaactgtgtgag	tctcaatcaA	IGTTTCCTCA	TGTTATGCA	CAGAGAATAT	TTTTTCAGAAA	TTCCCTATAC	TTTTCAGAGC	AAACTGATTT	TCATTG
SRA	I AGGAACTGTGTGAG	ICTCAATCAAT	IGTITCCTCA	TGTTATGCA	I'CAGAGAATAT	TTTTTCAGAAA	TTCCCTATAC	TTTTCAGAGC	AAACTGATTT	TCATTG
									(DD2) [
									SRAZ T	ICATIG
	110	120	130	140	150	160	170	180	190	200
C.cham-RADseq	A3 CTTGCCCTAGGTTT	AAGAACCTCA	GCACTTGGTT	TGTCTTCCA	GAACATTAGAC	CTATGTGTTTT	GAATTAAGAA	AGGGAGTTTT	CAATGGCCAG	CCACAT
	11111111111111						1111111111		1111111111	111111
SRA1	CTTGCCC							S	RA3 GGCCAG	CCACAT
	1111111111111111			111111111			11111111111		11111111111	1
SRA2	CTTGCCCTAGGTTT	AAGAACCTCA	GCACTTGGTT	TGTCTTCCA	GAACATTAGAC	CTATGTGTTTT	GAATTAAGAA	AGGGAGTTTT	CAATGGCCAG	С
	210	220	230	240	250	260	270	280	290	300
C.cham-RADseq	43 GAGTTTCTCCTGCC	CAGCCACATC	GAATGAATG	GGTCCTAAAA	ACAAAACCAGA	GCATTACGGA	CCTGGGGTCA	TTATTGTCAC	TAATAATATA	TTAGGT
-	111111111111111						1111111111		1111111111	111111
SRA3	GAGTTTCTCCTGCCC	CAGCCACATC	GAATGAATG	GGTCCTAAAA	CAAAACCAGA	GCATTACGGA	CCTGGGGTCA	TTATTGTCAC	TAATAATATA	TTAG
									1111111111	111111
								SRA4	TAATAATATA	TTAGGT
	21.0	200	220	240	250	260	270	200	200	400
C sham DiDaga	310	320	330	340	350	360	370	380	390	400
C.Cham-RADseq_	ACCUTACTGTTGTG.		AGAAGGCATC	TCACTCGTA	GTACGATCAP		TATTTATTAA	AATCTCGAGA	AAAACATGGG	LILLI
SBA	acccmacmcmmcmcr	TTTCCACATA		TCACTCGTA			11111111111 TATTTATTA	1111111111 33TCTCG3G3	AAAACATCCC	
Didia	ACCOMPTOTO:	1110cmon1m	ionnioochiic	ICHCICOIM	Joincom chi	mennenonoe	1111111			
						SRA	5 TTTATTAG	CAGCTCGAGA	GAA-CATGGG	CTGCAG
	410	420	430	440	450	460	470	480	490	500
C.cham-RADseq_	13 AGTCAGCAAAAACCA	ACAACTTATAT	TATGGGTAGA	ATGTCAGTT	ACATTGGTTA	ACATTTGCATG	GGCTTATAGA	GAAGCAGGAA	TAACATTCTG	ATAAAT
	1111111111111111						11111 111		11111111111	
SR	A5 AGTGAGCAAAACCA	ACAACTTGTAT	ACAGGCAGA	ATGTCAGTTA	ACACTGGGTA	ACATTTGCGTA	GGCTTCCAGA	GAA		
									1111111111	
						SRA6 ATG	GGCTTATAGA	-AAGCAGGAA	TAACATTCTG	ATAAT
	510	520	530	540	550	560	570	580		
C.cham-RADseg	A3 CAGCAGCTATCTGG	GTTGTTTCA	ACTEGCACCT	TTGCTCTTA	TATATAACA	GATGGgctct	gatettttt	otogaa		
SRA6 CAGCAGCTATCTGGGGTTGTTTCAACTGGCACCTTTGCTCTTATTATATAACAAGAT-GGCTCTGAGCTTTTTtqtqqaa										

Fig. 6. Alignment of Short Read Archive (SRA 1-6) of RAD seq of *C. calyptratus*: male 4 (Accession number SRX3547644) [3] versus the sequence C.cham- RADseq_M3 of the male (Cham57) of *C. chamaeleon* (99.9% identity) isolated in [1]. Primer pairs are indicated in lower cases.

	10	20	30	40	50	60	70	80	90	100ù
C.cham-RADseq_M12	caacctcctgccag	ggattctCC	ATGAAGCTGG	IGCCTTCTCI	GAGGAATGAG	AACCAGCTTA	CTTCCAGATG	TGTCAGGCTC	CAGGCCACCGA	GTAAGTA
	1111111111111111				1111111111		1111111111	11111111111	1111111111	
SRA1	CAACCTCTTGCCAG	GGATTCTCC	ATCAAGCTGG	IGCCTTCTCI	GAGGAATGAG	AACCAGCTTA	CTTCCAGATG	TGTCAGGCTC	CAGGCCACCGA	GTAAGTA
									111111111	
								SRA2	GGCCACCGA	GTAAGTA
	110	120	130	140	150	160	170	180	190	200
C.cham-RADseq_M12	CAATGGGTCAGAAG	SCTTTCTCTC	TCCCTGCGGA	TTCACGCCAI	AGAGTTAGAA	TATCTGGTAG	CAAGAAATGG	TCACAGGAAI	GAGGGATGGA	ACATCCG
	1111111111111111		1111111111		11111111111	11111111111	1111111111	11111111111		
SRA1	с					SRA3 G	CAAGAAATGG	TCACAGGAAI	GAGGGATGGA	ACATCAG
	1111111111111111		1111111111		1111111111	1111111111	11111111111	11111111111	1111111111	1
RA2	CAATGGGTCAGAAG	SCTTTCTCTC	TCCCTGCGGA	TTCACGCCAI	AGAGTTAGAA	TATCTGGTAG	CAAGAAATGG	TCACAGGAAI	GAGGGATGGA	A
	210	220	230	240	250	260	270	280	290	300
C.cham-RADseq M12	TGCCCTTCTTGGGZ	ACAGTTAAGG	ACCTTTCCCT	IGGTATCCAG	ACTGAGGTAT	GTTCACCTTC	GCTGTTTGGA	AAAGTATAGG	GAAAGCAACTG.	AAGAATG
-	1111111111111111		1111111111		1111111111	1111111111	1111111111	1111111111	11111111111	111111
SRA3	TGCCCTTCTTGGGZ	CAGTTAAGG	ACCTTTCCCT	IGGTATCCAG	ACTGAGGTAT	GTTCACCTTC	GCTGTTTGG			
						11	1111111111	1111111111	11111111111	
						SRA4 TO	GCTGTTTGGA	AAAGTATAGG	AAAGCAACTG	AAGAATG
	310	320	330	340	350	360	370	380	390	400
C.cham-RADseg M12	AGCCCCATGTACCO	CATGGAGATG	CTCCTCACAT	GCAACTCTG	CCACGAGGTT	GTGCATTGGA	TGCACGCTAT	GTATGAGGCC	CCTAAGAACA	ATTTTTC
<u>-</u>	1111111111111111		11111111111		11111111111		11111111111		11111111111	
SRA4	AGCCCCATGTACCO	ATGGAGATG	CTCCTCACAT	GCAACTCTG	CCACGAGGTT	GTGCATTGGA	TGCACGCT			
						1111111111				
				SI	A5 CGAGGTT	GTGCATTGG	TGCACGCTAT	GTATGAGGC	CCTAAGAACA	Δ ጥጥጥጥጥር
						01001111001				
	410	420	430	440	450	460	470	480	490	500
C cham-BADsec M12	ACACCACCACTCT	TACCACTCTC	AUCCUSCACO		GAGCAGCCAC	366667333C8	0,00	AGGATTCtoo	actaatcott	cacata
C.Cham habseq_Hiz										1111111
SPAS	ACACCACCACTCT	CACCACTCTC	ATCCCACACC		GACCACCAC	7 CC				
SKAS										

Fig. 7. Alignment of Short Read Archive (SRA 1-6) of RAD seq of *C. calyptratus*: male 4 (Accession number SRX3547644) [3] versus the sequence C.cham-RADseq_M12 of male (Cham57) of C. chamaeleon (identity 99.9%) isolated in [1]. Primer pairs are indicated in lower cases.

Fig. 8. Alignment of Short Read Archive (SRA 1-4) of RAD seq of *C. calyptratus*: male 4 (Accession number SRX3547644) [3] versus the sequence RADseq Cham_M13of male (Cham57) of *C. chamaeleon* isolated in [1] (identity 95.3%). Primer pairs are indicated in lower cases.

in McIlvaine buffer and stained with DAPI (0.5 μ m/ml in McIlvaine buffer) for 10 minutes. After washing in McIlvaine buffer, slides were mounted with antifade solution (80% glycerine + 0,2% of DABCO, DiAzoBiCicloOctane). Determination of the chromosome number, karyotype reconstruction and chromosome classification were performed according to Levan et al. [8].

Metaphase plates were searched using the objectives 10 or 20x with optical (for Giemsa staining) and fluorescence microscope (for sequential C-banding) and recorded with objective 100x.

The DNA sequences isolated in [1] were blasted in BLAST Short Read Sequences (SRA) Archive of male 4 of *C. calyptratus* (Accession number SRX3547644) [2]. Alignment among the DNA sequences isolated in [1] and SRA sequences of *C. calyptratus* were performed using BioEdit [3].

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

We thank the Tunisian Ministry of Higher Education and Scientific Research, Tunisia and University of Monastir for giving permission to catch the specimens and for granting research funding at the Biology Department of the University of Naples Federico II.

References

- M. Sidhom, S. Khaled, N. Chatti, F.M. Guarino, G. Odierna, A. Petraccioli, O. Picariello, M. Mezzasalma, Karyological characterization of the common chameleon (*Chamaeleo chamaeleon*) provides insights on the evolution and diversification of sex chromosomes in Chamaeleonidae. Zoology. https://doi/10.1016/jzool.2019.125738.
- [2] S.V. Nielsen, J.L. Banks, R.E. Diaz Jr., P.A. Trainor, T. Gamble, Dynamic sex chromosomes in Old World chameleons Squamata: Chamaeleonidae), J. Evol. Biol. 31 (2018) 484–490, doi:10.1111/jeb.13242.
- [3] T.A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids. Symp. Ser. 41 (1999) 95–98.
- [4] H. Macgregor, J.M. Varley, Working with Animal Chromosomes, John Wiley& Sons, Chichester, New York., 1983.
- [5] M. Mezzasalma, F. Andreone, G. Aprea, F. Glaw, G. Odierna, F.M. Guarino, When can chromosomes drive speciation? The peculiar case of the Malagasy tomato frogs (genus *Dyscophus*), Zool. Anz. 268 (2017) 41–46,+ https://doi.org/10. 1016/j.jcz.2017.04.006.
- [6] M. Mezzasalma, F. Andreone, F. Glaw, A. Petraccioli, G. Odierna, F.M. Guarino, A karyological study of three typhlopid species with some inferences on chromosome evolution in blindsnakes (Scolecophidia), Zool. Anz. 264 (2016) 34–40, https://doi.org/10.1016/j.jcz.2016.07.001.
- [7] M. Mezzasalma, F. Andreone, G. Aprea, F. Glaw, G. Odierna, F.M. Guarino, Molecular phylogeny, biogeography and chromosome evolution of Malagasy dwarf geckos of the genus *Lygodactylus* (Squamata, Gekkonidae), Zool. Scr. 46 (2017) 42–54, doi:10.1111/zsc.12188.
- [8] A. Levan, K. Fredga, A.A. Sandberg, Nomenclature for centromeric position on chromosomes, Hereditas 52 (1964) 201–220, http://dx.doi.org/10.1111/j.1601-5223.1964.tb01953.x.