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Abstract. Presuming that Alzheimer’s disease (AD) might represent an antagonistic pleiotropic phenomenon derived from the
evolvability of multiple amyloidogenic proteins, targeting such proteins simultaneously could enhance therapeutic efficacy.
Furthermore, considering that amyloid-� (A�) immunotherapies during reproductive life stage might adversely decrease A�
evolvability in an offspring’s brain, the disease-modifying A� immunotherapies should be limited to post-reproductive time
in lifespan. Thus, current A� immunotherapy strategies should be revised accordingly. Given that the “adiponectin paradox”
might underlie both amyloidosis and cognitive dysfunction in aging brain, blocking activin signaling situated downstream of
the adiponectin paradox might be an alternative strategy to prevent AD.
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Despite two decades of Alzheimer’s disease
(AD) clinical therapeutics, the prevailing strat-
egy of amyloid-� (A�) immunotherapy has never
convincingly met all benchmarks for therapeutic
efficacy. Furthermore, early A� immunotherapy
trials employing active recombinant A�42 immu-
nization were suspended due to encephalomyelitis
[1]. Notably, a dissociation has existed where
histologically demonstrated improvement in A� neu-
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ropathology in AD patients, was paired with a lack
of improvement in clinical dementia [2, 3]. Newer
passive A� immunotherapies in aged patients using
monoclonal and polyclonal A� antibodies [4] have
also shown little clinical benefit (Fig. 1A).

The precise reasons for A� immunotherapy fail-
ure in AD remain elusive. Central to this remains our
incomplete understanding of the normal physiology
of amyloidogenic proteins (APs), like A� and tau,
relevant to neurodegenerative disease. Consequently,
we proposed evolvability as a novel physiologi-
cal function of APs in neurodegeneration [5, 6].
Specifically, as APs consist of intrinsically disor-
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Fig. 1. Diagram illustrating the various effects of therapeutic strategies on amyloidogenic evolvability and neurodegenerative disorders.
Evolvability in offspring and AD in parental aging are driven by aggregation of APs, and these states are proposed to exist in an antagonistic
pleiotropy relationship. A) Conventional active A� immunotherapies carried out for AD during aging have proved unsatisfactory and
unforeseen side effects. B) Second generation disease-modifying A� immunotherapies potently inhibit various stages of A� aggregation,
resulting in both suppression of A� evolvability and AD. Thus, disease-modifying A� immunotherapy is beneficial to the older AD patients,
but detrimental to their offspring. C) The adiponectin paradox-activin signaling pathway is involved in the regulation of A� evolvability, and
later during aging, in which activin may promote AD neurodegeneration through the antagonistic pleiotropy mechanism. Therefore, treatment
with the activin-binding molecule, follistatin, or analgoues [25, 26], may be effective in preventing activin-induced AD neurodegeneration.

dered structures [7] corresponding to diverse brain
stressors, their protofibrils might transmit stress infor-
mation to offspring via germ cells in a prion-like
fashion [8]. Supposing that amyloidogenic evolvabil-
ity might critically influence the success of amyloid
immunotherapy, our objective is to re-imagine amy-
loid immunotherapy from this unique standpoint.

Much remains unknown about the precise nature
of AD pathogenesis and the role of amyloid immuno-
therapy. In our opinion, two key issues should be
addressed. First, it must be determined whether A�
remains the critical pathogenic and therapeutic tar-
get in AD. Certainly, all recent A� immunotherapy
AD trials are based on the amyloid cascade hypoth-
esis which places A� centrally in AD pathogenesis
[9]. Yet, because of failed A� immunotherapy casting
doubt on traditional hypotheses, interest has shifted
toward tau as the next therapeutic target [10]. Beyond
A� and tau, however, other novel APs might also
interact with and be critical to AD pathogenesis. Tar-
geting these may turn out to be essential for linking

reduced AD pathology to a clinically meaningful
therapeutic outcome. In this regard, our view of amy-
loidogenic evolvability suggests that a number of APs
might be involved in evolvability against multiple
brain stressors, and that neurodegenerative disease
might be a result of antagonistic pleiotropy derived
from amyloidogenic evolvability [8]. In addition to
A� and tau, several other APs have been character-
ized in AD brain, including p53 [11], amylin [12], and
adrenomedullin [13], suggesting that immunotherapy
against a singular AP might be insufficient to generate
a clinical benefit.

Second, although the design of amyloid immuno-
therapy trials has been successively optimized over
time, challenges remain. Initially, since the timing of
treatment in previous A� immunotherapy occurred
too late in the disease course to exert any benefits
for the neurodegenerative process, later passive A�
immunotherapies have been staged progressively ear-
lier into mild cognitive impairment and eventually
into asymptomatic stages such as in the dominantly
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inherited AD cohort [14]. While two monoclonal
antibodies failed to improve cognition in phase II/III
trials, one monoclonal antibody, aducanumab, co-
developed by Eisai and Biogen, was controversially
approved by the US Food and Drug Administration
with a restricted use [15]. However, according to our
evolvability hypothesis, one may be concerned that
increasingly earlier initiation of disease-modifying
therapy for AD treatment/prevention may extend into
younger reproductive life, negatively affecting amy-
loidogenic evolvability (Fig. 1B).

Yet, given that amyloid immunotherapy during
younger reproductive life might suppress protofibril
formation of APs, leading to reduced amyloidogenic
evolvability, this could adversely increase suscep-
tibility to stressors in offspring, causing various
pathologies. For instance, it is probable that psychi-
atric disease including schizophrenia might manifest
in offspring due to the decreased A� evolvability
[16]. Furthermore, neuropathic types of lysosomal
storage disorders, such as Niemann-Pick disease and
Gaucher disease, might be attributed to decreased
AP evolvability, involving A� and �-synuclein [17].
Notwithstanding the importance of a possible trans-
generational effect of amyloid immunotherapy on
offspring/youth, no studies have yet addressed this
question. This should not only be assessed using in
vivo models, but also more importantly in follow up
assessments of patients already treated with amy-
loid immunotherapies and especially their offspring.
Similar concerns may also impact therapies against
other APs such as tau, affecting their evolvability.
Thus, in attempts to improve the effectiveness of A�
immunotherapies by applying them earlier in life,
they might inadvertently interfere with amyloido-
genic evolvability and be detrimental to the brains
of offspring, prompting a need to re-evaluate such
therapeutic strategies.

Then, how can the aggregation of multiple APs
be simultaneously inhibited? Certainly, attacking
multiple APs using specific immunotherapies is pos-
sible, but might prove overly complex. A more
practical target might be activin, a TGF-� family
member signaling through type II and -I receptors
[18], which is involved in growth and differentia-
tion in a variety of biological systems, and where
activin is negatively regulated by follistatin. Sup-
posing that activin might be involved in protein
aggregation in AD and stimulation of inflammatory
mechanisms via serine/threonine phosphorylation
[19], such activin activity of promoting neurode-
generation during aging might reflect evolvability

in reproduction through antagonistic pleiotropy. As
such, down-regulation of activin would be desirable,
perhaps through suppression by follistatin.

Furthermore, recent evidence suggests that the
“adiponectin paradox” might be involved in the
progression of aging-associated chronic diseases,
including AD. Despite its beneficial properties, such
as sensitizing insulin signaling, stimulating mito-
chondrial biogenesis, and suppressing inflammation,
adiponectin worsens aging-associated disorders, gen-
erating the “adiponectin paradox” [20–22]. Since
activin is likely positioned downstream from the
“adiponectin paradox”, the activin signaling path-
way might be a relevant therapeutic target [23].
Activin might also be centrally involved in antagonis-
tic pleiotropy in aging. Specifically, activin signaling
blockade using follistatin, the activin-binding pro-
tein, or its analogues [24, 25], might be beneficial
in AD (Fig. 1C), as well as in other aging-associated
chronic disorders such as muscular dystrophy [26].
In conclusion, taking into account the physiological
properties of APs, including potentially antagonistic
pleiotropy and relevant interactions, will be critical
when designing any AD therapy strategy, and mech-
anisms that address multiple APs such as activin
signaling, might prove therapeutically significant.
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