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Abstract

Centrosome amplification (CA) is a common feature of human tumours and a promising tar-

get for cancer therapy. However, CA’s pan-cancer prevalence, molecular role in tumouri-

genesis and therapeutic value in the clinical setting are still largely unexplored. Here, we

used a transcriptomic signature (CA20) to characterise the landscape of CA-associated

gene expression in 9,721 tumours from The Cancer Genome Atlas (TCGA). CA20 is upre-

gulated in cancer and associated with distinct clinical and molecular features of breast can-

cer, consistently with our experimental CA quantification in patient samples. Moreover, we

show that CA20 upregulation is positively associated with genomic instability, alteration of

specific chromosomal arms and C>T mutations, and we propose novel molecular players

associated with CA in cancer. Finally, high CA20 is associated with poor prognosis and, by

integrating drug sensitivity with drug perturbation profiles in cell lines, we identify candidate

compounds for selectively targeting cancer cells exhibiting transcriptomic evidence for CA.

Author summary

Centrosome amplification, i.e. an increased number of centrosomes—structures that exist

inside cells, is a hallmark of cancer cells and therefore an Achilles’ heel for the develop-

ment of innovative therapies that specifically target tumour cells, sparing healthy ones. To

exploit centrosome amplification’s clinical potential, it is crucial to understand its role in

cancer development and to identify compounds for its selective targeting. These are chal-

lenging tasks due to the technical difficulty of profiling centrosome amplification in cells.

In this study, we circumvent those challenges by computationally analysing the expression

of 20 genes known to promote centrosome amplification across nearly 10,000 tumours of

over 30 cancer types, thereby estimating their relative centrosome amplification levels.

We found that those genes are indeed highly active in tumours and associated with prog-

nosis in different cancer types. We also show that those genes’ expression is associated

with instability in the structure of cancer cells’ chromosomes and identify candidate drugs
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for selectively targeting those cells. Our work therefore demonstrates the potential of

computational analyses of large volumes of cancer molecular and clinical data to elucidate

cellular and molecular mechanisms of tumour development and propose novel therapeu-

tic options in oncology.

Introduction

The centrosome, an organelle composed of two centrioles surrounded by a pericentriolar pro-

tein matrix, is the major microtubule-organising centre of animal cells, hence being pivotal for

several fundamental cellular processes, including signalling, cell polarity, division and migra-

tion [1–4]. Each centrosome duplicates once per cell cycle to ensure bipolar spindle assembly

and successful chromosome segregation [5,6]. Centrosomes are thus implicated in the mainte-

nance of genome stability.

Centrosome amplification (CA)–the presence of more than two centrosomes—is a com-

mon feature in cancer [7]. Supernumerary centrosomes generate multipolar mitosis and con-

sequent genome instability [6,8–10], they can accelerate and promote tumourigenesis in vivo
[11–13] and promote cellular invasion and metastatic behaviour [14–17]. However, CA’s pan-

cancer prevalence, molecular role in tumourigenesis and therapeutic value remain poorly

understood, largely due to the technical challenges associated with profiling such small cellular

structures in human cancer tissues. For instance, quantifying centrosome numbers and abnor-

malities is often hampered by the limited thickness of formalin-fixed and paraffin-embedded

tissue sections, preventing the imaging of entire cells [18]. In addition, three-dimensional

imaging and analysis are mandatory, but cumbersome and time consuming [19].

To at least partially circumvent those challenges, we propose the estimation of CA based on

the expression levels of CA-associated genes. Recently, proof-of-principle gene-expression-

based CA signatures have been developed [20–23], the most comprehensive one being CA20,

based on the expression of TUBG1, which encodes the most abundant centrosomal protein,

and 19 other genes whose overexpression has been experimentally shown to induce CA [23].

This signature was proposed to reflect CA levels in tumour samples and shown to have a prog-

nostic value in two independent breast cancer cohorts [23].

In the present study, we used CA20 to estimate relative CA levels across 9,721 tumour and

725 matched-normal samples of 32 cancer types from The Cancer Genome Atlas (TCGA),

thereby revealing the first pan-cancer landscape of CA-associated gene expression. We show

the association of CA20 with distinct breast cancer clinical and molecular features. We also

break down the independent associations of CA20 with different sorts of genomic instability

across cancer types. Finally, we show that high CA20 is associated with poor clinical outcome

in different cancer types, having identified candidate compounds for selectively targeting can-

cer cells exhibiting transcriptomic evidence for this hallmark of cancer.

Results

The pan-cancer landscape of centrosome amplification-associated gene

expression

To estimate relative CA levels in human samples, we used CA20, a score based on the expres-

sion of 20 genes experimentally associated with CA [23], as a surrogate. We quantified CA20

across the transcriptomes (profiled by RNA-seq) of 9,721 tumour and 725 matched-normal

samples spanning 32 cancer types from TCGA (Fig 1a, S1 Table). CA20 correlates with the
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Fig 1. The pan-cancer landscape of centrosome amplification-associated gene expression. (a) For each sample, the CA20 score was calculated as

the sum of the normalized (log2 median-centred) expression levels of the 20 signature genes. (b) CA20 score distribution across tumour samples of

all TCGA cancer types. Cohorts are ordered by their median CA20 score. Black points and lines represent the median +/- upper/lower quartiles. (c)

Tumour samples have higher CA20 levels in all 15 cancers with both tumour and matched-normal samples available (at least 10 samples per sample

type; False Discovery Rate (FDR)< 0.0001, Wilcoxon rank-sum test). CA20 score distributions of tumour and normal samples are represented in

red and blue, respectively. ACC: adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical

squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; COADREAD: colon and rectum adenocarcinoma;

DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: oesophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck
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predicted proliferation rates of TCGA tumour samples [24] (Spearman’s correlation coeffi-

cient, r = 0.4, p-value < 2.2e-16; S1a Fig), as expected, given that some of the CA20 genes

encode for proteins involved in cell proliferation. Cervical (CESC), testicular (TGCT) and

oesophageal (ESCA) cancers show high CA20, contrasting with lower scores in kidney (KIRP,

KICH and KIRC) and prostate (PRAD) cancers (Fig 1b). Some cancer types, such as low-grade

glioma (LGG) and breast invasive carcinoma (BRCA), exhibit high variability of CA20, con-

cordantly with previous observations that the proportion of cells with CA in breast tumours

ranges from 1 to 100% [7,25] depending on the tumour subtype [26].

We also observed significant differences in CA20 between specific cancer types with the

same tissue of origin. Although all kidney cancers have low CA20 scores, kidney renal papillary

cell carcinoma (KIRP) shows a lower score than the other types (p-value < 0.0001, Wilcoxon

rank-sum test; S1b Fig). Similarly, glioblastoma multiforme (GBM), skin cutaneous melanoma

(SKCM) and lung squamous cell carcinoma (LUSC) show higher CA20 than low-grade glioma

(LGG), uveal melanoma (UVM) and lung adenocarcinoma (LUAD), respectively (p-

value < 0.0001 for all comparisons, Wilcoxon rank-sum test; S1b Fig). We note that squamous

cell carcinomas have higher CA20 within cervical (CESC) and oesophageal (ESCA) cancers

(p-value < 0.001 and< 0.01, respectively, Wilcoxon rank-sum test; S1c Fig), suggesting that

the observed differences are indeed associated to the different cell types of origin and not only

to differences between tissue of origin.

Since CA has been considered a hallmark of tumour cells [7], we tested the difference of

CA20 between tumour and matched-normal samples. Indeed, tumour samples have higher

CA20 levels in all 15 cancer types with both sample types available (at least 10 samples of each

type; False Discovery Rate (FDR) < 0.0001, Wilcoxon rank-sum test; Fig 1c). In addition,

using linear regression analyses with proliferation rate as an additional covariate, we found

that CA20 is higher in tumour samples, either when considering all cohorts together (linear

regression p-value < 0.0001, using cohort as an additional covariate; S2 Table) or per individ-

ual cohort (FDR < 0.0001 for all cohorts; S2 Table), independently of proliferation rate, dis-

carding the suggestion of CA20 being its mere surrogate. These results emphasise CA as a

hallmark of cancer.

CA20 is associated with breast cancer clinical and molecular features

Breast cancer is one of the best studied cancer types, with large cohorts of clinically annotated

tumour samples available [27,28], and where the CA20 score was developed [23]. In addition,

CA has been frequently correlated with aggressive features in breast cancer [6,25,26,29]. Given

that we observed high variability of CA20 in TCGA breast tumour samples, we sought to

investigate in more detail the relationship between CA20 and different breast cancer molecular

features in that cohort.

CA20 is higher in tumours than in normal breast samples (p-value< 0.0001, Wilcoxon

rank-sum test; Fig 2a) and we found higher levels of CA20 in invasive tumours from ductal

histologic subtype (the most common, accounting for 90% of tumours) [30] when compared

with lobular ones (p-value < 0.0001, Wilcoxon rank-sum test; Fig 2b). The difference between

squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma;

LAML: acute myeloid leukemia; LGG: low-grade glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung

squamous cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; PCPG:

pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach

adenocarcinoma; TGCT: testicular germ cell tumours; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine corpus endometrial

carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma.

https://doi.org/10.1371/journal.pcbi.1006832.g001
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ductal and lobular subtypes is consistent in non-triple negative breast tumours (p-

value < 0.0001, Wilcoxon rank-sum test; S2d Fig), as well as in samples from tumour stages II

and III (p-value < 0.0001 and< 0.01, respectively, Wilcoxon rank-sum test; S2e Fig). We also

tested the differences in CA20 between the different PAM50 molecular subtypes, derived

based on a 50-gene classifier [31]. Basal-like breast tumours have the highest CA20 scores (p-

value < 0.0001, p-value < 0.0001, and p-value < 0.001 for contrasts with luminal A, luminal B,

and HER2-enriched, respectively, Wilcoxon rank-sum test; Fig 2c). This is in line with our

recent work experimentally showing that basal-like breast cancers have indeed more CA than

luminal ones [26]. We also observed a strong difference between luminal subtypes, with higher

Fig 2. CA20 is associated with different breast cancer clinical and molecular features. (a-h) CA20 score distribution per (a,e) sample type, (b,f)

histological and (c,g) PAM50 molecular subtype, and (d,h) tumour stage for (a-d) TCGA breast cancer and (e-h) METABRIC samples. Black points and

lines represent the median +/- upper/lower quartiles. Number of samples used in each violin is shown within brackets. ��� p-value< 0.001, ���� p-

value< 0.0001 and n.s. non-significant (Wilcoxon rank-sum test). (i-j) Luminal B and basal-like human breast carcinomas display higher levels of

centrosome amplification (CA). (i) Illustration of the procedure to quantify CA in patient samples. (j) Percentage of cells displaying CA in breast

tumours from the different PAM50 molecular subtypes (29 luminal A, 3 luminal B, 3 HER2 and 13 basal-like). Between 5 and 107 cells were analysed for

each patient. � p-value< 0.05, ��� p-value< 0.001 and n.s. non-significant (Wilcoxon rank-sum test).

https://doi.org/10.1371/journal.pcbi.1006832.g002
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CA20 in luminal B samples (p-value < 0.0001, Wilcoxon rank-sum test; Fig 2c). Moreover, we

tested the association between CA20 and tumour stage, having found a significant CA20

increase from stage I to stage II (p-value< 0.0001, Wilcoxon rank-sum test; Fig 2d), but no sig-

nificant changes between subsequent stages (Fig 2d). All associations between CA20 and breast

cancer histology, PAM50 molecular subtypes and tumour stage remain significant within both

low and high proliferating tumours (samples divided by the median of estimated proliferation

rates; S2a–S2c Fig).

All the aforementioned associations were validated in an independent cohort (Fig 2e–2h,

S2f and S2g Fig and S3 Table), comprising 144 normal and 1,992 tumour breast samples from

the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) [28]. We

still tested the association between CA20 and the METABRIC integrative clusters, 10 molecu-

lar subgroups defined based on joint clustering of copy number and gene expression data [28].

CA20 varies across integrative clusters (p-value < 0.0001, Fligner-Killeen test) and is particu-

larly enriched in cluster 10 (FDR< 0.0001, Wilcoxon rank-sum test, for comparisons with

each of all the other clusters; S2h Fig), characterized by high proportion of basal-like tumours,

high genomic instability, high rate of TP53 mutations, chromosome arm 5q deletions and very

poor prognosis in the short term [28].

We complementarily analysed the frequency of CA in human breast carcinomas from the

different PAM50 molecular subtypes, comprising 29 luminal A, 3 luminal B, 3 HER2 and 13

basal-like tumours (Fig 2i and S4 Table). Concordantly with TCGA and METABRIC results,

we observed a higher percentage of cells with supernumerary centrioles in luminal B (average

of 27%) than in luminal A carcinomas (7%; p-value < 0.05, Wilcoxon rank-sum test; Fig 2j

and S3 Fig). Moreover, basal-like (25%) display higher levels of CA than luminal A tumours

(p-value < 0.0001, Wilcoxon rank-sum test). Despite the reduced number of luminal B sam-

ples, our patient data support CA20 as a good surrogate of CA levels and the suggestion that

CA is more frequent in luminal B than in luminal A human breast carcinomas.

CA20 is associated with genomic instability features in cancer

CA and consequent multipolar mitoses have been associated with aneuploidy, genomic insta-

bility and tumourigenesis for more than a century [32,33]. Using the available quantitative

characterization of aneuploidy in TCGA [34], we found that CA20 is higher in samples with

genome doubling (p-value< 0.0001, Wilcoxon rank-sum test; Fig 3a) and positively correlated

with their aneuploidy score (measured as the total number of altered—gained or lost—chro-

mosome arms; Spearman’s correlation coefficient, r = 0.44, p-value < 2.2e-16; Fig 3b).

Although CA20 is positively correlated with both chromosomal deletions and amplifications

(Spearman’s correlation coefficient, r = 0.41 and 0.36, p-value < 2.2e-16, respectively; S4a and

S4b Fig), it is more strongly associated with chromosomal deletions (p-value < 2.2e-16, t-test

for z-transformed coefficients; see also S4c Fig). Given the known association between loss of

p53 and CA [6,7,35] and the recent observation that p53 null cells tend to have an enrichment

of chromosome losses over gains [36], we tested the hypothesis that the observed association

between CA20 and chromosomal deletions could be linked to TP53 mutations. However, the

increase in the proportion of deletions per sample from low to high CA20 samples is consistent

within both TP53 wild-type and mutated samples (p-value < 0.0001 and< 0.05, respectively,

Wilcoxon rank-sum test; S4d and S4e Fig), showing it is independent of TP53 mutations (two-

way ANOVA p-value for interaction = 0.6; S4d Fig).

Investigating the hypothesis that CA20-associated aneuploidy levels could vary between

chromosomes, we identified 20 chromosome arms whose deletion (10 arms) or amplification

(10 arms) was enriched in tumour samples with higher CA20 (linear regression, FDR < 0.05;

Pan-cancer landscape of centrosome amplification
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Fig 3. CA20 is associated with genomic instability features in cancer. (a) CA20 score is associated with genome doubling. Box plots of CA20 score

per whole genome doubling status. ���� p-value< 0.0001 (Wilcoxon rank-sum test). (b, d-f) CA20 is associated with different genomic instability

features. Smooth scatter plots showing correlation between CA20 score and (b) aneuploidy score (measured as the total number of altered chromosome

arms), (d) number of mutations per Mb, (e) number of CNAs and (f) clones per tumour across TCGA tumour samples (Spearman’s correlation

coefficient, r = 0.44, 0.48, 0.47 and 0.43, respectively, p-value< 2.2e-16 for all). (c) Chromosome arm alterations associated with CA20 score. Volcano

plot shows the results of linear regression analyses comparing CA20 score between samples with deletion or amplification of each chromosome arm.

Arms whose deletions or amplifications are associated with higher CA20 (FDR< 0.05) are represented in blue and red, respectively. Chromosome arms

with FDR< 1e-5 are highlighted and box plots of CA20 score per chromosome arm alteration are shown for 5q, 16p and 7p arms. ���� p-

value< 0.0001 (linear regression). (g) Hierarchical clustering of TCGA cancer types based on the independent association between the different

genomic instability features and CA20 score. Unsupervised hierarchical clustering using Euclidean distances calculated based on multiple linear

regression p-values of association with CA20 of aneuploidy score, number of mutations per Mb, number of CNAs and clones per tumour, per TCGA

cohort and with all cohorts together (PanCancer). Heatmap colour scale according with -log10 of linear regression p-values. Main clusters are

highlighted with different shades of grey. BLCA: bladder urothelial carcinoma; CESC: cervical squamous cell carcinoma and endocervical
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Fig 3c and S2 and S5 Tables). The strongest associations were with loss of 5q, 16p and 7p.

Interestingly, 5q deletion was previously associated with CA20-high basal-like breast tumours

[27,37–40] and METABRIC integrative cluster 10 [28] (Fig 2c and 2g and S2h Fig). The associ-

ation between CA20 and 5q deletion remains when removing the breast cancer cohort (linear

regression p-value < 2.2e-16; S5 Fig and S2 Table). This observation raises the question if

matched-normal samples of the analysed tumour samples have a CA20 signal predictive of

those 5q, 16p and 7p deletions. We tested this hypothesis by comparing the CA20 levels

between normal samples (with intact tested chromosomal arms) whose matched tumours lost

5q, 16p or 7p, with those with tumours with amplifications or no alterations in those chromo-

somal arms. We found that normal samples whose matched tumours lost 5q or 16p exhibit

higher CA20 scores (p-value < 0.01 and< 0.05, respectively, Wilcoxon rank-sum test; S6 Fig),

therefore suggesting that a CA20 increase may precede those chromosomal abnormalities.

In addition to tumour aneuploidy, CA20 is positively correlated with mutation burden,

number of somatic Copy Number Alterations (CNA) and number of clones per tumour

(Spearman’s correlation coefficient, r = 0.48, 0.47 and 0.43, respectively, p-value < 2.2e-16 for

all; Fig 3d–3f). All these associations are independent of cell proliferation (linear regression p-

values< 1e-8 for all; S2 Table and S7 Fig). We found that the correlation with mutation bur-

den holds for different types of mutations (silent, missense, splice site and nonsense), as well as

for mutations shown to be pathogenic (data from ClinVar https://www.ncbi.nlm.nih.gov/

clinvar/) in all diseases and particularly in cancer (S8 Fig). Since these genomic instability fea-

tures are likely correlated between each other, we applied multiple linear regression analyses

across 1050 tumour samples (from 12 different cancer types; minimum of 30 and average of 88

samples per cohort) with information for those 4 covariates (S6 Table). We identified indepen-

dent positive associations between CA20 and all genomic instability features, with stronger

association for CNAs (linear regression p-values = 1.3e-5, 7.2e-4, 5.3e-10 and 6.4e-3 for aneu-

ploidy, mutation burden, CNA and number for clones, respectively; Fig 3g and S2 Table).

These associations remain significant when proliferation rate is used as an additional covariate

in the regression (p-values = 2.3e-5, 7e-4, 2.4e-9 and 0.03 for aneuploidy, mutation burden,

CNA and number for clones, respectively; S2 Table). We performed similar analyses per

TCGA cohort and identified a group of cancer types where CA20 is mostly associated with

CNA and aneuploidy (prostate adenocarcinoma, glioblastoma multiforme, bladder urothelial

carcinoma, and brain low-grade glioma; Fig 3g and S9 Fig; S2 Table). Although CA has been

globally associated with genomic instability, these results highlight CNA as the main associated

feature and show that these associations differ between cancer types.

CA20 is associated with cancer’s mutational spectrum

Point mutations are one of the most common types of mutational events that impact the stabil-

ity of a cancer genome. We examined the pan-cancer association between CA20 and somatic

mutations in 14,589 genes and found 752 whose mutations are associated with CA20

(FDR< 0.05; Fig 4a and S2 and S7 Tables). Most significant associations of mutated genes

with the CA20 score are positive, consistently with its correlation with higher mutation burden

(Fig 3d), and enriched in cancer driver genes (Gene Set Enrichment Analysis (GSEA) [41,42]

p-value< 0.001, using a list of 299 cancer driver genes derived from TCGA’s PanCancer analy-

sis [43]; S10a Fig). TP53 shows the strongest association (linear regression p-value < 0.0001;

adenocarcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma; LGG: low-

grade glioma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; PRAD: prostate adenocarcinoma; SKCM: skin cutaneous

melanoma; STAD: stomach adenocarcinoma; THCA: thyroid carcinoma.

https://doi.org/10.1371/journal.pcbi.1006832.g003
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Fig 4. CA20 is associated with cancer’s mutational spectrum. (a) Somatic mutations pan-cancer-wide associated with the CA20 score. The

volcano plot shows the results of linear regression analyses comparing the CA20 score between mutated and wild-type samples for 14,589 genes

(at least 20 mutated samples). Genes whose mutations are associated with higher and lower CA20 (FDR< 0.05) are represented in red and blue,

respectively. The top 10 genes are highlighted. (b) TP53 mutations are associated with CA20 in different cancer types. Linear regression

coefficients, representing CA20 score differences between TP53 mutated and wild-type tumour samples, across TCGA cohorts with at least 20

mutated samples. Significant associations (FDR< 0.05) are coloured as in (a). (c) Mutational signatures pan-cancer-wide associated with CA20,

independently of other types of genomic instability. Left: Significance of linear regression analyses (-log10 p-value) between CA20 and

contribution of each mutational signatures including, as independent variables, the four genomic instability features: aneuploidy, mutation

Pan-cancer landscape of centrosome amplification
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Fig 4a), with positive correlations for the majority of cancer types surveyed (10 out of 17 cancer

types with at least 20 mutated samples; FDR < 0.05; Fig 4b), therefore putatively extending the

reported association between loss of p53 and CA [6,7,35] to 10 different cancer types. The sec-

ond strongest positive association is with tumour suppressor pRb (RB1), whose acute loss has

been found to induce CA [44]. Unexpectedly, the strongest negative association is with E-cad-

herin (encoded by CDH1), meaning CDH1-mutated samples have lower CA20 levels. Given its

tumour suppressor role in cancer and the fact that its mutations mostly induce loss of function

[45], this result suggests loss of E-cadherin is associated with lower CA in human tumours,

which is contrary to what have been reported in epithelial cancer cells [46]. GSEA on genes

whose mutations are associated with CA20 found that they are enriched in cancer-associated

pathways and Wnt/β-catenin signalling (S10c–S10f Fig). As only a small fraction of somatic

mutations represent driver events, we repeated the pan-cancer analysis of association between

CA20 and somatic mutations using likely driver mutations from the Cancer Genome Inter-

preter (https://www.cancergenomeinterpreter.org/mutations) [45]. Within the tested 33 genes

with at least 10 mutated samples, we found three (TP53, PIK3CA and EGFR) whose driver

mutations are associated with CA20 (FDR< 0.05; S10b Fig and S2 and S8 Tables), TP53 being

again the strongest association. Overall, we show that CA20 is associated with both passenger

and driver mutational spectra in cancer, with particular enrichment in cancer driver genes and

Wnt/β-catenin signalling.

CA has still been proposed as a driver of genomic instability [11]. We thus wondered if the

DNA mutation spectrum associated with CA was similar to specific signatures of somatic

mutations caused by different mutational processes in cancer [47]. We therefore retrieved the

contribution of the 30 published mutational signatures for each TCGA tumour sample from

mSignatureDB [48] and uncovered three of them positively associated with CA20: signature 3,

associated with BRCA1/2 mutations; signature 13, attributed to APOBEC activity; and signa-

ture 4, characteristic of smoking’s mutational pattern (FDR< 0.05; S11 Fig). As these signa-

tures are likely confounded with genomic instability, we performed multiple linear regression

on CA20 including, as independent variables, the mutational signature and the four aforemen-

tioned genomic instability features: aneuploidy, mutation burden, CNA and number of clones

per tumour (S2 Table). Signature 1, linked with ageing and characterised by C>T substitutions

(S12a Fig), and its “reverse” (T>C substitution bias) Signature 12, found mainly in liver cancer

(S12b Fig), are respectively positively and negatively associated (FDR < 0.05) with CA20 (Fig

4c), independently of other types of genomic instability and even when proliferation rate is

added as a variable (FDR = 0.051 for both signatures).

To evaluate the putative causality of CA20-associated mutations (Fig 4a), we interrogated

the Connectivity Map (CMap) database of signatures [49] about the impact of each of the

3,799 gene knock-downs on the CA20 gene set in human cancer cell lines. The resultant

burden, CNA and number of clones per tumour. Positive and negative significant associations (FDR< 0.05) are coloured in red and blue,

respectively. Right: Smooth scatter plots showing correlations between CA20 and the contribution of mutational signature 1 (linked with ageing)

in 3 TCGA cohorts. Linear regression p-values are shown. (d) Causal effect of CA20-associated mutations on CA20 levels. Scatter plot of linear

regression’s coefficient from (a) versus Connectivity Map (CMap)’s knock-down score, ranging from 100 (CA20 up-regulation) to -100 (CA20

down-regulation), for each gene in common. Genes are coloured as in (a) and the ones with both significant linear regression associations and

absolute knock-down score higher than 80 are highlighted. (e and f) Gene Set Enrichment Analysis (GSEA) of genes ranked by their CMap’s

knock-down score using (e) a manually curated list of centriole duplication factors and (f) MSigDB’s Hallmark Gene Sets (unfolded protein

response and mitotic spindle were significantly associated, FDR< 0.05). GSEA p-values are shown. BLCA: bladder urothelial carcinoma; BRCA:

breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; ESCA: oesophageal carcinoma; GBM:

glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; LGG: low-grade glioma; LIHC: liver

hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; OV: ovarian serous cystadenocarcinoma; PAAD:

pancreatic adenocarcinoma; PRAD: prostate adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach

adenocarcinoma; UCS: uterine carcinosarcoma.

https://doi.org/10.1371/journal.pcbi.1006832.g004
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connectivity scores (S9 Table), ranging from 100 (CA20 up-regulation) to -100 (CA20 down-

regulation), were compared with the pan-cancer association between somatic mutations in the

cognate genes and CA20 (Fig 4d). We thereby identified 6 genes with a putative causal effect

on CA20 scores (|connectivity score| > 80; Fig 4d): P2RY12, RB1, ITSN1 and MYCBP2 are

putative inhibitors of CA (their knock-down up-regulate CA20 genes), whereas ABCC5 and

COPA are putative promoters of CA (their knock-down down-regulate CA20 genes).

Although acute loss of pRb (encoded by RB1) has been found to induce CA [44], confirming

pRb as a CA inhibitor, to our knowledge none of the remaining genes identified herein has

been previously associated with CA. They are therefore interesting candidates for future func-

tional studies. Genes from a manually curated list of centriole duplication factors (93 genes,

including only 10 from the CA20 signature; S10 Table) are enriched in negative CMap knock-

down scores (GSEA p-value < 0.001; Fig 4e), suggesting they are indeed needed for cells to

express CA-associated genes. Using the MSigDB’s Hallmark Gene Sets library [50], we identi-

fied unfolded protein response and mitotic spindle as significantly enriched in genes whose

knock-down showed negative scores, i.e. CA20 down-regulation (GSEA FDR< 0.05; Fig 4f).

This association suggests that mitotic spindle components activate CA-associated genes and/

or that cells highly expressing CA-associated genes may be less likely to survive when their

mitotic spindle is perturbed.

CA20 is associated with prognosis, hypoxia and stromal infiltration in

cancer

CA has been associated with poor patient prognosis in a variety of cancer types [7]. We there-

fore tested CA20’s association with overall patient’s survival across 31 TCGA cancer types with

more than 40 samples each, finding high CA20 significantly associated with worse prognosis

in 8 different cancer types (FDR< 0.05, log-rank test; Fig 5a and S11 Table). This result sup-

ports the potential of CA20 for prognostic-based patient stratification.

Hypoxia is a potent microenvironmental factor promoting genetic instability and malig-

nant progression [51–53]. Given that hypoxia has been shown to enhance centrosome aberra-

tions in breast cancer [54,55], we investigated whether CA20 is associated with the relative

hypoxia levels in TCGA tumour samples, given by a previously established surrogate metagene

expression signature [56]. We found a positive correlation between CA20 and the hypoxia

score (Spearman’s correlation coefficient, r = 0.61, p-value< 2.2e-16; Fig 5b) that is indepen-

dent of genomic instability (linear regression p-value = 7.8e-9; S2 Table). We further con-

firmed that this association is independent of estimated proliferation rates (linear regression

p-value = 5.6e-7 when proliferation rate is added as a covariate to the regression; S13a Fig and

S2 Table). We also performed this linear regression analysis for each of the 12 TCGA cohorts

with information for all covariates and identified three cancer types (glioblastoma multiforme,

lung adenocarcinoma and bladder urothelial carcinoma) where hypoxia is positively associated

(FDR< 0.05) with CA20 (Fig 5c; S2 Table).

Although a tumour is also composed by stromal and immune cells [57], the association

between CA and tumour cellular composition has not been addressed yet. CA20 is associated

with lower stromal (Spearman’s correlation coefficient, r = -0.52, p-value < 2.2e-16; Fig 5d)

and immune (Spearman’s correlation coefficient, r = -0.34, p-value < 2.2e-16; S13c Fig) cell

infiltration in TCGA. However, pan-cancer linear regression analyses revealed that only the

negative association with stromal infiltration is independent of genomic instability (linear

regression p-value = 2.7e-6 and 0.24, for stromal and immune, respectively; S2 Table). The

same was observed when including proliferation rate as an additional covariate (linear regres-

sion p-value = 1.2e-4 and 0.21, respectively; S13b and S13d Fig and S2 Table). We have also
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Fig 5. High CA20 is associated with poor patient prognosis, hypoxia and lower stromal infiltration in cancer. (a) Kaplan-Meier plots for patient

stratification based on CA20 score (patients divided by CA20 median: lower CA20 in blue and higher CA20 in red) in 8 different cancer types. Numbers

at risk every 2.5 years (tables) and 5-year survival rates (points and dashed lines) are shown. P-values for log-rank tests for differences in survival are

shown. (b) CA20 upregulation is associated with hypoxia. Smooth scatter plot showing correlation between the hypoxia and the CA20 scores across

TCGA tumour samples (Spearman’s correlation coefficient, r = 0.61, p-value< 2.2e-16). (c) CA20 upregulation is associated with hypoxia in different

cancer types. Linear regression coefficients, representing the CA20 score dependence on hypoxia score, independently of genomic instability, across the

TCGA cohorts with information for all covariates. Significant associations (FDR< 0.05) are coloured. (d) CA20 is associated with lower stromal cell

infiltration. Smooth scatter plot showing correlation between the CA20 and the stromal scores across TCGA tumour samples (Spearman’s correlation

coefficient, r = -0.52, p-value< 2.2e-16). (e) CA20 is associated with lower stromal cell infiltration in head and neck squamous cell carcinoma and lung

adenocarcinoma. Linear regression coefficients, representing the CA20 score dependence on stromal score, independently of genomic instability, across
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performed similar analyses for each of the 5 TCGA cohorts with information for all covariates

and found that CA20 is significantly associated (FDR< 0.05) with lower stromal infiltration in

head and neck and lung cancers (Fig 5e), with lower immune infiltration in glioblastoma, and

with higher immune infiltration in head and neck cancer (S13e Fig), all independently of geno-

mic instability (S2 Table).

Identification of compounds that selectively kill cancer cells with high

CA20

CA is a hallmark of cancer cells and hence an appealing target in cancer therapy. In order to

identify compounds that could target cancer cells with such abnormality, we have employed

CA20 to estimate relative CA levels in 823 human cancer cell lines from the Cancer Therapeu-

tics Response Portal (CTRP) [58] (S12 Table), for which both transcriptomic and drug-sensi-

tivity profiles are publicly available. Correlation analyses between CA20 and drug-sensitivity

(in Area Under the dose-response Curve, AUC) for 354 compounds revealed 81 negatively

correlated with CA20 (FDR < 0.05, Spearman’s correlation; Fig 6a and S13 Table), i.e. higher

CA20 was associated with lower drug AUC and, therefore, higher drug activity. The enrich-

ment of negative correlations (S14 Fig) may reflect the bias for cancer-targeting compounds in

CTRP. These results suggest several candidate compounds to selectively kill cancer cells with

CA, such as 3-CI-AHPC, CD-437, STF-31, methotrexate, BI-2536 and clofarabine (Fig 6b).

The first three are probes, methotrexate and clofarabine are U.S. Food and Drug Administra-

tion (FDA)-approved drugs for several cancer types (https://www.cancer.gov/about-cancer/

treatment/drugs/methotrexate) and paediatric acute lymphoblastic leukemia (https://www.

cancer.gov/about-cancer/treatment/drugs/fda-clofarabine), respectively. Interestingly, BI-

2536 has been in clinical trials for several solid and liquid tumours (https://clinicaltrials.gov/

ct2/results?cond=&term=bi+2536&cntry=&state=&city=&dist) and is an inhibitor of polo-like

kinase 1 (PLK1), whose inhibition has already been associated with CA suppression [59,60].

Complementarily, we mined the CMap database to identify compounds that could impact

the CA20 score and therefore putatively reduce/increase CA levels. We calculated the impact

of 2,837 compounds on the CA20 transcriptomic levels in human cancer cell lines (S14 Table)

and identified some whose activity drove CA20 up-regulation (putative CA promoters; S15

Fig), such as VEGFR2-kinase-inhibitor-IV, dienestrol (oestrogen receptor agonist) and sulfo-

raphane (anticancer agent in clinical trials for Bladder, Breast, Lung and Prostate cancers;

https://clinicaltrials.gov/ct2/results?cond=sulforaphane&Search=Apply&recrs=d&age_v=

&gndr=&type=&rslt=). We also identified compounds that down-regulated CA20, such as two

CDK inhibitors (purvalanol-a and aminopurvalanol-a), JAK3-inhibitor-VI, etoposide (topo-

isomerase and cell cycle inhibitor) and CD-437 (agonist of RARG, retinoic acid receptor

gamma; Fig 6c).

For the 164 drugs tested in both datasets, we observed a positive correlation between their

CA20/sensitivity correlations in CTRP and their CMap scores (Spearman’s correlation coeffi-

cient, r = 0.26, p-value = 8.3e-4; Fig 6d), indicating that drugs selectively targeting cells with

higher CA20 are reducing the expression of these genes, possibly by killing the abnormal cells

in the tumour cell population. These complementary approaches uncovered RARG’s agonist

the TCGA cohorts with information for all covariates. Significant associations (FDR< 0.05) are coloured. ACC: adrenocortical carcinoma; BLCA:

bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; GBM:

glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; LGG:

low-grade glioma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MESO: mesothelioma; PAAD: pancreatic adenocarcinoma;

PRAD: prostate adenocarcinoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; UVM: uveal

melanoma.

https://doi.org/10.1371/journal.pcbi.1006832.g005
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Fig 6. Identification of compounds that selectively kill cancer cells with high CA20. (a) Compounds with selective activity on cell lines with high or

low CA20 score. The volcano plot shows the results of Spearman’s correlation analyses between CA20 scores and compound Area Under the dose-

response Curve (AUC) across Cancer Therapeutics Response Portal (CTRP) human cancer cell lines. Note that lower AUC means higher drug activity.

The compounds whose activity was associated with high and low CA20 (FDR< 0.05) are represented in blue and red, respectively. The top 6

compounds are highlighted. (b) Top 6 compounds targeting cells with higher CA20 score. Smooth scatter plots showing correlation between CA20

score and compound AUC across CTRP cell lines for the top 6 compounds from (a). Spearman’s correlation coefficients, r, and respective p-values are

shown. (c) Compounds that down-regulate the CA20 gene set. Heatmap of CMap’s drug score, ranging from 100 (maximum CA20 up-regulation) to

-100 (maximum CA20 down-regulation) per cell line. Drug average score (last column) is the mean of drug scores across cell lines. The 20 compounds

with the lowest drug average score are shown and ranked accordingly. Tissue of origin of human cancer cell lines: PC3: prostate; VCAP: prostate; A375:

melanoma; A549: lung; HA1E: kidney; HCC515: lung; HT29: colon; MCF7: breast; HEPG2: liver. (d) Compounds selectively targeting cells with higher

CA20 also down-regulate these genes. Scatter plot showing correlation between CTRP’s Spearman’s correlation coefficient from (a) and CMap’s drug

average score from (c) for the 164 compounds tested in both datasets (Spearman’s correlation coefficient, r = 0.26, p-value = 8.3e-4). Points are coloured

as in (a) and the predicted protein targets of compounds with both significant Spearman’s correlations and drug average score lower than -90 are

shown.

https://doi.org/10.1371/journal.pcbi.1006832.g006
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CD-437 as the strongest candidate for targeting CA. Moreover, drugs targeting coagulation

factor II (F2R), farnesyltransferase (FNTA and FNTB), ubiquitin isopeptidases (USP13 and

USP5), DNA topoisomerase II alpha (TOP2A) and cyclin-dependent kinases (CDKs) are also

promising candidates (Fig 6d). Given cell proliferation’s association with CA20 (S1a Fig), we

have tested the association between its estimated rates across TCGA primary tumour samples

and the expression of the 164 compounds’ predicted target genes (merging this information

from the CTRP (S13 Table) and CMap datasets (S14 Table)), using linear regression analyses

with cohort as additional covariate (S2 Table). The resultant coefficients (S15 Table) are not

correlated with CMap’s average scores of the respective compounds (Spearman’s correlation

coefficient, r = 0.016, p-value = 0.84; S16a Fig), but are correlated with their CTRP’s Spearman

correlation coefficients (Spearman’s correlation coefficient, r = -0.26, p-value = 9e-04; S16b

Fig), i.e. compounds selective for cells with high CA20 are predicted to target genes positively

associated with proliferation in TCGA tumour samples. Nevertheless, predicted target genes of

several compound candidates from our analyses do not show strong association with prolifera-

tion (S16c and S16d Fig). These results need to be considered when prioritizing candidate

compounds for further experiments aiming to target cancer cells through CA.

Discussion

CA is known to promote tumourigenesis but its molecular role therein remains elusive and,

although it is also suggested to be a promising target for cancer therapy, CA’s prevalence in dif-

ferent types of cancer and therapeutic value in the clinic are still pretty much unprobed. Using

the CA20 signature and TCGA RNA-seq data, we characterise the landscape of CA-associated

gene expression in a broad range of cancer types, thereby demonstrating the potential of using

gene expression-based signatures in multi-omic and clinical data integrative approaches to

investigate the biological and medical relevance of their respective cellular and molecular

processes.

Despite the lack of a full direct experimental validation of CA20 as a surrogate of CA levels,

our observations are very consistent with known CA’s features, namely CA20’s upregulation

in cancer [7] and in basal-like breast tumours [26], and its association with the knock-down of

centriole duplication factors, genomic instability [11], loss of p53 [6,7,35] and pRB [44], hyp-

oxia [54,55] and worse patient’s prognosis [7]. In addition, we found that luminal B breast

tumours have higher prevalence of CA than luminal A ones, concordantly with the observed

differences in the CA20 score between the two molecular subtypes in two independent

cohorts. Finally, we have analysed two transcriptomic datasets of multiciliogenesis, where cells

escape centriole number regulation to generate hundreds of centrioles during differentiation

[61], and found that CA20 increases during the centriole overduplication stage, resuming

basal levels afterwards (S17 Fig), suggesting CA20 as a marker of active amplification. These

observations vouch for the present proof-of-concept study to pave the way for more in-depth

and bona fide findings when CA’s transcriptomic signature is experimentally refined. More-

over, here we already propose novel hypotheses that will trigger studies aiming at a more com-

prehensive understanding of the role of CA in cancer.

We observed higher CA-associated gene expression in cancer samples of squamous cell ori-

gin than in adenocarcinomas, suggesting that their different cell types of origin can have differ-

ent CA’s prevalence and/or ways to cope with this abnormality. Previous work has indeed

shown that CA triggers spontaneous squamous cell carcinomas, lymphomas and sarcomas,

but not adenocarcinomas, in mice [11]. We also show that breast invasive carcinoma samples

have high variability on CA20, concordantly with previous observations [7,25], that is related

to their distinct clinical and molecular features. We had recently shown that basal-like breast
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carcinomas have higher CA than luminal tumours [26], but here we report for the first time an

upregulation of CA-associated genes in tumours from both invasive ductal histologic subtype

and luminal B molecular subtype. We validated the CA20-based predictions by quantitatively

analysing centrosome numbers in human breast carcinoma samples, where we found that

indeed CA is more prevalent in luminal B than luminal A tumours, providing a novel insight

into the differences between these two hormone-receptor positive molecular subtypes. Given

the limited number of luminal B samples in our cohort, more extensive analyses are necessary

to confirm this association. Our data show that centrosome amplification is associated with

breast cancer clinical features and endorses the potential of using a gene-expression-based sig-

nature for patient stratification.

CA-associated gene expression upregulation is positively correlated with different types of

genomic instability, like aneuploidy, mutation burden, CNA and tumour heterogeneity. In

particular, CA20 is more strongly associated with chromosomal deletions than amplifications,

independently of TP53 mutations. We speculate that this association may be due to the impact

of CA in cellular genomic stability having non-random genomic “hot spots”. In fact, through a

more detailed analysis, we found an association with alterations in specific chromosomal

arms, that may be due to the localisation of genes encoding for regulators of CA20 genes

therein and/or to those arms’ higher susceptibility to the genomic instability triggered by cen-

trosome abnormalities. The latter is supported by recent work showing that human chromo-

some mis-segregation is not random and can be biased by inherent properties of individual

chromosomes [62], and also by our observation that normal samples whose matched tumours

lost 5q or 16p have higher CA20 predictive of those deletions (S6 Fig). Moreover, we character-

ised the DNA mutation spectrum associated with CA20 and found it to be enriched in C>T

mutations, a signature characteristic of ageing, with which centrosome aberrations have also

been associated [63–67]. Genes whose mutations are associated with CA20 are enriched in

cancer driver genes, and particularly in Wnt/β-catenin signalling. Wnt/β-catenin signalling

components interact with the centrosome [68] and a previous study has demonstrated that

mutant β-catenin induces centrosome aberrations in normal epithelial cells and is required for

CA in cancer cells [69]. Our results extend this previous association to human cancer samples,

suggesting mutations in β-catenin might contribute to the observed CA in cancer. Finally, we

show the usefulness of a novel approach whereby we integrated information on genes whose

somatic mutations are associated with CA20 in TCGA tumour samples with the impact of

their knock-downs on the CA20 expression in human cancer cell lines, aiming at unveiling

candidate molecular players in CA in cancer.

Concordantly with previous work on CA [7], we observed that high CA20 is associated

with poor patient’s survival in several cancer types. Furthermore, we found a positive correla-

tion between CA20 and hypoxic levels in glioblastoma multiforme that is particularly interest-

ing, due to its highly hypoxic microenvironment and HIF-1α levels [70], also shown to

enhance migration and invasion of its tumour cells [71,72]. Given the observed association

between CA and invasion of tumour cells [15,17], an exciting hypothesis is hypoxia-induced

invasion being mediated through CA. When looking at the tumour cellular composition, we

found that tumours with high CA20 have lower stromal and immune cell infiltration, although

the latter is not independent of tumour genomic instability and proliferation rate. Detailed

studies aiming to decouple these effects could provide relevant molecular insights when con-

sidering immunotherapy, alone or in combination with genotoxic and/or anti-proliferative

therapeutic approaches. Moreover, by pioneering the integration of drug sensitivity with drug

perturbation profiles in human cancer cell lines, we identify candidate compounds for selec-

tively targeting cancer cells exhibiting transcriptomic evidence for CA. These compounds

could be particularly useful in the treatment of cancer types we identified as having high CA
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and to whose current therapy patients respond poorly. For instance, their potential in specifi-

cally targeting basal-like and luminal B breast tumours could be assessed by taking advantage

of resources like patient-derived tumour xenografts [73]. The observed ability of cells carrying

extra centrosomes to manipulate the surrounding tumour cells and promote their invasiveness

[15,17] suggests that targeting the former may be clinically more impactful. Given CA’s can-

cer-specificity, the compounds identified herein could underlie the development of novel tar-

geted cancer therapeutic options.

Methods

Ethics statement

The study with human samples was conducted under the national regulative law for the han-

dling of biological specimens from tumour banks, with samples being exclusively used for

research purposes in retrospective studies, and was approved by the ethics committee of the

Hospital Xeral-Cies, Vigo, Spain. Informed consent was obtained from all human participants.

TCGA dataset

Publicly available RNAseqV2 (quantified through RNA-seq by Expectation Maximization)

[74] and clinical data for 9,721 tumour and 725 matched-normal samples from The Cancer

Genome Atlas (TCGA; https://cancergenome.nih.gov/) were downloaded from Firebrowse

(http://firebrowse.org/). Gene expression (read counts) data were quantile-normalized using

voom [75]. For each sample, the CA20 score was calculated as the sum of the across-sample

(including both tumours and matched-normal samples) normalized (log2 median-centred)

expression levels of the CA20 published signature genes [23]: AURKA, CCNA2, CCND1,

CCNE2, CDK1, CEP63, CEP152, E2F1, E2F2, LMO4, MDM2, MYCN, NDRG1, NEK2, PIN1,

PLK1, PLK4, SASS6, STIL and TUBG1 (Fig 1a).

Predicted proliferation rates of each TCGA tumour sample were retrieved from [24]

(n = 9,568). Whole genome doubling (corresponding to 0, 1 and� 2 genome doubling events

in the clonal evolution of the cancer), aneuploidy (both aneuploidy score—number of altered

chromosome arms—and alterations per chromosome arm) and mutation burden characteriza-

tions were retrieved from [34] (n = 9,166). Since the chromosomal arm status was not available

for TCGA normal samples, we have selected only those with no CNA in the chromosomal

arms tested, to make sure they are intact. CNA (n = 8,879; copy number levels were derived

with the GISTIC algorithm [76] and considered as CNA if having a score lower than -1 (loss)

or higher than 1 (gain)) and mutation (n = 7,120; including classification as silent, missense,

splice site or nonsense ones) processed data were downloaded from Firebrowse (http://

firebrowse.org/). Mutations were classified as likely pathogenic and pathogenic based on Clin-

Var database’s (https://www.ncbi.nlm.nih.gov/clinvar/) variant summary annotation (ftp://ftp.

ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz; accessed in November

12th 2018), and 5,601 likely driver mutations were obtained from the Cancer Genome Inter-

preter (https://www.cancergenomeinterpreter.org/mutations; accessed in November 12th

2018) [45]. The list of 299 cancer driver genes was retrieved from [43]. Intra-tumour heteroge-

neity data, measured by the number of clones per sample, were retrieved from [77]

(n = 1,080). The mutational signature profiles were retrieved from mSignatureDB [48]

(n = 9,004). The predicted fraction of stromal (stromal score) and immune (immune score)

cells in TCGA tumour samples (n = 2,463) was retrieved from [78]. We used the scores calcu-

lated based on RNASeqV2 expression levels. Importantly, no CA20 gene was used by the

authors to infer those cell proportions [78].
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TCGA tumour samples were analysed for hypoxic status based on expression of 95 genes

included in the hypoxia 99-metagene signature [56]. The four missing genes are three

(LOC149464, LOC56901 and TIMM23) for which expression levels were not available and

NDRG1, excluded for being part of the CA20 gene signature. The hypoxia score was calculated

like the CA20 score.

Additional clinical information for TCGA breast tumour samples was retrieved from [27].

METABRIC dataset

Normalized gene expression data for 1992 primary breast tumours and 144 normal breast tis-

sue samples from the Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC) [28] were retrieved from European Genome-Phenome Archive

(EGAC00001000484). Gene expression was profiled with Illumina HT-12 v3 microarrays, with

probe-level intensity values being mean-summarised per gene. The CA20 score was calculated

as for the TCGA dataset. Clinical information for the same samples was downloaded from

cBioPortal (http://www.cbioportal.org/) [79].

Analyses of CA in human breast carcinoma samples

Quantification of CA in breast cancer samples was performed as described in [26]. Briefly, for-

malin-fixed and paraffin-embedded human breast carcinoma samples were consecutively

retrieved from the files of the Department of Pathology, Hospital Xeral-Cies, Vigo, Spain. This

series comprises 29 luminal A, 3 luminal B, 3 HER2 and 13 basal-like tumours. Some of these

samples had already been used in one of our recent studies [26]. The status of the oestrogen

receptor (ER), progesterone receptor (PR), epidermal growth factor receptor 2 (HER2), anti-

gen Ki67, and the basal markers epidermal growth factor receptor, cytokeratin 5, cytokeratin

14, P-cadherin and Vimentin was previously characterized for all tumour cases. According to

their immunoprofile, breast tumour samples were classified as luminal A (ER+, PR+, HER2

− and Ki67−), luminal B (ER+, PR+, HER2 overexpressing or Ki67+), HER2 (ER-, PR-, HER2

overexpressing) or basal-like carcinomas (ER−, PR−, HER2−, basal marker+). Representative

tumour areas were carefully selected and at least two tissue cores (0.6 mm in diameter) were

deposited into a tissue microarray. This study was conducted under the national regulative law

for the handling of biological specimens from tumour banks, with samples being exclusively

used for research purposes in retrospective studies. Informed consent was obtained from all

human participants.

For immunofluorescence staining, 3 μm-thick tissue sections were deparaffinised in Clear-

Rite-3 (Thermo Scientific, USA, CA) and rehydrated using a series of solutions with decreas-

ing concentrations of ethanol. High temperature (98 ˚C, 60 min) antigenic retrieval with Tris-

EDTA pH = 9.0 (LeicaBio systems, UK) was performed, followed by incubation with UltraVi-

sion protein block (Thermo Scientific) for 30 min at room temperature. The slides were, after-

wards, incubated with mouse anti-GT335 (1/800 dilution, Adipogen Ref. AG- 20B-

0020-C100) and rabbit anti-pericentrin (1/250 dilution, Abcam AB4448) in UltraAb diluent

(Thermo Scientific) overnight at 4 ˚C. The sections were then washed three times, 5 min per

wash, with 1× PBS + 0.02% Tween20 before a 1 h room temperature incubation with the sec-

ondary antibodies, anti-IgG rabbit coupled to Alexa 488 and anti-IgG mouse coupled to

Alexa-594 (Invitrogen), diluted at 1/500 in PBS. Finally, sections were washed extensively with

1× PBS + 0.02% Tween20 and then counterstained and mounted with Vectashield containing

DAPI (VectorLabs, CA, USA).

Imaging was performed on a Zeiss Imager Z1 inverted microscope, equipped with an Axio-

Cam MRm camera (Zeiss) and ApoTome (Zeiss), using the ×100 1.4 NA Oil immersion
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objective. Images were taken as Z-stacks in a range of 10–14 μm, with a distance between

planes of 0.3 μm, and were deconvolved with AxioVision 4.8.1 software (Zeiss). Only the struc-

tures positive for GT335 (centriolar marker) and pericentrin (PCM marker) were analysed

and scored. Between 5 and 107 cells were analysed for each patient and cells with more than 4

centrioles were considered as having CA (S4 Table).

CTRP dataset

Normalized gene-level expression and drug sensitivity (n = 481 compounds) data for 823

human cancer cell lines from the Cancer Therapeutics Response Portal (CTRP) v2 were

retrieved from [58]. The CA20 score was calculated as for the aforementioned datasets. Com-

pounds with more than 20% of missing data (n = 127) were removed from the analyses. Area

Under the dose-response Curve (AUC) was used as the metric of cell line’s drug sensitivity,

measured over a 16-point concentration range. Note that lower AUC means higher drug

activity.

Connectivity Map dataset

The Connectivity Map (CMap) database of signatures [49] was interrogated using CA20 genes

as an individual query in the CLUE L1000 tool (https://clue.io/l1000-query#individual, login

required; CA20 genes were used as putative UP-regulated genes). For each of the 9 human can-

cer cell lines profiled within the Touchstone dataset (PC3, VCAP, A375, A549, HA1E,

HCC515, HT29, MCF7 and HEPG2), a connectivity score was computed per perturbation

(gene knock-down, gene overexpression, small molecule administration) [49], reflecting its

effect on the expression of CA20 genes (except for SASS6, not profiled in this dataset). We cal-

culated an average connectivity score per perturbation by averaging the 9 cell lines’ connectiv-

ity scores in order to have a more robust connectivity score that can be used across different

cell types and tissues. Two types of perturbations were analysed: 3,799 gene knock-downs and

2,837 compounds. The Broad compound ID was used to match the 164 compounds tested by

CMap and CTRP, so that the results of the analyses of the two datasets could be combined.

Multiciliogenesis datasets

Normalized gene expression data for adult mouse airway epithelial cells during multiciliogen-

esis (triplicates for three different time points: days 0, 2 and 4) was retrieved from [80] (GEO

dataset accession GSE73331). The CA20 score was calculated as for the TCGA dataset.

The transcriptomic alterations between non-ciliating mouse tracheal epithelial cells and

those undergoing differentiation, through transition to an air-liquid interface culture (ALI),

and harvested at four (ALI+4) or twelve (ALI+12) days, were retrieved from [81]. Those

probe-level transcriptomic alterations were mean-summarised per gene.

Spearman’s correlation

Spearman’s correlations were performed using the cor.test R function (method = ‘‘spearman”)

[82]. The difference between two Spearman’s correlations was tested using the paired.r func-

tion from R package psych [83].

Unpaired two-sample statistical analyses

Wilcoxon rank-sum tests were performed using the wilcox.test R function [82].
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Linear regression analyses

Multiple linear regression modelling was implemented using the lm function from R package

limma [84]. Covariate collinearity was tested using the corvif function from [85], in which all

covariates had a variance inflation factor below 2. All equations and respective statistics are

shown in S2 Table.

We have normalised the genomic instability covariates using z-scores (number of standard

deviations from the mean) to account for differences in the prevalence of aneuploidy, muta-

tion burden, CNA and number of clones per cohort.

Fligner-Killeen test of homogeneity of variances

Fligner-Killeen test was implemented using the fligner.test R function [82].

Test of equal proportions

Proportions tests were performed using the prop.test R function [82].

Two-way analysis of variance (ANOVA)

Two-way ANOVA was done using the aov R function [82].

Hierarchical clustering analyses

Unsupervised hierarchical clustering of the multiple linear regression results per cancer type

was performed using the heatmap.2 function from R package gplots [86].

Gene Set Enrichment Analyses

Genes ranked according to the knock-down connectivity score were analysed for pathway

enrichment using Gene Set Enrichment Analysis [41,42] with default parameters. We used a

list of 299 cancer driver genes from [43], a manually curated list of centriole duplication factors

(93 genes, including 10 from the CA20 signature; S10 Table), gene sets retrieved from the

KEGG pathway database (https://www.kegg.jp/) and the MSigDB’s Hallmark Gene Sets library

[50]. Those with a False Discovery Rate (FDR) lower than 5% were considered significant.

Survival analyses

Dividing patients into two subgroups by CA20 median value, the significance of differences in

prognostic was estimated using Kaplan−Meier plots and log-rank tests, per cancer type,

through R package survival [87].

Q-Q plot of p-values

To calculate the expected Spearman’s correlation coefficients and p-values used in the quan-

tile-quantile (Q-Q) plot (S14 Fig), we permutated 1000 times the drug-sensitivity (in AUC) of

all compounds across cell lines and, for each permutated dataset, we calculated the respective

CA20-AUC Spearman’s correlations. The expected values were obtained by median-summa-

rizing the ranked 1000 permutations’ results.

Code availability. All the core code generated and used in this study is available on

GitHub (https://github.com/bernardo-de-almeida/PanCancer_CentrosomeAmplification).
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Supporting information

S1 Fig. Pan-cancer analyses of centrosome amplification-associated gene expression. (a)

CA20 is correlated with proliferation rate. Smooth scatter plots showing correlation between

CA20 score and predicted proliferation rate [1/h] across TCGA tumour samples (Spearman’s

correlation coefficient, r = 0.4, p-value < 2.2e-16). (b) CA20 score distribution across different

types of kidney, brain, melanoma and lung cancers. Black points and lines represent the

median +/- upper/lower quartiles. Number of samples used in each violin is shown within

brackets. ���� p-value < 0.0001 and n.s. non-significant (Wilcoxon rank-sum test). (c) CA20

score distribution between adenocarcinoma and squamous cell carcinomas within cervical

(CESC) and oesophageal (ESCA) cancer types. Black points and lines represent the median +/-

upper/lower quartiles. Number of samples used in each violin is shown within brackets. �� p-

value < 0.01 and ��� p-value < 0.001 (Wilcoxon rank-sum test). CESC: cervical squamous cell

carcinoma and endocervical adenocarcinoma; COADREAD: colon and rectum adenocarci-

noma; ESCA: oesophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck

squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carci-

noma; KIRP: kidney renal papillary cell carcinoma; LGG: low-grade glioma; LUAD: lung ade-

nocarcinoma; LUSC: lung squamous cell carcinoma; OV: ovarian serous cystadenocarcinoma;

PAAD: pancreatic adenocarcinoma; PRAD: prostate adenocarcinoma; SKCM: skin cutaneous

melanoma; STAD: stomach adenocarcinoma; UVM: uveal melanoma.

(PDF)

S2 Fig. CA20 is associated with different breast cancer clinical and molecular features. (a-

c) CA20 score distribution per (a) histological and (b) PAM50 molecular subtype, and (c)

tumour stage for TCGA breast cancer samples. For each category, samples were divided in

low and high proliferation groups based on median predicted proliferation rate. Only

samples with proliferation information were used. � p-value < 0.05, �� p-value < 0.01, ��� p-

value < 0.001, ���� p-value < 0.0001 and n.s. non-significant (Wilcoxon rank-sum test). (d-h)

CA20 score distribution between breast tumour histological subtypes grouped by triple-nega-

tive (TNBC) status (d,f), tumour stage (e,g), or integrative clusters (h, only for METABRIC

samples) for (d,e) TCGA breast cancer and (f-h) METABRIC samples. Black points and lines

represent the median +/- upper/lower quartiles. � p-value < 0.05, �� p-value < 0.01, ���� p-

value < 0.0001 and n.s. non-significant (Wilcoxon rank-sum test).

(PDF)

S3 Fig. Luminal B and basal-like human breast carcinomas display higher levels of centro-

some amplification. Distribution of the number of centrioles per cell observed in breast

tumours from the different PAM50 molecular subtypes. Violin plots were created based on

segments connecting frequencies at each integer (from 1 to 14 centrioles per cell), given that

centriole number is a discrete variable. The number of cells analysed in the study, for each

molecular subtype, is shown. �� p-value < 0.01, ���� p-value < 0.0001 and n.s. non-significant

(Wilcoxon rank-sum test).

(PDF)

S4 Fig. CA20 is strongly associated with chromosomal deletions independently of TP53
mutations. (a and b) CA20 is associated with both chromosomal deletions and amplifications.

Smooth scatter plots showing correlation between CA20 score and number of (a) amplifica-

tions and (b) deletions across TCGA tumour samples (Spearman’s correlation coefficient,

r = 0.41 and 0.36, respectively, p-value < 2.2e-16 for both). (c) CA20 is more strongly associ-

ated with chromosomal deletions. Smooth scatter plot showing correlation between CA20

score and the significance of the difference between the proportion of both features per sample
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across TCGA tumour samples (Spearman’s correlation coefficient, r = -0.1, p-value < 2.2e-

16). The Y-axis represents the log10 of p-value for proportion tests, with positive or negative

sign if the sample has higher proportion of amplifications or deletions, respectively. (d) Signifi-

cance of the difference between the proportion of amplifications and deletions per sample

(from c) in all (n = 8,092), TP53 wild-type (n = 6,292) or TP53 mutated (n = 1,080) TCGA

tumour samples divided in low and high CA20 groups (based on CA20’s median). Black points

and lines represent the median +/- upper/lower quartiles. � p-value < 0.05 and ���� p-

value < 0.0001 (Wilcoxon rank-sum test). Interaction between CA20 group and TP53 status

was assessed by two-way ANOVA (p-value = 0.6). (e) Number of amplifications (red) and

deletions (blue) in all (n = 8,092), TP53 wild-type (n = 6,292) or TP53 mutated (n = 1,080)

TCGA tumour samples divided in low and high CA20 groups (based on CA20’s median).

Black points and lines represent the median +/- upper/lower quartiles. ���� p-value < 0.0001

(Wilcoxon rank-sum test).

(PDF)

S5 Fig. CA20 is pan-cancer-widely associated with deletion of chromosome arm 5q.

Box plots of CA20 score per alteration (deletion, none, or amplification) on chromosome

arm 5q within samples from (a) the TCGA breast cancer cohort and (b) all other TCGA

cohorts. ���� p-value < 0.0001 (linear regression).

(PDF)

S6 Fig. Higher CA20 levels in TCGA normal samples whose matched tumours have alter-

ations in 5q and 16p chromosomal arms. Box plots of CA20 score of TCGA normal samples

per alteration (deletion, none, or amplification) of their matched tumour samples on chromo-

somal arm (a) 5q (n = 297), (b) 16p (n = 566) and (c) 7p (n = 571). All normal samples used

here have no CNA in the respective chromosomal arm. � p-value < 0.05 and �� p-value < 0.01

(Wilcoxon rank-sum test).

(PDF)

S7 Fig. CA20 is associated with genomic instability features independently of cell prolifera-

tion. Scatter plots showing correlation between CA20 score and (a) aneuploidy score (mea-

sured as the total number of altered chromosome arms), (b) number of mutations per Mb, (c)

number of CNAs and (d) clones per tumour across TCGA tumour samples divided in low and

high proliferation groups (based on median predicted proliferation rate). Multivariate linear

regression (CA20 ~ β0 + β1
�feature + β2

�proliferation group + β3
�cohort) p-values for each

genomic feature and respective regression lines are shown. Shades around linear regression

lines represent their 95% confidence interval. Only samples with information for proliferation

rates were used.

(PDF)

S8 Fig. CA20 is associated with different types of mutations. (a-d) Smooth scatter plots

showing correlation between CA20 score and number of (a) silent, (b) missense, (c) splice site

and (d) nonsense somatic mutations per Mb across TCGA tumour samples (Spearman’s corre-

lation coefficient, r = 0.42, 0.45, 0.29 and 0.39, respectively, p-value < 2.2e-16 for all). Y-axes

are in log10 scale. Only samples with at least one mutation are shown. (e-f) Scatter plots show-

ing correlation between CA20 score and number of likely pathogenic and pathogenic (as

defined in ClinVar; see Methods for more details) mutations in (e) all diseases or (f) only in

cancer across TCGA tumour samples (Spearman’s correlation coefficient, r = 0.18 and 0.1,

respectively, p-value < 2.2e-16 and = 2.6e-05). Only samples with at least one mutation are

shown. 5 outlier samples with more than 20 mutations (52, 39, 29, 25 and 24 mutations) in e
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were removed for better visualisation.

(PDF)

S9 Fig. Distribution of genomic instability features on TCGA. (a and b) Comparison of the

z-score distribution of aneuploidy score, number of mutations per Mb, number of CNAs and

clones per tumour (a) between and (b) within the 12 TCGA cancer types used in multiple lin-

ear regression analyses of Fig 3g. Black points represent the median values. BLCA: bladder

urothelial carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarci-

noma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma;

KIRC: kidney renal clear cell carcinoma; LGG: low-grade glioma; LUAD: lung adenocarci-

noma; LUSC: lung squamous cell carcinoma; PRAD: prostate adenocarcinoma; SKCM: skin

cutaneous melanoma; STAD: stomach adenocarcinoma; THCA: thyroid carcinoma.

(PDF)

S10 Fig. Genes whose mutations are associated with CA20 are enriched in cancer driver

genes, cancer-associated pathways and Wnt/β-catenin signalling. (a) Gene Set Enrichment

Analysis (GSEA) of genes ranked by their -log10 of linear regression p-value (from Fig 4a)

using a list of 299 cancer driver genes derived from [43]. The GSEA p-value is shown. (b)

Driver mutations pan-cancer-wide associated with the CA20 score. The volcano plot shows

the results of linear regression analyses comparing the CA20 score between wild-type samples

and samples with driver mutations for 33 genes (at least 10 samples with driver mutations).

Genes whose driver mutations are associated with higher and lower CA20 (FDR < 0.05) are

represented in red and blue, respectively. Box plot of CA20 score per TP53 mutation status

(wild-type, with passenger, or with driver mutation) is shown. (c) GSEA of genes ranked by

their -log10 of linear regression p-value (from Fig 4a) using KEGG pathways. The 15 signifi-

cantly enriched (FDR < 0.05) pathways are shown and those cancer-associated are highlighted

in red. Positively (red) and negatively (blue) enriched pathways, with a FDR lower than 5%,

are shown. (d) GSEA plot for the bladder cancer pathway (from c). The GSEA p-value is

shown. (e) GSEA of genes ranked by their -log10 of linear regression p-value (from Fig 4a)

using MSigDB’s Hallmark Gene Sets. The top 10 gene sets are shown. Only the Wnt/β-catenin

signalling gene set is significantly enriched (FDR < 0.05; dark grey). (f) GSEA plot for the

Wnt/β-catenin signalling gene set (from e). The GSEA p-value is shown.

(PDF)

S11 Fig. Mutational signatures pan-cancer-wide associated with CA20 score. Left: Signifi-

cance of linear regression analyses (-log10 p-value) between CA20 and contribution of each

mutational signatures. Positive and negative significant associations (FDR< 0.05) are col-

oured in red and blue, respectively. Right: Smooth scatter plots showing correlations between

CA20 score and contribution of mutational signatures 3, 13 and 4 in breast invasive carcinoma

(BRCA) and lung adenocarcinoma (LUAD). Mutational process associated with each signa-

ture (in parenthesis) and linear regression p-values are shown.

(PDF)

S12 Fig. Patterns of mutational signatures 1 and 12. (a and b) Percentage of mutations

attributed to each of the 96 substitutions, defined by the substitution class and sequence con-

text immediately 50 and 30 to the mutated base, in mutational signatures (a) 1 and (b) 12. The

probability bars for the six substitution classes are displayed in different colours. Images

retrieved from https://cancer.sanger.ac.uk/cosmic/signatures.

(PDF)
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S13 Fig. CA20 is associated with hypoxia and stromal and immune cell infiltration. (a,b,d)

Scatter plots showing correlation between CA20 score and (a) hypoxia, (b) stromal and (d)

immune scores across TCGA tumour samples divided in low and high proliferation groups

(based on median predicted proliferation rate). Multivariate linear regression (CA20 ~ β0 +

β1
�hypoxia score + β2

�aneuploidy score + β3
�mutation burden + β4

�CNA + β5
�clones per

tumour + β6
�proliferation rate + β7

�cohort or CA20 ~ β0 + β1
�stromal score + β2

�immune

score + β3
�aneuploidy score + β4

�mutation burden + β5
�CNA + β6

�clones per tumour +

β7
�proliferation rate + β8

�cohort) p-values for each feature and respective regression lines are

shown. Shades around linear regression lines represent their 95% confidence interval. Only

samples with information for proliferation rates and genomic instability features were used.

(c) Higher CA20 is associated with lower immune cell infiltration. Smooth scatter plot show-

ing correlation between the CA20 and the immune scores across TCGA tumour samples

(Spearman’s correlation coefficient, r = -0.34, p-value < 2.2e-16). (e) Higher CA20 is associ-

ated with lower immune cell infiltration in glioblastoma and higher infiltration in head and

neck squamous cell carcinoma. Linear regression coefficients, representing the CA20 score

dependence on the immune score, independently of genomic instability, across the TCGA

cohorts with information for all covariates. Significant associations (FDR < 0.05) are coloured.

BLCA: bladder urothelial carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck

squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma; LUAD: lung adenocarci-

noma.

(PDF)

S14 Fig. Q-Q plot of CTRP CA20-AUC Spearman’s correlation results. Quantile-quantile

(Q-Q) plot of observed versus expected–log10 of Spearman’s correlation p-values between

CA20 and drug-sensitivity (in AUC), with positive or negative sign if the correlation is positive

or negative, respectively, across the Cancer Therapeutics Response Portal (CTRP) human can-

cer cell lines for 354 compounds. The solid line in the Q-Q plot indicates the distribution of

compounds under the null hypothesis of no correlation. The compounds whose activity was

associated with high and low CA20 (FDR< 0.05; Fig 6a) are represented in blue and red,

respectively.

(PDF)

S15 Fig. Compounds that up-regulate the CA20 gene set. Heatmap of CMap’s drug score,

ranging from 100 (maximum CA20 up-regulation) to -100 (maximum CA20 down-regula-

tion) per cell line. Drug average score (last column) is the mean of drug scores across cell lines.

The 20 compounds with the highest drug average score are shown and ranked accordingly.

Tissue of origin of human cancer cell lines: PC3: prostate; VCAP: prostate; A375: melanoma;

A549: lung; HA1E: kidney; HCC515: lung; HT29: colon; MCF7: breast; HEPG2: liver.

(PDF)

S16 Fig. Association between compounds’ targets and cell proliferation of TCGA samples.

We used linear regression (gene expression ~ β0 + β1
�proliferation rate + β2

�cohort) to calcu-

late the association between expression of each compound’s predicted target gene (we merged

compound target annotations from the CTRP and CMap datasets) and proliferation rates

across TCGA primary tumour samples (S15 Table). (a and b) Scatter plots showing correla-

tions between linear regression coefficient and (a) CMap’s average scores or (b) CTRP’s Spear-

man correlation coefficients of the respective compounds (Spearman’s correlation coefficient,

r = 0.016 and -0.26, p-value = 0.84 and 9e-04, respectively). (c) As in Fig 6d, but with com-

pounds coloured by the linear regression coefficient of the predicted target gene (using the

strongest association when a compound has more than one target gene). The two compounds
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with no annotated target gene are represented in grey. (d) Example for gene RARG. Smooth

scatter plot showing correlation between RARG gene expression and predicted proliferation

rates of TCGA primary tumour samples. The linear regression p-value is shown.

(PDF)

S17 Fig. CA20 is a surrogate for centriole overduplication during multiciliogenesis. (a)

CA20 increases from day 0 to day 2, and then decreases to day 4, during multiciliogenesis of

adult mouse airway epithelial progenitors cultured in air-liquid interface (ALI). � p-

value < 0.05 and �� p-value < 0.01 (Wilcoxon rank-sum test). Data from Mori et al., 2017. (b)

Some CA20 genes (PLK4, STIL, CEP152 and SASS6) are significantly upregulated only at the

fourth day of multiciliogenesis. Significance of differential expression of CA20 genes between

non-ciliating cells and cells undergoing multiciliogenesis harvested at four days (ALI +4), to

enrich for genes involved in initial steps of centriole duplication, and twelve days (ALI+12), to

enrich for genes expressed when cilia are mature [81]. The Y-axis represents the log10 of FDR-

adjusted p-value for differential expression, with positive or negative sign if the sample has

higher or lower expression than non-ciliating cells, respectively. Data from Hoh et al., 2012. (c)

GSEA of the CA20 gene set on genes ranked by their signed log10 of FDR-adjusted p-value for

differential expression, as in (b), between non-ciliating and ALI+4 or ALI+12 cells. GSEA p-

values are shown.
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S4 Table. CA levels in human breast carcinoma samples. Both the number of cells with dif-
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S5 Table. Results of pan-cancer-wide linear regression analyses comparing CA20 score
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3c.
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S6 Table. Data used in multiple linear regression analyses to identify independent associa-

tions between genomic instability features and CA20 across 1050 tumour samples (from

12 different cancer types). Related to Fig 3g.

(TXT)

S7 Table. Results of pan-cancer-wide linear regression analyses comparing CA20 score

between mutated and wild-type samples for 14,589 genes (mutated in at least 20 samples).

Related to Fig 4a.

(TXT)
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