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Skeletal muscle mitochondria are arranged as a reticulum. Insight into the functional characteristics of
such structure is achieved by viewing the network as consisting of “subsarcolemmal” (SS) and “inter-
myofibrillar” (IMF) regions. During the decades, most, but not all, published studies have reported higher
(sometimes over 2-fold) enzyme and enzyme-pathway protein-specific activities in IMF compared to SS
mitochondria. We tested the hypothesis that non-mitochondrial protein contamination might account
for much of the apparently lower specific activities of isolated SS mitochondria. Mouse gastrocnemii
(n¼6) were suspended in isolation medium, minced, and homogenized according to procedures typically
used to isolate SS mitochondria. However, the supernatant fraction, collected after the first slow-speed
(800g) centrifugation, was divided equally: one sample was exposed to nagarse (MITOþ), while the
other was not (MITO�). Nagarse treatment reduced total protein yield by 25%, while it increased protein-
specific respiration rates (nmol O2 min�1 mg�1), by 38% under “resting” (state 4) and by 84% under
maximal (state 3) conditions. Nagarse therefore increased the respiratory control ratio (state 3/state 4) by
30%. In addition, the ADP/O ratio was increased by 9% and the activity of citrate synthase (U/mg) was 49%
higher. Mass spectrometry analysis indicated that the MITOþ preparation contained less contamination
from non-mitochondrial proteins. We conclude that nagarse treatment of SS mitochondria removes not
only non-mitochondrial proteins but also the protein of damaged mitochondria, improves indices of
functional integrity, and the resulting protein-specific activities.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mitochondrial oxidative phosphorylation fulfills two critical
metabolic objectives: 1) synthesizing ATP at the rate demanded by
cellular ATP-utilizing processes and 2) maintaining a robust cel-
lular energy status (low cytosolic [ADP] and high ATP/ADP ratio).
Almost 40 years ago Skulachev's laboratory provided evidence that
mitochondria in mammalian striated muscle are structured as a
continuous network or reticulum [1]. Recently, Glancy et al. [2]
provided compelling corroborative evidence for this model. Fur-
ther, their report supports one of the fundamental hypotheses
advanced by Skulachev over 40 years ago [1], that the reticular
arrangement provides the ability to rapidly transfer intracellular
energy by propagating the protonmotive force (Δp) from one re-
gion of the network to another [1,3,4]. According to this concept,
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the fraction of the network located near the plasma membrane
(“subsarcolemmal” or SS mitochondria) contains protein stoichio-
metry particularly suited for Δp development, while the region
deeper within the myocyte, the intermyofibrillar (IMF) fraction, is
particularly tailored for transducing Δp into ATP synthesis and
export. Reticular structure therefore facilitates meeting the de-
mands for both rapid ATP turnover and the defense of cellular
energetic status. These older and more recent findings bracket
decades of research supporting the mitochondrial reticulum
concept.

About the time Skulachev's paper demonstrated the mi-
tochondrial reticulum in rat diaphragm [1], Palmer et al. described
procedures for independently isolating SS and IMF mitochondrial
populations from rat heart [5]. Briefly, the tissue was minced,
suspended in buffer, mechanically disrupted (liberating SS mi-
tochondria) and centrifuged at slow speed, leaving SS mitochon-
dria in the supernatant, while the IMF mitochondria were pelleted
with the myofibrils. This first supernatant was then used to isolate
SS mitochondria with high-speed spins. In the parallel IMF isola-
tion procedure, the myofibrillar pellet was resuspended and
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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incubated with the proteolytic enzyme nagarse to digest myofi-
brillar proteins and liberate the IMF mitochondria. Next, a second
slow spin would yield a supernatant containing IMF mitochondria.
The IMF supernatant was then centrifuged at high speed to pellet
and wash the IMF mitochondria. These careful and detailed studies
by Palmer et al. [5,6] provided convincing electron microscopic
evidence that SS and IMF fractions were independently isolated,
and their procedures became the generally accepted methodology
upon which subsequent work was based. However, a curious
pattern reported by Palmer et al., and many studies that followed
[5–10], was that essentially all activities of individual enzymes
and/or oxidative enzyme pathways were uniformly higher in the
IMF fraction compared to the SS, in some cases over 2-fold higher.
This consistent finding raises obvious questions: If SS and IMF
mitochondria are simply part of a continuous network, then how
could all protein-specific activities be higher in IMF? Another, re-
lated, question is: where and by what mechanism would the
network transition from this SS (lower) to IMF (higher) protein-
specific activity? One obvious alternative explanation is that these
apparent differences simply reflect experimental artifact. SS mi-
tochondria are isolated in the absence of nagarse exposure, while
IMF isolation fundamentally depends on the nagarse incubation.
Because nagarse treatment is the glaring difference between the
two procedures, we tested the simple hypothesis that non-mi-
tochondrial protein contamination accounts for the apparently
lower specific activities of isolated SS mitochondria. Our data
support this hypothesis and moreover advance the concept that
nagarse treatment may also remove the protein within and per-
haps also attached to damaged mitochondria that, left undigested,
would otherwise diminish indices of mitochondrial structural and
functional integrity.
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Fig. 1. Isolation and treatment of the muscle mitochondria. A flow diagram depicting the
either exposed or not to the enzyme nagarse. Details are given in the “Methods” (SN, su
2. Material and methods

2.1. Animal and muscle preparation

All procedures were in accordance with the guidelines re-
garding the care and use of animals by the Institutional Animal
Care and Use Committee at Mayo Clinic. A total of six C57BL/6 J
mice on standard chow diet and water ad libitum were used for all
experiments. Mice ranged in age from 8 to 12 weeks. On the day of
the experiment, the mice were euthanized by isoflourane inhala-
tion and cervical dislocation. The left and right gastrocnemii were
removed and immediately placed on an ice-cold petri dish, which
was pre-rinsed with ice-cold modified Chappell-Perry Medium I
(Solution I; mM): 100 KCl, 40 Tris–HCl, 10 Tris-Base, 5 MgCl2,
1 EDTA, 1 ATP, pH 7.5. After removing the blood, fat and visible
connective tissues, the gastrocnemii were placed into a pre-mas-
sed beaker containing 2 ml of ice-cold Solution I, reweighed, and
the wet muscle mass was calculated. The mean gastrocnemii mass
was 138.7710.5 mg.

2.2. Isolation of mitochondria

Mitochondria were prepared according to the outline in Fig. 1;
all procedures were carried out on ice or at 4 °C and all cen-
trifugations were 10 min in duration. Muscles were cleaned,
weighed, minced with scissors in 9 volumes of ice-cold Solution I,
and gently homogenized by hand using a ground glass-to-glass
Potter-Elvehjem homogenizer (5 passes). The homogenate was
centrifuged at 800g to obtain the supernatant (SN) containing
mechanically released (SS) mitochondria. This SN was divided
equally into two 1.5 ml homogenization tubes. Nagarse (bacterial
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proteinase Type XXIV, Sigma, P-8038) was prepared using Solution
I (5 mg g�1 ww) and added to one tube (SNþ). An equal volume of
Solution I containing no nagarse, was added to the other tube
(SN�). After 7 min incubation, 1 ml of Solution I was added to
each tube (this terminated nagarse digestion in the SNþ tube).
The SNþ and SN� samples were then centrifuged at 14,000g to
obtain two mitochondrial pellets, one exposed to nagarse
(MITOþ) and the other not exposed (MITO�). After discarding the
supernatant, each of the mitochondrial pellets were re-suspended
in 0.5 ml of Solution II (mM): 100 KCl, 40 Tris–HCl, 10 Tris–Base,
5 MgCl2, 1 EDTA, 0.2 ATP, and 1.5% BSA, pH 7.5. Following cen-
trifugation at 7000g, the supernatants were discarded and the
mitochondrial pellets were re-suspended in 0.5 ml of Solution III
(identical to Solution II, but without BSA). After the final cen-
trifugation at 4000g and removal of supernatant, the two final
mitochondrial pellets were each re-suspended in identical vo-
lumes of mannitol-sucrose buffer containing (mM) 220 Mannitol,
70 Sucrose, 10 Tris–HCl, 1 EGTA, pH 7.40. The volume of buffer used
to resuspend each mitochondrial preparation was 1 μl per mg of
original wet muscle. The protein content in the final mitochondrial
preparations was determined by the method of Lowry [11]. All
protein concentrations reported below and in the tables relate
exclusively to the final mitochondrial preparations.

2.3. Citrate synthase assay

Citrate synthase (CS) activity was determined spectro-
photometrically at 37 °C by the method of Srere [12], as previously
described [13]. In these assays aliquots of mitochondrial suspen-
sions, stored at �80 °C, were assayed in buffer that included 0.05%
Triton detergent to disperse the mitochondrial inner membrane
and eliminate all enzyme latency.

2.4. Assays for mitochondrial O2 consumption and ATP production

Freshly isolated mitochondria were assayed for O2 consump-
tion rate (Jo) and ATP production rate (Jp). O2 consumption was
measured polarographically in a respiration chamber (Hansatech
Instruments, Norfolk, UK) at 37 °C following general procedures
we have previously described [13]. Mitochondrial respiration was
fueled with the substrate combination pyruvate (1 mM)þmalate
(1 mM)þglutamate (10 mM) (PMG). Aliquots, typically 20 μl in
volume, of mitochondrial suspension were added to 250 μl of re-
spiration medium adapted from Wanders et al. [14], which con-
tained (in mM) 100 KCl, 50 MOPS, 10 K2PO4, 10 MgCl2, 1 EGTA,
and 0.2% BSA, pH 7.00 [13]. Next, the PMG substrate combination
was added and State 2 Jo was followed (respiration due primarily
to proton leak). The addition of ADP to give a final concentration of
0.67 mM stimulated state 3, (maximal) Jo. Phosphorylation of this
ADP resulted in state 4 Jo [15], and the respiratory control ratio
(RCR) was calculated as state 3 Jo/state 4 Jo. The ADP/O ratio was
determined as previously described [15]. The State 3 (maximal)
rate of ATP production was calculated as the product of state 3 Jo
times the ADP/O (taking the 2:1 molecular to atomic oxygen
stoichiometry into account).

2.5. Protein separation by SDS-PAGE

Final MITOþ and MITO- suspensions were diluted 1:1 in 2�
Laemmli sample buffer before running on a SDS-PAGE gel.
Laemmli sample buffer containing β-mercaptoethanol was pre-
pared according to manufacturer's instructions (Bio-Rad, Hercules,
CA). Samples were heated at 95 °C for 5 minutes and then loaded
onto a pre-cast 10% SDS-PAGE gel (Bio-Rad, Hercules, CA). The gel
was run at 60 V for 30 minutes, 110 V for 60 minutes and then
150 V for 10 minutes. Performing gel electrophoresis under these
conditions allowed for adequate separation, visualization, and the
ability to compare the MITOþ versus MITO- samples. Proteins
were visualized using Coomassie blue. Gel image was captured
using an ImageQuant LAS 4000 (GE Healthcare Life Sciences).

2.6. Protein identification and quantification by mass spectrometry

To obtain an insight into the abundance of mitochondrial ver-
sus non-mitochondrial proteins contained in each of the MITOþ
and MITO- preparations, aliquots from the samples analyzed on
SDS-PAGE were also analyzed by mass spectrometry to identify
and quantify proteins contained in each mitochondrial prepara-
tion. The mass spectrometry procedure was also used to identify
and quantify the protein nagarse in the same preparations.

2.6.1. In-solution digest
A volume of isolated mitochondrial preparation, either treated

or not treated with the enzyme nagarse, was added to a 9 times
volume of dilution buffer [DB �10% acetonitrile (ACN) and 25 mM
Tris–HCl pH 8.5]. 8 μl trypsin (Sigma; St. Louis, MO) at 0.200 μg/ml
was added to the protein sample and was allowed to incubate for
16 h at 37 °C with gentle shaking, followed by addition of 50 μl 5%
formic acid (FA) to halt the digestion. The resulting peptides were
prepared for sample analysis similar to a previously published
protocol [16]. In brief, a stop-and-go extraction tip (StageTip) [17],
was fitted with two C18 disk plugs using a customized tipping
syringe [17]. The Stage Tip was activated with methanol, washed
in 100 μl buffer B (0.1% FA, 80% ACN), and equilibrated in 100 μl
buffer A (0.1% FA) twice. The peptides were then loaded onto the
activated Stage Tip, washed twice in 100 μl buffer A, followed by
elution in 50 μl Buffer B. The eluate was dried by vacuum cen-
trifugation and stored at �80 °C prior to use. 6 μl of 0.1% FA (v/v)
was added to re-suspend the dried samples, followed by sonica-
tion for 2 min. The sonicated samples were briefly centrifuged and
1 μl of sample was subsequently analyzed by mass spectrometry
as described below.

2.6.2. Mass spectrometry
HPLC-ESI-MS/MSn was performed on a Thermo Electron Orbi-

trap Elite Velos Pro fitted with an EASY source (Thermo Electron,
San Jose, CA). NanoLC was performed using a DIONEX/Thermo
NCS-3500RS UltiMate 3000 with an EASY Spray column (Thermo
Electron, 50 cm�75-mm inner diameter, packed with PepMap
RSLC C18 material, 2 μm); loading phase for 15 min; mobile phase,
linear gradient of 1–37% ACN in 0.1% FA in 150 min, followed by a
step to 95% ACN in 0.1% FA over 5 min, hold 10 min, and then a
step to 1% ACN in 0.1% FA over 1 min and a final hold for 19 min
(total run 200 min); Buffer A¼0.1% FA in 100% H2O; Buffer B¼0.1%
FA in 100% ACN; flow rate, 300 nl/min. All solvents were mass
spectrometry grade. A “top 15″ data-dependent MS/MS analysis
was performed (acquisition of a full scan spectrum followed by
collision-induced dissociation mass spectra of the 15 most abun-
dant ions in the survey scan).

2.6.3. Database search
Tandem mass spectra were extracted by ProteoWizard

msConvert, version 3 [18] using the default settings. Charge state
deconvolution and deisotoping were not performed. All MS/MS
spectra were analyzed using Mascot (Matrix Science, London, UK;
version 2.4.1). Mascot was set up to search the SwissProt_02_2015
database (16,706 entries, mus musculus) assuming the digestion
enzyme trypsin and a maximum of 2 missed cleavages permitted.
Mascot searched with a fragment ion mass tolerance of 0.50 Da
and a parent ion tolerance of 10.0 PPM. Phosphorylation of serine,
threonine, and tyrosine as well as oxidation of methionine was
specified in Mascot as a variable modification while no fixed



Table 1
Total protein yield, enzyme specific activities, and indices of functional integrity of
mitochondria isolated without and with nagarse.

MITO� MITOþ MITOþ/
MITO-
(Fold Δ)

P Value

Total protein yield mg 0.38670.05 0.29070.03 0.75 0.02
Citrate synthase activity
nmol min�1 mg�1

827.4765.4 1232.9783.5 1.49 0.0001

State 3 JO
nmol min�1 mg�1

77.678.6 142.6716.8 1.84 0.003

State 4 JO
nmol min�1 mg�1

22.572.4 31.073.5 1.38 0.01

State 3
JPnmol min�1 mg�1

384.9736.9 771.4783.4 2.00 0.002

RCR 3.670.4 4.670.4 1.30 0.002
ADP/O 2.570.1 2.770.1 1.09 0.02

Values are means7SE; MITOþ , mitochondria samples treated with nagarse;
MITO� , mitochondria samples not treated with nagarse; total protein yield was
calculated as the product of the protein concentration in the final mitochondrial
suspension times the suspension volume; state 3 Jo, state 3 O2 consumption rate;
state 4 Jo, state 4 O2 consumption rate; state 3 Jp, state 3 ATP production rate. RCR,
respiratory control ratio, is State 3 (maximum) Jo divided by State 4 (resting) Jo;
State 3 Jp is the product of State 3 Jo and the ADP/O ratio.

Table 2
Total yield of citrate synthase and respiratory activity of mitochondria isolated
without and with nagarse.

MITO� MITOþ MITOþ/
MITO- (Fold
Δ)

P Value

Citrate synthase activity
nmol min�1

329.3754.1 366.7753.0 1.11 0.11

State 3 JO nmol min�1 31.175.7 42.577.5 1.37 0.01
State 4 JO nmol min�1 9.171.8 9.171.3 1.00 0.98
State 3 JPnmol min�1 153.5727.5 229.5738.8 1.49 0.01

Values are means7SE; MITOþ , mitochondria samples treated with nagarse;
MITO� , mitochondria samples not treated with nagarse; total yield of activity was
calculated as the product of specific activity times the total protein yield (see mean
values in Table 1); state 3 Jo, state 3 O2 consumption rate; state 4 Jo, state 4 O2

consumption rate; state 3 Jp, state 3 ATP production rate.
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modifications were indicated.

2.6.4. Criteria for protein identification
Scaffold (version Scaffold_4.3.4, Proteome Software Inc., Port-

land, OR) was used to validate MS/MS based peptide and protein
identifications. Peptide identifications were accepted if they could
be established at greater than 95.0% probability. Peptide Prob-
abilities were assigned by the Peptide Prophet algorithm [19] with
Scaffold delta-mass correction as well as by the Scaffold Local FDR
algorithm. Protein identifications were accepted if they could be
established at greater than 99.0% probability and contained at least
2 identified peptides. Protein probabilities were assigned by the
Protein Prophet algorithm [20]. Proteins that contained similar
peptides and could not be differentiated based on MS/MS analysis
alone were grouped to satisfy the principles of parsimony.

2.6.5. Quantification of mitochondrial and non-mitochondrial
proteins

Progenesis software (Nonlinear Dynamics; Progenesis QI;
Quayside, Newcastle Upon Tyne, UK) was used to quantify abun-
dance of peptides associated with each protein. Quantification
using non-conflicting peptides was selected to generate the pro-
tein report for the peptide ion abundance associated with each
identified protein. Accession numbers were imported into Swis-
sProt_02_2015 database and used to assign the subcellular loca-
tion of the identified proteins (i.e. mitochondrial, non-mitochon-
drial). Peptide ion abundances for all mitochondrial and all non-
mitochondrial proteins in each of the MITOþ and MITO- samples
were added to calculate total mitochondrial and total non-mi-
tochondrial protein abundances, respectively.

2.6.6. Quantification of the nagarse abundance
To quantify the abundance of nagarse present in the mi-

tochondrial preparations treated/not treated with nagarse, we
used the same approach described in the “Database search,” sec-
tion, but with the following exception: Mascot was set up to
search the SwissProt_02_2015 database for bacillus licheniformis.
We used the unique and stable identifier from the Swis-
sProt_02_2015 database for nagarse, Q65LP7, to perform all quer-
ies. We also used the corresponding mnemonic identifier of the
UniprotKB entry, Q65LP7_BACLD to perform all protein queries.
The ion abundance for the peptides associated with the enzyme
nagarse within each of the mitochondrial preparations were
compared with the total ion abundance for all the proteins within
each of the mitochondrial preparations treated/not treated with
nagarse from the Progenesis protein reports. The total ion abun-
dances are in reference to alignments in Mascot search using
SwissProt_02_2015 database for mus musculus. The ion abun-
dances of the peptides associated with the enzyme nagarse are in
reference to alignments in Mascot search using SwissProt_02_2015
database for bacillus licheniformis.

2.7. Statistical analyses

Differences between MITOþ and MITO- across variables of
interest were compared using paired t-test. Data are reported as
means7SEM. Significance was set at Po0.05.
3. Results

3.1. Protein content of final mitochondrial suspension

Isolating mitochondria with nagarse decreased the protein
concentration of the final mitochondrial suspension by 30%. The
MITOþ preparation was 2.1270.23 mg protein ml�1 compared to
2.8070.37 mg ml�1 in MITO-. When these protein concentrations
(mg/ml) are multiplied by their respective suspension volumes
(ml), the total protein yield (mg “mitochondrial” protein) of the
isolation procedure is calculated. When this is done, the MITOþ
protein yield was 0.29070.03 mg, compared to a MITO- value of
0.38670.05 mg (Table 1). Thus, nagarse exposure reduced, by
25%, the total protein isolated (Table 1).

3.2. Citrate synthase activity

Citrate synthase, the first enzyme of the citric acid cycle, is a
sturdy matrix enzyme often used to assess muscle mitochondrial
content. Expressed per mg protein in the final mitochondrial
suspension, citrate synthase activity (U mg�1) was 49% higher
when nagarse was included in the isolation procedure (Table 1).
However, the total citrate synthase activity recovered in the final
mitochondrial suspension, calculated by multiplying the U mg�1

by the total protein (mg) yield in the final suspension (see above),
was not different in MITOþ(366.7753.0 nmol min�1) compared
to MITO� (329.3754.1 nmol min�1) (Table 2).

3.3. Respiratory rates and respiratory control ratio

Mitochondrial O2 consumption (Jo) due to the combustion of
Pyruvate þ Malate þ Glutamate (PMG Jo) requires the entire
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oxidative pathway of fully intact mitochondria, including several
soluble matrix cofactors such as Coenzyme A and NADþ . Satur-
ating ADP was added to stimulate the maximum O2 consumption
rate (state 3 Jo). When mitochondria phosphorylate all of the ad-
ded ADP to ATP, they transition to “resting” (state 4) respiration.

Table 1 reports that nagarse treatment increased both state 3 Jo
(by 84%) and state 4 Jo (by 38%), when these values are expressed
per mg protein (nmol O2 min�1 mg�1). Thus, nagarse treatment
especially increased State 3 Jo, while it increased State 4 more
modestly. As a result, nagarse increased the respiratory control
ratio (RCR¼State 3 Jo/State 4 Jo) by 30% (Table 1). The total yield of
State 3 Jo activity recovered in the final mitochondrial suspension
was calculated as above for citrate synthase, by multiplying the
respiration rates per mg by the total protein (mg) yield in the final
suspension. Unlike citrate synthase, which was not statistically
different, total state 3 Jo was 37% higher in
MITOþ(42.577.5 nmol min�1) compared to MITO�
(31.175.7 nmol min�1) (Table 2). The total yield of State 4 Jo ac-
tivity was essentially identical in MITO� and MITOþ (Table 2).

3.4. ADP/O coupling and maximum ATP production

Nagarse exposure modestly improved, by 9%, the ADP/O ratio,
2.770.1 vs. 2.570.1, in MITOþ vs. MITO� , respectively (Table 1).
The product of State 3 Jo times the ADP/O yields the State 3 ATP
production rate (State 3 Jp). Because both factors were elevated by
nagarse treatment, State 3 Jp was dramatically (100%) higher in
MITOþ compared to MITO� , 771.4783.4 vs.
384.9736.9 nmol ATP min�1 mg�1 respectively (Table 1). Again,
multiplying these protein-specific State 3 Jp values by the total
protein (mg) yield indicated that nagarse exposure increased the
total yield of State 3 Jp by 49%: 229.5738.8 nmol ATP/min in
MITOþ vs. 153.5727.5 nmol ATP/min in MITO� (Table 2).

3.5. Protein detection by SDS-PAGE and identification and quantifi-
cation by mass spectrometry

Consistent with the Lowry protein determinations, nagarse
treatment decreased the visually apparent protein detected using
SDS-PAGE in representative MITOþ vs. MITO� preparations
(Fig. 2A). Mass spectrometry analysis of all samples also showed
less protein, including mitochondrial protein, content in the
MITOþ suspensions (Fig. 2B). In MITOþ preparations approxi-
mately 83% of the total protein content was identified as mi-
tochondrial proteins. In contrast, in MITO� preparations mi-
tochondrial proteins could account for only approximately 73% of
total protein. The ratio of identified MITO proteins versus non-
MITO proteins was higher in MITOþ samples compared to MITO�
(Fig. 2C).

Nagarse (apr; subtilisin Carlsberg; EC:3.4.21.62; UniProtKB ac-
cession number, Q65LP7) was essentially absent in the final sus-
pensions of mitochondria subjected to nagarse treatment. In
MITOþ preparations the tryptic peptide abundance of nagarse
represented only 0.008% of the total peptide abundance. In
MITO� this value was 0.0002% (data not shown).
0
MITO- MITO+

Fig. 2. Protein abundance in mitochondrial suspensions isolated without and with
nagarse. Protein abundance detected by SDS-PAGE/Coomassie Blue (A), HPLC-ESI-
MS/MS quantitative proteomics analysis to determine peptide ion abundance of
mitochondrial and non-mitochondrial proteins in MITOþ and MITO� samples (B),
and protein ratio of mitochondrial-to-non-mitochondrial protein in the same
samples (C). Values are means7SE; MITOþ , mitochondria samples treated with
nagarse; MITO� , mitochondria samples not treated with nagarse; *Po0.05 be-
tween MITOþ and MITO-.
4. Discussion

The major findings reported here are that nagarse exposure
substantially reduced (by 25%) the protein yield in the final mi-
tochondrial suspension, and proteomic analysis indicated that the
elimination of non-mitochondrial protein accounted for much of
this reduction. By removing non-mitochondrial protein, nagarse
treatment increased mitochondrial enzyme and enzyme pathway
protein-specific activities. Expressed per mg protein, nagarse
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treatment increased citrate synthase activity by 49% and State 3 Jo
even more dramatically, by 84%. Moreover, nagarse also modestly
increased the ADP/O ratio, so that, per mg protein, State 3 Jp im-
proved by 100%. The data generally indicate that nagarse treat-
ment effectively removes contaminating non-mitochondrial pro-
teins and substantially improves indices of mitochondrial catalytic
potential and energetic coupling.

The total isolated CS activity was not significantly affected by
nagarse treatment, while nagarse increased the total yield of State
3 Jo by 37%, and State 3 Jp by 49%. The spectrophotometric assay of
citrate synthase activity versus the polarographic assay of mi-
tochondrial oxidative phosphorylation fueled by PMG evaluate
two vastly different parameters of mitochondrial structure and
function. Citrate synthase is a high activity matrix enzyme with
well-known stability [21], and is routinely measured in either
whole tissue homogenates or mitochondrial suspensions in the
presence of a detergent such as Triton X-100, as it was in the
present study. In marked contrast, the oxidation of the substrate
combination PMG, whether the mitochondria are “resting” or sti-
mulated by saturating ADP, requires, at the least, the entire in-
tegrated oxidative pathway and, in particular, robust inner mem-
brane structural integrity. It can be argued that the different out-
comes of the CS and Jo assays suggest that nagarse treatment
somehow modified the first, slow speed, supernatant in a way that
protected mitochondrial units (vesicles) from damage during the
subsequent high speed centrifugation and resuspension steps of
the isolation procedure. This interpretation is developed below.

Whether mitochondria are partially damaged, have been
briefly opened and then resealed, or are fully intact, citrate syn-
thase activity may well remain unaffected. Thus, it can be envi-
sioned that in the absence of nagarse treatment some mitochon-
dria, both fully intact and partially damaged, in the first super-
natant were subsequently further damaged during the course of
the isolation procedure, but they nevertheless carried citrate
synthase activity into the final suspension. Nagarse treatment, on
the other hand, would be expected to proteolytically remove the
activity of exposed citrate synthase in damaged mitochondria. The
data of Table 2 indicate that these intact mitochondria in the final
MITOþ suspension carry roughly similar citrate synthase as the
MITO-. The net effect is that the total yield of citrate synthase
activity in the final suspension is not significantly different.
However, in MITOþ more of this citrate synthase activity resides
in fully intact mitochondria, which are capable of coupled oxida-
tive phosphorylation.

The total yield of State 3 Jo was 37% higher and State 3 Jp ac-
tivity was 49% higher in MITOþ final suspensions. In contrast, the
total yield of State 4 Jo was essentially identical in the two pre-
parations. Nagarse in the first supernatant may have somehow
protected against mitochondrial damage during subsequent cen-
trifugation and resuspension steps, perhaps by digesting non-mi-
tochondrial proteins in some type of linkage [22,23] to mi-
tochondria. In the abstance of nagarse treatment, during the high-
speed centrifugations and pellet resuspensions these linkages
somehow increased the likelihood of structural insult to mi-
tochondrial vesicles. The damage was not severe enough to liber-
ate citrate synthase from its matrix binding [21], but was sufficient
to preclude the development of the very high driving forces re-
quired for oxidative phosphorylation. Damaged organelles in
MITO- preparations are consistent with the lower RCR and ADP/O
values observed in MITO-. It therefore appears that nagarse pro-
moted the release of mitochondria from non-mitochondrial pro-
tein, which was digested and resulted in less protein yield and less
damage to mitochondria during isolation.

Mass spectrometry data further support this interpretation.
MITO- preparations had much greater abundance of non-mi-
tochondrial proteins. In nagarse treated preparations, both
mitochondrial and non-mitochondrial protein yields were reduced
(Fig. 2B). This suggests that sufficiently damaged mitochondria in
the first supernatant were exposed to nagarse entry/attack, di-
gested and did not make it into the final suspension.

The mitochondria within a muscle cell are interconnected as a
reticulum (network) [1–3,24,25]. Mechanical homogenization,
however gentle, of muscle tissue therefore must destroy this re-
ticular structure, because electron micrographs of isolated mi-
tochondria, for example those of Palmer et al. [5], clearly show the
isolated organelles as individual vesicles. During homogenization,
as these vesicles form, some membrane damage and leakage of
essential matrix cofactors (NAD, CoA, adenylates, etc.) into the
isolation medium would be expected [26]. Nevertheless, when
these procedures are performed carefully by experienced hands,
and particularly when nagarse is included in the isolation proce-
dure, the resulting vesicles are capable of nearly matching the
maximum O2 consumption rates [27,28] and ATP free energy [29–
31] measured in intact muscle using Fick O2 mass balance and
31P-MRS, respectively. Moreover, the isolated mitochondria also
control respiration and ATP production over the same range of
energy phosphate levels observed in vivo [13,30,32,33]. Thus,
mitochondria isolated using mechanical homogenization and ex-
posure to protease can be nearly as functional as mitochondria
in vivo.
5. Conclusions

Nagarse treatment of mitochondria removes non-mitochon-
drial proteins as well as proteins of damaged mitochondria, and
improves indices of functional integrity and resulting protein-
specific activities.
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