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Abstract

Background: With the aid of implants, Björk identified two-dimensional mandibular stable structures in
cephalograms during facial growth. However, we do not know what the three-dimensional stable structures are
with certainty. The purpose of this study was to identify the most stable mandibular landmarks in growing patients
using three-dimensional images.

Methods: The sample was comprised of two cone-beam computed tomography (CBCT) scans taken about 4.6
years apart in 20 growing patients between the ages of 12.5 (T1) and 17.1 years (T2). After head orientation,
landmarks were located on the chin (Pog), internal symphysis (Points C, D and E), and mandibular canals, which
included the mental foramina (MF and MFA) and mandibular foramina (MdF). The linear distance change between
Point C and these landmarks was measured on each CBCT to test stability through time. The reliability of the
suggested stable landmarks was also evaluated.

Results: The total distance changes between Point C and points D, E, Pog, MF, and MFA were all less than 1.0 mm
from T1 to T2. The reliability measures of these landmarks, which were measured by the Cronbach alpha, were
above 0.94 in all three dimensions for each landmark. From T1 to T2, the distance changes from Point C to the
right and left mandibular foramina were 3.39 ± 3.29 mm and 3.03 ± 2.83 mm, respectively.

Conclusions: During a growth period that averaged 4.6 years, ranging from 11.2 to 19.8 years old, the structures that
appeared relatively stable and could be used in mandibular regional superimpositions included Pog, landmarks on the
inferior part of the internal symphysis, and the mental foramen. The centers of the mandibular foramina and the
starting points of the mandibular canal underwent significant changes in the transverse and sagittal dimensions.
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Background
A challenge in measuring growth is identifying a stable refer-
ence point. Measuring change is complicated by not being
able to determine whether one or both landmarks have
shifted in position relative to the overall matrix of interest.

There are no means to analyze the sources of change with-
out having an external reference point.
Björk was the first person who studied facial growth using

metallic implants as an external reference point [1–3]. He
also identified natural stable structures of the maxilla and
mandible in cephalograms. In the mandible, the tip of the
chin and the following three internal structures are consid-
ered stable: (1) the inner cortical structure of the inferior
border of the symphysis, (2) detailed structures from the
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mandibular canal, and (3) the lower contour of the molar
germ from the time that mineralization of the crown is vis-
ible until the roots begin to form [2]. All of these stable re-
gions are projections of three- dimensional (3D) structures
onto two-dimensional (2D) lateral films and are difficult to
accurately relate to the original anatomy, except structures
located in the midsagittal plane.
Ruellas found that the Björk registration could not work

properly in most 3D mandibular superimposition cases
using CBCT images [4]. One of the reasons discussed was
the displacement of the mandibular canal and other “stable
structures” as a result of growth. Due to this inherent short-
coming of the 2D image, the transversal growth informa-
tion of the mandibular canal is absent in the lateral x-ray
film and minimally present in the posterior-anterior cepha-
logram. Fortunately, CBCT overcomes this limitation.
CBCT offers a valid 3D representation of the skeletal

structures of the cranium and employs much less radi-
ation than computed tomography (CT) scans [5]. With
the aid of CBCT, the transversal change of facial growth
can be evaluated to identify additional reference struc-
tures. However, assessing the change in growing patients
is still a challenge since stable natural structures of the
maxilla and mandible are difficult to identify without a
unique implant CBCT sample similar to that of Björk’s.
Recently, Nguyen identified 3-dimensionally stable

mandibular structures in growing patients with the aid
of bone plates and found some anterior stable areas (the
chin and symphysis regions) [6]. However, it has been
questioned whether some stable structures posterior to
the symphysis region can be identified to better perform
mandibular superimpositions.
The objective of this study was to identify natural stable

references in the mandible using longitudinal CBCT data.
With the aid of these stable landmarks, the accuracy of dif-
ferent mandibular superimposition methods could be tested.

Methods
This investigation was a retrospective observational lon-
gitudinal study.
The study sample consisted of a total of 20 adolescent

patients from a maxillary expansion randomized clinical
trial conducted at the University of Alberta, Canada [7].
The inclusion criteria were a period of at least 2.5 years
between two CBCTs and no mandibular jaw surgery.
Cases in the sample were from both the expander and
control groups, since we focused on the mandible. The
exclusion criteria included poor image quality and man-
dibular asymmetry with greater than 2 mm of chin devi-
ation. Severe asymmetrical patients were excluded
because the symphysis of the mandible may not coincide
with the midsagittal plane of the mandible due to chin
deviation. The sample included 5 boys and 15 girls. The
mean age at the initial CBCT (T1) was 12.5 ± 0.9 years

(11.2 to 14.2 years) and the mean age at the final CBCT
(T2) was 17.1 ± 1.5 years (14.6 to 19.8 years). The mean
time interval between the two CBCTs was 4.7 ± 1.1 years,
ranging from 2.5 to 6.6 years (Fig. 1).
CBCT scans at T1 were taken using a NewTom 3G

(Aperio Services, Verona, Italy) at 110 kV, 6.19 mAs, 8
mm aluminum filtration, and voxel size of 0.25.
Mm, while scans at T2 were taken using the iCAT ma-

chine (Imaging Sciences International, Hatfield, Pa) with
a collimation height scan of 13 cm, 120 kV, 24 mA, scan
time of 20 s, and voxel size of 0.3 mm. The DICOM files
were imported into the Invivo 6.0 software program
(Anatomage, San Jose, CA) to display the images. The
orientation of the volumetric images was performed by
using three reference planes: (1) Frankfort Horizontal
plane (FH) – the primary reference plane that intersects
right Porion (Po), left Po, and right Orbitale (Or); (2)
Midsagittal plane – plane passing through Nasion (N)
and Basion (Ba) that is perpendicular to FH; and (3)
Frontal plane – plane perpendicular to both the FH and
midsagittal planes and passing through N. N point was
set as the origin (Fig. 2 and Table 1).
Following Björk and Skieller’s method in their study

on stable structures of the mandible using 2D lateral
cephalograms [3], 10 skeletal landmarks were selected:
Pog; Points C, D, and E on the internal symphysis; and
MF, MFA, and MdF on the mandibular canal (Table 1
and Figs. 3, 4). The positions of C, D, and E were located
on the midsagittal plane of the mandible. Landmark lo-
cations were checked in both volumetric and sectional
views. The calibration process for landmark location was
performed by two judges using randomly selected cases.
After satisfactory calibration sessions, each image was
traced by 2 calibrated judges and the estimates were av-
eraged when reporting all measurements.
Landmarks C, D, and E, located in the inner cortical

structure of the symphysis, were selected to represent
the natural reference points in the symphysis. C indi-
cates the most posterior point of the internal symphysis
[4], D indicates the most anterior point of pogonion on
the internal symphysis, and E indicates the most inferior
point of the internal symphysis. The Invivo 3D custom
analysis tool was used to calculate the distance between
the landmarks and reference points C, D, E in 3D space
using the formula d = square root of [(x1 -x2)

2 + (y1-
y2)

2 + (z1-z2)
2] (Fig. 5). X, y, and z are the coordinates of

the landmarks.

Statistical analysis
In addition to descriptive statistics used to characterize
the initial and final locations, changes between the refer-
ence points and 7 landmarks, t-tests for differences in
mean landmark change, and linear and polynomic re-
gression analyses were used to project the location and
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stability of the theoretical parameters of C, D, and E.
The consistency of two judges was determined by Cron-
bach’s alpha, regression analysis, and a normalized score
for differences between judges [8]. Sources of variance
(patient, time, judge, and error) were estimated using
Cronbach’s generalizability method [9]. SPSS 22.0 for
Windows (IBM Corp, Armonk, NY) was used for all
statistical analyses.

Results
Consistency of the judges
The inter-judge reliability of the landmarks, which was
tested using the Cronbach α, was above 0.94 in all three
dimensions for all landmarks (Table 2). Even when

consistency between judges was high, bias may remain [8].
If one gives proportionally higher scores to extreme
values, the intraclass correlation coefficient (ICC) will re-
main high, but the regression lines between judges will
not be parallel. If one judge consistently sees each distance
as greater than the other judge does, the average scores
will show a displacement even though the ICC may be ex-
cellent. The Cronbach α (equivalent to ICC in this case)
and the slope of the regression line for judge scores should
both be 1.0, and the displacement should be 0.0.

Stability test among C, D, and E
The approach used to establish the stability of C, D, and
E was to project an ideal reference point, one that

Fig. 1 Sample distribution by sex and age. The length of the line indicates the time interval between two CBCTs

Fig. 2 Head orientation before placing landmarks. Frankfort plane is constructed with the X-axis and Y-axis. Sagittal plane is constructed with the
Y-axis and Z-axis. Frontal plane is constructed with the X-axis and Z-axis. X = Right (−)-Left (+).Y = Antero (−)-Posterior (+). Z = Superior (+)-Inferior
(−).The origin is at point N
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minimizes variation, from nine other landmarks on the
mandible. In order to be considered stable, the measured
landmark should be very close to the projection from
other landmarks of interest. Two projections were made:
one to find the best reference point based on change in
other landmarks and the other based on the standard
deviation of those changes (Fig. 6). Three parameters
can be used to characterize the quality of the

projections. R-values reflect the adequacy of the projec-
tions. The intercept of the regression line (the point at
which the distance between the target landmark and the
reference is 0.0) is the 3D distance between the actual
reference point and the theoretically projected one. The
average 3D distance between the actual and projected
reference point can be calculated algebraically from the
distance equation.

Table 1 Landmark names and definitions

Landmark Symbol Definition Category

Nasion N The most antero-inferior point on the frontal bone at the fronto-nasal suture. Landmarks for head
orientation

Orbitale Or The most inferior point of the lower border of the boney orbit.

Porion Po The most superior point of external auditory meatus.

Basion Ba The most inferior point at the anterior margin of the foramen magnum in the
midsagittal plane.

Pogonion Pog The most anterior point in mandibular chin area in the sagittal plane. Landmarks on chin

Point C C The deepest point on the anterior surface of the lingual cortical plate of the chin
symphysis (Fig. 3).

Reference landmarks in
symphysis

Point D D Intersection of the line connecting C and Pog with the anterior cortical plate of the
chin (Fig. 3).

Point E E The most inferior point on the inner surface of the cortical plate of the chin
symphysis (Fig. 3).

Mental foramen MF The center of the mental foramen (Fig. 4). Landmarks on mandibular
canal

Anterior mental
foramen

MFA The most anterior point of the mental foramen (Fig. 4).

Mandibular foramen MdF The center of the mandibular foramen (Fig. 4).

Fig. 3 The positions of C, D, E, and Pog and their relationship. C, D,and E are located in the middle sagittal plane of the mandible, which is
parallel to the midsagittal plane of the head and passes through Pog
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Fig. 4 The positions of MF, MFA, and MdF on the left side: a, MF is located in center of the mental foramen; b, MFA is the most anterior point of
the mental foramen; c, MdF is located in the center of the mandibular foramen. It is placed on the first slice where the canal shows a complete
circle from superior to inferior

Fig. 5 Eleven linear measurements in this study
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The estimates for differences between ideal projections
and actual reference points are shown in Table 3. Gener-
ally, C is most stable with an R-value of 0.988, intercept
of 0.014, and average deviation of 0.008 mm (Table 3).

Changes in landmarks between T1 and T2
Table 4 shows 3D linear distances between 9 landmarks
and C, as well as the changes in these values from T1 to
T2. Landmarks that were more distant from C at T1 ex-
hibited both the greatest change and the largest standard
deviations in change. Interestingly, the mental foramen
position seems relatively stable, with less than 1.0mm of
change in both its distance to the reference point in the
symphysis and the width between the right and left mental
foramina. On the other hand, the mandibular foramen
underwent significant changes in both the transverse and
sagittal dimensions.

Partitioning sources of variance in judged distance
measurement
Table 5 and Fig. 6 display results reflecting the consistency
of measurements involving change. Table 5 is based on a

3-way ANOVA with patients, judge, and time as factors.
The significance columns can be interpreted in the usual
fashion. For example, averages that combine T1 and T2
are significant across subjects for all distances, meaning
that some mandibles are larger than others. The patient x
time interaction is also significant for all landmarks, show-
ing that the rate of growth differs across subjects in all
measured dimensions.
Cronbach’s generalizability method allows for the parti-

tioning of variance by source. This is displayed in Table 5
under the column headings for “% var.” Consistently, the
largest sources of variance in growth are patient differences,
followed by patient-by-time interaction and error. Time
was not an important factor in contributing to the distance
change from C to D, E, Pog, and mental foramen. However,
time was an important factor for the distance change from
C to the mandibular foramen on each side. The mean dis-
tance changes were about 3.0mm over 4.6 years.
The partitioning of sources of variance for the example

of C-MFA (left) is shown graphically in Fig. 7, where the
area of each segment is meant to be proportional to the
proportion of variance associated with that source or
combination of sources.

Table 2 Inter-examiner reliability of the landmarks

Landmark X Y Z

α Slope Displacement (mm) α Slope Displacement (mm) α Slope Displacement (mm)

Pog 0.955 0.971 − 0.158 0.997 0.976 −0.010 0.998 0.988 0.018

C 0.952 0.965 −0.170 0.996 0.981 −0.010 0.997 0.996 0.020

D 0.962 0.947 −0.160 0.998 0.995 0.019 0.988 0.980 0.000

E 0.947 0.921 −0.064 0.997 0.980 0.008 0.999 1.000 0.000

Right MF 0.976 0.932 −0.049 0.995 0.987 0.013 0.997 1.018 0.028

MFA 0.983 0.951 −0.037 0.996 0.992 0.009 0.998 0.999 0.047

MdF 0.983 0.938 −0.016 0.991 0.974 0.061 0.993 1.006 0.037

Left MF 0.983 0.972 0.019 0.997 0.981 0.010 0.997 0.995 0.034

MFA 0.983 0.938 −0.025 0.997 0.985 0.007 0.998 1.008 0.021

MdF 0.964 0.995 −0.013 0.992 0.984 0.009 0.994 0.971 0.010

Fig. 6 Relationship between distance from reference point C and 9 landmarks and change in landmark from T1 to T2 (on left) and standards
deviation of that change (on right)
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Discussion
CBCT has been proven to be a valid 3D representation
of the skull that is suitable for clinical and laboratorial
use. To evaluate mandibular change properly, CBCT
superimposition is supposed to be the best method. The
voxel-based method was first described in dentistry by
Cevidanes et al. [10] and became the most popular.
Voxel-based superimposition matches the grayscale
values of the voxels to superimpose the CBCT images.
Ruellas et al. [4] suggested superimposing the mandible
in growing patients on the mandibular body (mandible
without teeth, alveolar bone, rami and condyles) using
3D regional registration. Koerich et al. [11] showed that
this was a precise method for 3D mandibular superim-
position in growing subjects.
However, there may be concerns about using the en-

tire mandibular body to superimpose growing patients
because certain areas of the mandibular body are remod-
eled during growth, such as the chin and the lingual tu-
berosity, which may not qualify as reference structures
[12]. Erroneous information regarding patterns of bone
growth and remodeling would be obtained if biologically
incorrect superimposition protocols are used [13].
Ideally, superimposition should be based on the most
stable, verified structure with good reliability.

In past studies using 2D cephalograms, stable struc-
tures in the mandible were identified with the aid of me-
tallic implants [1–3], which can unlikely be repeated
nowadays using CBCT. Fortunately, the inner cortical
structure of the inferior border of the mandibular sym-
physis, located on the facial midline and having no
transversal change during growth, was verified by im-
plants to be stable sagittally and vertically. In this study,
we used this structure as an indirect reference to identify
other stable landmarks or structures in the mandible.
After several trials and errors, we found eight relatively

stable landmarks. Among them, points C, D, E and Pog
were located on the stable regions, which was in agree-
ment with Nguyen’s study. With the aid of bone plates
and screws, Nguyen et al. found that the chin and sym-
physis regions were stable areas for 3-dimensional man-
dibular regional superimpositions [6]. In addition, two
new landmarks (MF and MFA) on the mental foramina
on each side, which cannot be viewed in lateral cephalo-
grams, were identified. In the present study, the pos-
itional stability of C, D, and E through time was
statistically tested. All three points showed high stability
over a 4.6-year time interval. In addition, C turned out
to be the most stable point and was used as the refer-
ence point to measure the stability of other landmarks in
the mandible. The average changes in distance from C
to all of the reference landmarks were less than 1.0 mm,
and the change in width between the right and left men-
tal foramina (MF- MF) was 0.44 mm, which is a rela-
tively small change during 4.6 years of growth.
In this study, a three-way ANOVA, which gave more

detailed insight into how this difference may be occur-
ring (Table 5, Fig. 6), was used to analyze the distance
change between T1 and T2. The statistical analysis of
the change in C-D, C-E, C-Pog, C-MF, C-MFA, and
MF-MF showed that time was not an important factor
in contributing to the distance change, indicating the
stability of these landmarks during growth.
Reliability is another important characteristic of the

reference landmark. The Cronbach α values for the 8
relatively stable landmarks were all above 0.94 in all 3
dimensions and did not exhibit scale distortion or dis-
crepancy bias.
In this study, we estimated the dimensional change of

the mandibular canal by quantifying the positional sta-
bility of the mandibular foramen (starting point of the

Table 3 The estimates for difference between ideal projections and actual reference points (Point C, D, and E)

C D E

R Intercept (mm) Ave Dev (mm) R Intercept (mm) Ave Dev (mm) R Intercept (mm) Ave Dev (mm)

Change 0.988 0.014 0.008 0.976 0.095 0.055 0.988 0.097 0.056

SD 0.991 0.569 0.327 0.991 0.652 0.376 0.972 0.246 0.143

R values reflect the adequacy of the projections

Table 4 Distance change among the landmarks (mm) between
T1 and T2 (N = 20)

Measurements T1 T2 T1-T2 T P

Mean SD Mean SD Mean SD

Age (Year) 12.6 0.9 17.1 1.5 4.5 1.1 17.857 <.001

C-D 8.37 1.49 8.40 1.46 0.03 0.73 0.176 NS

C-E 9.04 1.85 9.25 1.84 0.21 0.59 1.631 NS

C-Pog 10.53 1.50 10.59 1.48 0.06 0.71 0.368 NS

Right C-MF 23.63 1.79 23.81 1.93 0.18 0.92 0.853 NS

C-MFA 22.57 1.56 22.77 1.81 0.20 0.89 0.980 NS

C-MdF 69.73 3.66 72.76 4.90 3.03 2.83 4.669 <.001

Left C-MF 23.21 1.92 23.84 1.86 0.63 1.11 2.471 0.050

C-MFA 22.14 1.86 22.85 1.64 0.71 0.95 3.257 0.010

C-MdF 69.77 3.78 73.16 4.46 3.39 3.29 4.490 <.001

MF -MF 43.58 2.54 44.02 2.40 0.44 0.77 2.490 0.050

MdF -MdF 78.74 3.23 81.30 3.78 2.56 2.08 5.367 <.001

NS at P ≥ 0.05
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canal) and mental foramen (terminal point of the canal).
The position of the mental foramina appears stable in all 3
dimensions, with less than 1.0mm of change. However, the
position of the mandibular foramina shows some changes,
such as an increase of 2.5 ± 2.1mm transversally and an in-
crease of about 3.0mm linearly from C to the right and left
mandibular foramina. This finding is in agreement with the
result of Krarup’s study, which analyzed normal mandibular
growth using medical CTs in 10 children with Apert syn-
drome from 1week to 14.5 years [14]. The mandibular canals
were relocated laterally; therefore, we should be careful in in-
cluding the posterior part of the mandibular canal as a refer-
ence structure for mandibular regional superimposition. This
information can provide an important foundation for man-
dibular regional superimposition using both methods based
on landmarks or voxels.
No landmark on the molar germs was mentioned in

this study, since in most cases the roots of the third mo-
lars started developing at T2. Furthermore, it is difficult
to place a reliable landmark on the lower contour of the
molar germ, which is a smooth and curved surface in
the early stages.

Limitations
The present study has some limitations. There were
more girls than boys, and we did not include younger
age groups in the sample. These limitations were due to
the availability of data. Although mandibular superim-
position using four symphysis landmarks and four land-
marks at the mental foramina on both the right and left
sides should theoretically suffice for the superimposition
of 3D images, the landmark-based superimposition
method is less accurate than the voxel-based method
[15]. The reason is that landmark identification on 3D
images is complex. The present study could not answer
whether the mandibular canal gradually displaces lat-
erally, or that a significant displacement occurs in a spe-
cific part of the mandibular canal. In a future study, we
plan to explore more stable structures based on the
stable landmarks we have identified to improve the
voxel-based superimposition method in growing patients
and to investigate 3D growth of the mandibular canals.
In addition, further validation studies against other sam-
ples are required for the suggested stable landmarks in
the present study.

Fig. 7 Variance analysis: Proportion of variance for each component of the C-MFA (left). Numbers represent percentages. Patients contributed
76%, time contributed 7%, and judge contributed 1%; patient x time contributed 10%, patient x judge contributed 1%, and judge x time
contributed 0%. The unknown factors (e) contributed the last 7% of variance
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Conclusions
We assessed the stability of mandibular structures in the
symphysis and mandibular canal during an average
growth period of 4.6 years, ranging from 11.2 to 19.8
years, We also introduced new stable landmarks for
mandibular superimposition. Pog, landmarks on the in-
ferior part of the internal symphysis (C, D, and E), and
the mental foramen appear relatively stable, and thus,
can be used in mandibular regional superimpositions.
The mandibular foramina showed significant positional
changes in both the transverse and sagittal dimensions.
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