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Identification of protein complexes is of great importance in the understanding of cellular organization and functions.
Traditional computational protein complex prediction methods mainly rely on the topology of protein�protein interaction
(PPI) networks but seldom take biological information of proteins (such as Gene Ontology (GO)) into consideration.
Meanwhile, the environment relevant analysis of protein complex evolution has been poorly studied, partly due to the lack
of high-precision protein complex datasets. In this paper, a combined PPI network is introduced to predict protein
complexes which integrate both GO and expression value of relevant protein-coding genes. A novel protein complex
prediction method GECluster (Gene Expression Cluster) was proposed based on a seed node expansion strategy, in which
a combined PPI network was utilized. GECluster was applied to a training combined PPI network and it predicted more
credible complexes than peer methods. The results indicate that using a combined PPI network can efficiently improve
protein complex prediction accuracy. In order to study protein complex evolution within cells due to changes in the living
environment surrounding cells, GECluster was applied to seven combined PPI networks constructed using the data of a test
set including yeast response to stress throughout a wine fermentation process. Our results showed that with the rise of
alcohol concentration, protein complexes within yeast cells gradually evolve from one state to another. Besides this, the
number of core and attachment proteins within a protein complex both changed significantly.
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Introduction

Protein complexes are groups of proteins that interact with

each other; consequently, they usually form dense clusters

in protein�protein interaction (PPI) networks. Protein

complexes are important molecular entities in cells. Pre-

dicting protein complexes can help in the understanding

of cellular components and function as well as in research

on the evolution between protein complexes. Researching

protein complex evolution due to changes in the living

environment surrounding cells is of great importance in

unveiling the secrets of cell organization and function.[1]

Recently, a large amount of protein interactions has been

produced, which makes it possible to predict protein com-

plexes from PPI networks.

The prediction of protein complexes from PPI net-

works has long been studied and the methods mainly fall

within the following three categories: (1) methods based

on seed node expansion,[2,3] which predict protein com-

plex in two stages: first, they identify seed nodes and sec-

ond, they expand the source nodes. A different strategy

used in seed node selection and expansion affects those

methods significantly. (2) Methods based on hierarchical

clustering,[4,5] which represent the entire network in a

tree-like structure and find protein complexes by cutting

the whole tree at different levels. (3) Heuristic methods,

[6] which usually have much higher accuracy due to intro-

ducing additional information about proteins besides the

topology of PPI networks. However, all these methods

mainly rely on the topology of PPI networks. Seldom are

the roles that proteins play in the cells considered.

Recently, some researchers have begun to acknowledge

that by introducing biological information of proteins into

protein complex prediction, the accuracy of several meth-

ods can be improved. As a result, methods like those

described in [7,8] can achieve much higher accuracy.

However, all the methods above ignore a basic concept

that PPI networks do not remain constant but experience

dynamic changes according to the changes in the cellular

living environment.

At a specific time point, only certain proteins that are

needed are translated. Therefore, the protein complex pre-

diction should be based on essentially translated proteins

and nonessential ones should better be excluded. Besides,

more biological information such as Gene Ontology (GO)

and gene expression values of corresponding proteins can be

taken into consideration when selecting seed node proteins.
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In this paper, a combined PPI network is introduced to

predict protein complexes, which integrates both GO and

the expression value of relevant protein-coding genes.

The combined PPI network which is constructed by the

dynamic PPI network is a weighted PPI network and the

weight corresponds to the number of shared GO terms

between proteins. The dynamic PPI network is con-

structed by the PPI network while removing untranslated

proteins. We propose a novel protein complex prediction

method, GECluster, based on a seed node expansion strat-

egy, in which a combined PPI network is utilized.

GECluster was applied to a combined PPI network and it

predicted more credible complexes than peer methods. In

order to study the protein complex evolution within cells

due to changes in the living environment surrounding

cells, we applied GECluster to seven combined PPI net-

works constructed using gene expression data of yeast

response to stress throughout a wine fermentation process.

According to our study, with the rise of alcohol concentra-

tion, protein complexes within yeast cells gradually

evolve from one state to another and the number of core

and attachment proteins within protein complexes both

changed significantly.

Materials and methods

Static PPI network and dynamic PPI network

Static PPI networks, also called PPI networks, have been

widely used in protein complex prediction researches.[9,10]

A static PPI network contains all the PPIs in an organism,

regardless of when and where the interactions occur. In

other words, a static PPI network is the union set of PPIs.

Dynamic PPI networks are a subset of the static PPI net-

works and are constructed by removing redundant PPIs

from a static PPI network, leaving only interactions needed.

This is reasonable because at a certain time point only cer-

tain proteins that are needed are expressed in a cell. In this

paper, we constructed a dynamic PPI network by refining

static PPI networks using time series gene expression data.

The steps are shown in Figure 1. (For an example, see Sec-

tion 1.1 in the Online Supplementary Appendix.)

GO and GO slims

The GO [11] project is an extensive bioinformatics initia-

tive aiming to standardize the representation of gene and

gene product attributes across species and databases. As

demonstrated in [8,12], a general feature of the proteins in

a protein complex is that they commonly share one or

more GO term annotations. GO slims are a trimmed ver-

sion of GO and give a much broader overview of ontology

content than GO, which makes them particularly useful

for giving a summary of the results of GO annotation of a

genome when broad classification of proteins is needed.

[1] The annotation of GO slims mainly includes three

aspects: biological processes (BP), molecular functions

(MF) and cellular components (CC), each of which con-

tains a fixed number of GO terms. In this paper, we use

GO slims to annotate each protein in the dynamic PPI net-

work and, as a result, for each GO term we obtain a pro-

tein set denoted as GO-Protein-Set. Proteins within the

same GO-Protein-Set share similar GO annotations.

Combined PPI network construction

A combined PPI network is a weighted dynamic PPI net-

work and the weight on the edge represents the common

GO terms shared by the two endpoint proteins. We con-

struct the combined PPI network as shown in Figure 2.

(For an example, see Section 1.2 in the Online Supple-

mentary Appendix.)

Function similarity

Function similarity measure between two arbitrary pro-

teins, also called FS_Weight,[13] has been widely used in

protein complex prediction. In this paper, we also use

FS_Weight to measure the function similarity between

two proteins. The FS_Weight between proteins i and j is

defined as follows:

FS Weightði; jÞ ¼ 2jNi \Njj
jNi ¡Njj þ 2jNi \Njj þ λij

£ 2jNj \Nij
jNj ¡Nij þ jNj \Nij þ λji

;

(1)

Figure 1. Flowchart diagram on how to construct dynamic PPI
networks.
Note: val(A) represents the expression value of gene ‘A’; Mean
(A) represents the mean expression value of gene ‘A’, which is
calculated by computing the average expression value of gene
‘A’ at different time points.
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where Ni denotes the degree of protein i; jNi\Njj denotes
the common neighbours between proteins i and j, includ-

ing i and j; jNi ¡ Njj denotes the number of proteins who

are neighbours of protein i but not of j; and λij is defined
as follows:

λij ¼ maxð0;Navg ¡NiÞ; (2)

where Navg denotes the average degree of all the proteins

in the dynamic PPI network; and λji can be defined

correspondingly.

In this paper, if FS_Weight � FS_Weightmin, where

FS_Weightmin is a threshold value, we consider the pro-

teins to have strong similarity. If two proteins have strong

similarity, this does not necessarily mean that they would

fall into one and the same cluster. In order to determine

whether they should be clustered together, a Cluster_

Coefficient index was used. Cluster_ Coefficient is defined

as

Cluster Coefficient ¼ 2m

nðn¡ 1Þ (3)

where m is the total edges in the cluster; and n (n � 2) is

the total nodes in the cluster.

When adding a protein into a cluster, two criteria

should be satisfied. One is that it should have strong

functional similarity with all the proteins already in the

cluster; the other one is that the Cluster_Coefficient

should not decrease as a result of the inclusion of that

protein.

GECluster algorithm

The GECluster algorithm uses combined PPI networks

and works as shown in Figure 3.

Datasets

Two time course gene expression datasets were used in

this paper: one is a training set and the other one is a test

set. The time series gene expression data in the training

set were downloaded from Gene Expression Omnibus

(GEO).[14] The accession number is GSE4259, which is

a study of fermentation at different concentrations of

sucrose. The time course gene expression data of Saccha-

romyces cerevisiae responding to stress throughout a 15-

day wine fermentation (downloaded from GEO,[15]

accession number is GSE8536) was used as test set. The

main study of GSE8536 is based on expression measure-

ments at 0.5%, 2%, 3.5%, 7% and 10% ethanol (corre-

sponding to roughly 24, 48, 60, 120 and 340 h).

Experiments were done in triplicate (biological repli-

cates). This accession also includes the files at 1 and at

Figure 2. Flowchart diagram on how to construct combined PPI
networks.

Figure 3. Flowchart diagram of the GECluster algorithm.
Notes: M(i,j) is the weighted matrix of combined PPI network
whose elements represent the edge weight value in combined
PPI network. D(i) is an array, with element values ordered from
large to small and the value represents the degree of network
node. Cluster_Coefficient1 represents the Cluster_Coefficient
value of the new cluster before the selected node is included.
Cluster_Coefficient2 represents the Cluster_Coefficient value of
the new cluster after the selected node is added into the cluster.
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12 h for completeness (also in triplicate). The DIP (Data-

base of Interaction Proteins) database is composed of

three linked tables: a table of protein information, a table

of PPIs and a table describing details of experiments

detection the PPIs. The experimental article table can be

used to evaluate the quality of an interaction base on the

particular experiments performed.

The static PPI dataset was downloaded from DIP [16]

(updated on 07/07/2013). The data have been curated both

manually by expert curators and also automatically, using

computational approaches that utilize the knowledge

about the PPI networks extracted from the most reliable,

core subset of the DIP data. After deleting self-loops and

duplicated edges, the static PPI network contains 4976

nodes and 21,937 edges. In order to validate our method,

a benchmark protein complex dataset was used. The refer-

ence set comprises 350 hand-curated consensus com-

plexes. We kept only those complexes with a size no less

than 3, and as a result only 182 complexes were left. Since

we consider dynamic PPI networks in this study, some

proteins in the benchmark datasets may not translate.

Therefore when evaluating the performance of our meth-

ods, we curated the benchmark dataset according to

expressed genes. As a result, only 76 complexes were left.

Evaluation methods

We calculated Recall (sensitivity) and Precision at com-

plex level by matching generated clusters with reference

complex sets. Let A be a generated complex, B be a refer-

ence complex, VA be the set of proteins contained in A

and VB be the set of proteins contained in B. The matching

score between A and B is defined as follows:

M ScoreðA;BÞ ¼ jVA \VBj
jVA [VBj : (4)

Given a threshold value M_thres, if M_Score(A, B) �
M_thres, then proteins A and B match each other. In most

of our experiments, we set M_thres D 0.2, in line with

many other methods.[1,17] Given a set of reference com-

plexes C D (C1, C2, C3, . . . , Cm) and a set of predicted

complexes P D (P1, P2, P3,. . ., Pn), Recall and Precision

at complex level are defined as follows:

Recall ¼ Nmc

Nc

; (5)

Precision ¼ Nmp

Np

; (6)

where Nc and Np represent the number of complexes in the

reference and the predicted protein complex data sets,

respectively; Nmc is the number of protein complexes in

the reference complex set matched by the complexes in

the predicted datasets; and Nmp is the number of protein

complexes in the predicted complex set matched by the

complexes in the reference dataset. To obtain an overall

measurement of our method, we introduced F1, which is

defined as follows:

F1 ¼ 2£Recall£Precision

Recall þ Precision
: (7)

In order to further verify our results, we used the Data-

base for Annotation, Visualization and Integrated Discov-

ery (DAVID) [18] to annotate each protein in the

predicted complex sets.

Results and discussion

Combined PPI network constructed based on training

set

According to the methods described above, we first con-

structed dynamic PPI networks by removing any untrans-

lated proteins from the static PPI network by using gene

expression datasets. We found that of the 4976 proteins in

the static PPI networks, only 2078 were demonstrated to

be expressed (41.8%) with 6823 edges between them. It is

well known that PPI networks, as well as many other net-

works within biological bodies, are all complex networks

which have the characteristics of being ‘scale-free’ and

‘small world’. We compared the degree and path length

distribution of the dynamic PPI network we inferred with

the static PPI network. The result is shown in Figure 4.

As shown in Figure 4, the dynamic PPI network we

inferred also exhibits the characteristics of complex net-

works just as static PPI networks. We used GO slim to

annotate each protein-coding gene in the dynamic PPI net-

work. The combined PPI network was constructed by

integrating the information of the dynamic PPI network

and the GO annotation results. The detailed information is

shown in Table 1.

Complex prediction and comparison with other methods

In the next step, the GECluster algorithm was applied to

the combined PPI network inferred above. We compared

our algorithm with MCODE [3] and CFinder,[19] which

were applied to the dynamic PPI network we constructed

(see above). The MCODE algorithm is the earliest and

most classical protein complex prediction method based

on the seed node expansion strategy. CFinder has been

proved to outperform other methods in finding potential

protein complexes within PPI networks.[20]

The results in Figure 5 show that by introducing the

combined PPI network, our method can achieve much

higher accuracy than the other peer methods. The reason

obviously lies in the fact that we refined the static PPI
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networks by using gene expression datasets and as a result

only expressed genes were selected for later use. More-

over, we used GO Slims to annotate each protein. By run-

ning this function, similar proteins are approximately

grouped before our algorithm starts. Compared with our

method, the other two methods all act on static PPI net-

works which contain genes that are actually not expressed,

and thus they achieved very low prediction accuracy.

As a further verification of our results, we annotated

each protein in the predicted complex sets by using the

DAVID database.[19] Table 2 lists the annotation result,

and again the best result of MCODE was selected and the

parameter FS_Weightmin D 0.5 was set for GECluster. As

seen from Table 2, our method can yield more function-

ally similar protein complexes with low P-values.

Parameters discussion

Protein complex evolution has been poorly researched

partly because of the lack of high-quality protein complex

datasets. The GECluster algorithm, by making use of

combined PPI networks, can achieve much higher predic-

tion accuracy, which can be used for protein complex

Figure 4. Degree and path length distribution of dynamic PPI network inferred and static PPI network.

Table 1. Network information.

Network name Node number Edge number

Static PPI network 4971 21937 (no self-loop)

Dynamic PPI network 2078 6823

Combined PPI network Node number Added edge number

2078 1475155 Figure 5. Prediction accuracy comparison between GECluster,
MCODE and CFinder.
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prediction. In order to determine the best parameter

of GECluster, in this part of our study, we varied

FS_Weightmin with steps of 0.01 starting from 0.01 to 1.

The corresponding changes in Precision, Recall and F1

are shown in Figure 6.

The results revealed that when FS_Weightmin D 0.25,

the F1 value is much higher (Figure 6). That is why, in

the subsequent evolution analysis of protein complexes,

we set FS_Weightmin D 0.25.

In this paper, we introduced dynamic PPI networks

and based on dynamic PPI networks we proposed to con-

struct a combined PPI network which is a weighted PPI

network. As we can see from the previously section, by

introducing combined PPI networks, our GECluster algo-

rithm achieved much higher accuracy in finding protein

complexes within PPI networks. As a next step, we ana-

lysed the influence of FS_Weightmin on the prediction

accuracy when the combined PPI network was con-

structed from static PPI networks rather than from

dynamic PPI networks. The results are shown in Figure 7.

Compared to the accuracy values shown in Figure 6,

the values in Figure 7 are much smaller. This demon-

strates that, by introducing a dynamic PPI network in

combined PPI network construction, the prediction accu-

racy can be improved.

Protein complex evolution relationship research

By using the training set, we successfully identified the

best parameter value for GECluster when applied to

Table 2. Complex function annotates results.

Algorithm Complex Function term Size Annotation score p-value

GECluster CDC16, CDC26, APC11, CDC27,
DOC1, APC2

Cyclin catabolic process 6 100% 3.5E¡14

RRP43, SKI6, CSL4, RRP45, RRP46
DIS3, RRP4

Exosome 7 100% 9.3E¡18

RPB8, RPC25, RPC34, RPC17 DNA-directed RNA polymerase III
complex

4 100% 8.2E¡8

ORC3, ORC1, ORC2, ORC5, ORC6,
ORC4

Origin recognition complex 6 100% 3.5E¡16

KTI12, ELP3, ELP2, IKI1 tRNA wobble uridine modification 4 100% 1.4E¡7

SWC4, YAF9, HTZ1, SWC7, SWR1 Chromatin regulator 5 100% 4.8E¡8

SAS5, SAS4, SAS2 SAS acetyltransferase complex 3 100% 2.8E¡7

MPE1, YSH1, YTH1, FIP1, PTA1,
CFT1

mRNA cleavage and
polyadenylation specificity factor
complex

6 100% 2.6E¡13

CLF1, PRP19, PRP45, CEF1 Spliceosome 4 100% 5.2E¡7

SYF1, SYF2, ISY1, PRP19, CLF1 First spliceosomal transesterification
activity

5 100% 1.6E¡11

MCODE MED2, GAL11, MED8, ROX3, MED7,
SRB4, SPT15, SRB5

Srb-mediator complex 8 85.7% 1.2E¡13

CDC26, CDC16, CDC27, APC2,
DOC1, APC11

Cyclin catabolic process 6 100% 3.5E¡14

GAS3, GPI8, NSG1, PHO86, GPI2,
SUR2, BSD2

Endoplasmic reticulum 7 85.7% 4.5E¡5

RIX1, IPI3, BUD20, NOG2, SDA1,
ARX1, NOP15

Ribosomal large subunit biogenesis 7 85.7% 3.4E¡9

TUM1, NCS6, UBA4, NCS2 Wobble position uridine thiolation 4 100% 5.2E¡10

GIM5, YKE2, TUB4, PAC10 Tubulin complex assembly 4 75% 5.3E¡6

HRR25, LTV1, RIO2, TSR1, NUG1,
RPS28B, EDC3

Ribonucleoprotein complex
biogenesis

7 100% 2.8E¡7

MED2, GAL11, MED8, ROX3, MED7,
SRB4, SPT15, SRB5

Srb-mediator complex 8 85.7% 1.2E¡6

ELP4, RPO21, RPB5, TFG2, RPB7,
RPB2, RPB9, RPB3, RPB4, IKI3,
ELP3, ELP2, IKI1, ELP6

DNA-directed RNA polymerase II,
core complex

14 50% 2.2E¡13

Note: Element list in complex column represents the complex predicted by the corresponding method. Each complex consists of several proteins labelled
by the gene names (named by Committee of Human Gene Nomenclature) and separated by commas. Function term describes the function of each com-
plex. Annotation score is calculated by counting the number of proteins that have the annotated function term, out of all the proteins in the protein
complex.
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combined PPI networks for protein complex prediction.

Then, we further analysed how protein complexes within

yeast cells evolve according to the changes in the alcohol

concentration in the medium during the cultivation pro-

cess. As a result, seven dynamic PPI networks and their

corresponding combined PPI networks were constructed

by analysing data values in test datasets. The details of

these networks are shown in Table 3. GECluster was

applied to the seven combined PPI networks shown in

Table 3, and the number of complexes predicted is also

given in Table 3. The relationships among protein com-

plexes between different PPI networks are presented in

Figure 8.

The results in Figure 8 indicate that with the increase

of alcohol concentration, the protein complexes within

yeast cells change gradually. For example, the complexes

in CPPI1 have the strongest relationship with the com-

plexes in CPPI3 and CPPI4 but seldom have relations

with complexes in other networks. The complexes in

CPPI7 have most interactions with the complexes in

CPPI6 but rarely interact with complexes in CPPI1,

CPPI2 and so on. This illustrates how complexes evolve

gradually from one state to another in order to best adapt

to the changes in the living environment. The number of

complexes decreased from CPPI1 to CPPI7, which was in

agreement with the real-life experimental data.

At the beginning of fermentation, yeast cells multiply

rapidly and, as a result, many protein complexes are syn-

thesized. On the contrary, with the increase in alcohol

concentration, yeast cells have to reduce their energy con-

sumption and limit other non-essential activities, resulting

in only a few complexes being synthesized. According to

Gavin et al.,[21] the proteins within complexes can be

classified into core and attachment proteins. Core proteins

are those that are always present in all isoforms and exe-

cute the main functions, whereas attachment proteins are

present only in some of the isoforms and act as modifiers

of the complex’s function.[22] Many researchers believe

that core proteins evolve slower than attachment proteins,

as core proteins are main functional elements,[23,24]

which is in accordance with the proposal that functionally

important genes should evolve slower than less important

Figure 6. Influence of FS_Weightmin on Precision, Recall and
F1.

Figure 7. Influence of FS_Weightmin on Precision, Recall and
F1.

Table 3. Information about the dynamic PPI networks and combined PPI networks inferred from test datasets and the complex numbers
predicted.

Dynamic
network

Node
number

Edge
number

Clustering
coefficient

Network
diameter

Characteristic
path length

Combined
network

Added
edges

Complex
numbers

DPPI1 2227 7230 0.126 12 4.226 CPPI1 1,612,056 199

DPPI2 2123 6954 0.101 10 4.067 CPPI2 1,404,088 134

DPPI3 2124 6624 0.121 12 4.177 CPPI3 1,419,210 174

DPPI4 1945 4987 0.103 12 4.443 CPPI4 1,238,366 101

DPPI5 2081 5067 0.075 11 4.445 CPPI5 1,386,405 87

DPPI6 1921 4467 0.081 11 4.564 CPPI6 1,138,527 95

DPPI7 1506 3117 0.06 12 4.709 CPPI7 698,317 70

Note: Node number is the protein number in the dynamic network; clustering coefficient is a measure of the degree to which nodes in a graph tend to clus-
ter together; network diameter is the average minimum distance between pairs of nodes; characteristic path length is defined as the average number of
edges in the shortest paths between all vertex pairs; added edges is the number of edges added when constructing combined PPI network; complex num-
bers are the number of complexes predicted.
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genes. However, a recent study by Chakraborty and

Ghosh [22] revealed that core proteins evolve faster than

attachment proteins in spite of their higher multi-function-

ality. The authors observed that attachment proteins play a

role in a higher number of protein complexes than core

proteins and, consequently, have an increased expression

level, which is the main determining factor for the protein

evolution rate.

In this paper, by introducing dynamic and combined

PPI networks as well as the GECluster algorithm, we

were able to identify the protein complexes within PPI

networks precisely. Since previously performed protein

complex evolution research is based on the protein com-

plexes predicted by using low accuracy methods, it may

not be completely correct. In this part of our study, the

core and attachment protein dataset of [22] was used to

analyse their evolutionary relationship. We count the core

and attachment protein number in each network complex

dataset. The protein complex number is defined as the

number of protein complexes in which a protein subunit

belongs. We also made a statistical assessment of the pro-

tein complex numbers of both the core and the attachment

proteins. Importantly, previous studies are almost all

based on static PPI networks but seldom consider complex

dynamic changes. According to our study, the number of

core proteins decreased significantly as compared to that

of attachment proteins, which in accordance with previous

opinions that core proteins determine the function of pro-

tein complexes.

As a whole, the identification of protein complexes is

of great importance in understanding the cellular organi-

zation and functions. Proteins that fall into the same group

tend to function similarly, which allows the function of

newly discovered proteins to be predicted by identifying

protein complexes in which they belong. Since proteins

rarely function alone, but rather combine together with

other proteins to form protein complexes that execute

specific functions. Thus, the loss of particular proteins

from a protein complex may be associated with a disease.

In this context, our GECluster algorithm may prove useful

by aiding disease diagnosis.

Conclusions

In this paper, a novel protein complex prediction algo-

rithm named GECluster was proposed to detect protein

complexes from PPI networks. GECluster was applied on

a combined PPI network which is a weighted PPI network

constructed from dynamic PPI networks. Dynamic PPI

networks were refined from static PPI networks by using

gene expression datasets. GECluster was first applied to a

training set to determine the optimal parameter value.

With this parameter value, GECluster was applied to

seven combined PPI networks constructed using data of

yeast response to stress throughout a wine fermentation

process and gave more accurate protein complex predic-

tion as compared to two classical methods (MCODE and

CFinder). The results indicate that using combined PPI

network can efficiently improve the protein complex pre-

diction accuracy, which is due to the fact that, unlike clas-

sical methods, we introduced dynamic PPI networks and

combined PPI networks to take into consideration the bio-

logical role of proteins. Dynamic PPI networks are con-

structed in such a way as to include only those proteins

that are translated at a specific time point. The combined

PPI network is constructed based on the dynamic PPI net-

work and GO annotations of proteins. By using GO Slims

to annotate each protein in the dynamic PPI networks,

proteins with similar functions almost always fall into the

same GO term defined group, leading to much higher

accuracy. The potential of the GECluster algorithm to be

employed in protein function prediction may, further-

more, prove useful in aiding the diagnosis of some pro-

tein-related diseases.

Funding

This work was supported by The National Natural Science Foun-
dation of China [grant number 61373051], [grant number
61175023]; the Science and Technology Development Program
of Jilin Province [grant number 20140204004GX], [grant num-
ber 20140520072JH]; Project of Science and Technology Inno-
vation Platform of Computing and Software Science (985
Engineering), and The Key Laboratory for Symbol Computation
and Knowledge Engineering of the National Education Ministry
of China, The Fundamental Research Funds for the Central Uni-
versities, China [grant number 14QNJJ030].

Supplemental data

Supplemental data for this article can be accessed at http://dx.
doi.org/10.1080/13102818.2014.946700.

Figure 8. Relationships among protein complexes between dif-
ferent PPI networks.

760 L. Su et al.

http://dx.doi.org/10.1080/13102818.2014.946700
http://dx.doi.org/10.1080/13102818.2014.946700


References

[1] Zhang Y, Lin H, Yang Z, Wang J. Construction of ontol-
ogy augmented networks for protein complex prediction.
PloS One. 2013;8:e62077, 1�9.

[2] Liu G, Wong L, Chua HN. Complex discovery from
weighted PPI networks. Bioinformatics.
2009;25:1891�1897.

[3] Bader GD, Hogue CW. An automated method for finding
molecular complexes in large protein interaction networks.
BMC Bioinform. 2003;4:2�29.

[4] Liu CN, Li J, Zhao Y. Exploring hierarchical and overlap-
ping modular structure in the yeast protein interaction net-
work. BMC Genomics. 2010;11:17�29.

[5] Clauset A, Moore C, Newman ME. Hierarchical structure
and the prediction of missing links in networks. Nature.
2008;453:98�101.

[6] Srihari S, Leong HW. A survey of computational methods for
protein complex prediction from protein interaction networks.
J Bioinform Comput Biol. 2013;11:1230002�1230029.

[7] Zhang Y, Lin H, Yang Z, Wang J, Li Y, Xu B. Protein
complex prediction in large ontology attributed protein-
protein interaction networks. IEEE/ACM Trans Comput
Biol Bioinform/IEEE. 2013;10:729�741.

[8] Wang J, Xie D, Lin H, Yang Z, Zhang Y. Filtering gene
ontology semantic similarity for identifying protein com-
plexes in large protein interaction networks. Proteome Sci.
2012;10(Suppl 1):S18, 1�10.

[9] Jin Y, Turaev D, Weinmaier T, Rattei T, Makse HA. The
evolutionary dynamics of protein-protein interaction net-
works inferred from the reconstruction of ancient net-
works. PloS One. 2013;8:e58134, 1�15.

[10] Chen B, Fan W, Liu J, Wu FX. Identifying protein com-
plexes and functional modules � from static PPI networks
to dynamic PPI networks. Brief Bioinform.
2014;15:177�194.

[11] The Gene Ontology (GO) project in 2006. Nucleic Acids
Res. 2006;34:D322�D326.

[12] Wu M, Li XL, Kwoh CK, Ng SK. A core-attachment based
method to detect protein complexes in PPI networks. BMC
Bioinform. 2009;10:169�185.

[13] Chua HN, Sung WK, Wong L. Exploiting indirect neigh-
bours and topological weight to predict protein function
from protein-protein interactions. Bioinformatics.
2006;22:1623�1630.

[14] Edgar R, Domrachev M, Lash AE. Gene expression omni-
bus: NCBI gene expression and hybridization array data
repository. Nucleic Acids Res. 2002;30:207�210.

[15] Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK,
Brumm J, Wasserman WW, Bryan J, van Vuuren HJ.
Dynamics of the yeast transcriptome during wine fermen-
tation reveals a novel fermentation stress response. FEMS
Yeast Res. 2008;8:35�52.

[16] Xenarios I, Fernandez E, Salwinski L, Duan XJ, Thompson
MJ, Marcotte EM, Eisenberg D. DIP: The Database of
Interacting Proteins: 2001 update. Nucleic Acids Res.
2001;29:239�241.

[17] Li M, Chen JE, Wang JX, Hu B, Chen G. Modifying the
DPClus algorithm for identifying protein complexes based
on new topological structures. BMC Bioinform.
2008;9:398�414.

[18] Huang DW, Sherman BT, Lempicki RA. Systematic and
integrative analysis of large gene lists using DAVID bioin-
formatics resources. Nat Protoc. 2009;4:44�57.

[19] Adamcsek B, Palla G, Farkas IJ, Derenyi I, Vicsek T.
CFinder: locating cliques and overlapping modules in bio-
logical networks. Bioinformatics. 2006;22:1021�1023.

[20] Brohee S, van Helden J. Evaluation of clustering algo-
rithms for protein-protein interaction networks. BMC Bio-
inform. 2006;7:488�507.

[21] Gavin AC, Aloy P, Grandi P, Krause R, Boesche M,
Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B,
Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein
K, Hudak M, Michon AM, Schelder M, Schirle M, Remor
M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G,
Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell
RB, Superti-Furga G. Proteome survey reveals modularity
of the yeast cell machinery. Nature. 2006;440:631�636.

[22] Chakraborty S, Ghosh TC. Evolutionary rate heterogeneity
of core and attachment proteins in yeast protein complexes.
Genome Biol Evol. 2013;5:1366�1375.

[23] Das J, Chakraborty S, Podder S, Ghosh TC. Complex-
forming proteins escape the robust regulations of miRNA
in human. FEBS Lett. 2013;587:2284�2287.

[24] Chakraborty S, Kahali B, Ghosh TC. Protein complex
forming ability is favored over the features of interacting
partners in determining the evolutionary rates of proteins
in the yeast protein-protein interaction networks. BMC
Syst Biol. 2010;4:155�164.

Biotechnology & Biotechnological Equipment 761


	Abstract
	Introduction
	Materials and methods
	Static PPI network and dynamic PPI network
	GO and GO slims
	Combined PPI network construction
	Function similarity
	GECluster algorithm
	Datasets
	Evaluation methods

	Results and discussion
	Combined PPI network constructed based on training set
	Complex prediction and comparison with other methods
	Parameters discussion
	Protein complex evolution relationship research

	Conclusions
	Funding
	Supplemental data
	References

