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Abstract: We present a motion sensor node to support physiotherapy, based on an Inertial
Measurement Unit (IMU). The node has wireless interfaces for both data exchange and charging,
and is built based on commodity components. It hence provides an affordable solution with a low
threshold to technology adoption. We share the hardware design and explain the calibration and
validation procedures. The sensor node has an autonomy of 28 h in operation and a standby time of
8 months. On-device sensor fusion yields static results of on average 3.28◦ with a drift of 2◦ per half
hour. The final prototype weighs 38 g and measures ø6 cm × 1.5 cm. The resulting motion sensor
node presents an easy to use device for both live monitoring of movements as well as interpreting the
data afterward. It opens opportunities to support and follow up treatment in medical cabinets as well
as remotely.

Keywords: physiotherapy; e-health; motion sensing; wireless charging; wireless connectivity;
low power

1. Introduction

Context: evolution in physiotherapy. In the last few decades, physiotherapy has expanded from
focusing on physical treatment solely with massage and stretching to a broader health context.
Common treatments at a physiotherapist’s practice nowadays are for example post-operative
rehabilitation, neurological injury treatment, occupational injury prevention, etc. Not only the
field of application has developed, but also physical treatment techniques and approaches have
improved, thanks to general medical progress. In particular, the technological improvements in
imaging have helped physiotherapists for example to locate injuries more precisely and adjust the
patient’s treatment [1]. The goal of the development reported in this paper is to introduce technological
support at the patient’s side to improve the treatment, both curative and preventive.

Focus: motion-sensing node. In this paper, we present an Inertial Measurement Unit (IMU)
sensor node to support the tracking and visualization of a patient’s execution of physical exercises
or daily movements. The priorities for the sensor design were low-power, low-complexity, low-cost,
and a small form factor. We achieved the goal to realize a sensor node with a diameter of maximum
6 cm, weighing less than 50 g, costing less than 30€, which can be lowered significantly for higher
volumes. Considering the medical context, the sensor node must be hermetically sealed. Therefore,
wireless charging is implemented. The measured data is transmitted wirelessly to a base station for
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further analysis. Calibration of the different sensors is done on-board to obtain measurements with
higher precision than by using no calibration.

Progress with respect to the state of technology. Comparing the proposed sensor to currently
available systems like [2,3], we focus on the raw output data rather than developing software that
processes this automatically. Nonetheless, the raw data can be displayed graphically and present the
data in a meaningful way. Secondly, the sensor design has features that contribute to the user-friendliness
and accessibility for our target audience, the patient, and the physiotherapist. The presented motion
sensor node thus exhibits a low complexity and user-friendly solution that can lower the cost with
respect to available systems considerably, while preserving the same functionality. A smart watch,
for example, is widely adopted to track overall activity of people. However, it is not fit to be attached
anywhere on the body to monitor particular movements in physiotherapy, nor does it fulfill the
low-cost and low-complexity requirements of the sensor nodes we aim for.

Contribution. We propose an innovative design, based on low-cost sensors, and the operation of
the contactless sensor module, including automated calibration, which is in particular relevant to the
targeted applications in e-treatment for physiotherapy. The novel contribution of this paper is threefold.
First, we present the design and implementation of the wireless sensor node featuring wireless
communication and charging and full filling the other requirements that were put forward. We share
the open design it via GitHub [4]. Secondly, we elaborate on a simple, straightforward one-time sensor
calibration procedure. This eases the operation of the system and ensures the reliable performance of
the system. Lastly, we show how we performed the sensor validation with photogrammetry, which can
be realized with inexpensive and widely available equipment in a real-life experiment. We further
provide technological and application context.

Structure of this paper. This paper is further organized as follows: Section 2 presents the
low-complexity design of the wireless sensor node. It zooms in on the calibration and wireless
connectivity, as well as how the sensor node was optimized for low energy. The prototype is presented,
meeting the initial requirements. In Section 3, the operation and accuracy of the sensor is validated
using easily accessible equipment, avoiding expensive instruments. Next to this static validation,
Section 4 elaborates on the dynamic behavior. This can be done with physical exercises. We explain
the opportunities opened by the wireless sensor node for e-treatment in physiotherapy applications,
and envisioned extensions to the system in Section 5. Section 6 summarizes the main conclusions of
this paper and looks forward to potential future work.

2. Low Complexity Design of Wireless Motion Sensor Node

In the design of the sensor node, the following targets were set:

• Accuracy. The sensor node needs to be able to measure the human body movement with high
precision. With proper calibration, it is possible to achieve a target accuracy of ±2

◦

with a sampling
frequency of 50 Hz [5].

• User-friendly. The device needs to be easy to use, capable of being operated by anyone, regardless
of any medical or technical background. We opted to implement wireless charging to increase
user-friendliness in operation and maintenance. The data is also wirelessly transferred to eliminate
a mess of cables and thus providing freedom of movement.

• Autonomy. Users want to focus on the application rather than constantly thinking about charging
the device. Therefore, an autonomy of at least 5 h and a charge time of less than 1.5 h is necessary.

• Affordable. To provide an appealing multi-purpose product for a wide range of applications,
it needs to come at a low cost. That way, we want to reach a wide audience, both professionals
as individuals.

The sensor node is built around an IMU. The data is wirelessly transmitted to a receiver and the
internal battery can be wirelessly charged. Figure 1 shows an overview of the system. We discuss the
main features of the sensor node here below.
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The sensor node is built around an IMU. The data is wirelessly transmitted to a receiver and the
internal battery can be wirelessly charged. Figure 1 shows an overview of the system. We discuss the main
features of the sensor node here below.

IMU

Sensor	node

Wireless	charger Receiver

Figure 1. Overview of the hardware: The sensor node built around an Inertial Measurement Unit (IMU),
wirelessly rechargeable and with wireless connectivity to a receiver base station.

2.1. Sensors

Motion can be monitored in several ways. A camera-based motion capturing system such as [6]
can be used. These systems are highly accurate but expensive and cannot be used anywhere. Another
method of monitoring movement that is more suited for our requirements, is by using an IMU. This type
of sensor consists of several internal sensors. A 6 Degrees of Freedom (DoF) IMU is commonly used in
recent works [7,8]. It has a constant drift in the resulting measurement data that cannot be corrected for.
To eliminate this problem, our design uses a 9 DoF IMU in which the additional magnetometer provides
a fixed reference. It consists of a Microelectromechanical Systems (MEMS) gyroscope, accelerometer,
and compass. The IMU (ICM-20948 from Invensense ) [9] was chosen for its ultra-low power operating
current and high accuracy. The gyroscope is set to ±2000 dps full scale, the accelerometer is set to ±4 G
full scale and the magnetometer is set to ±4900 µT. The sample rate of all sensors is set to 50 Hz.

To obtain accurate orientation data, sensor fusion is needed. As used in [10], a Digital Motion
Processor (DMP) can be very efficient for running specialized sensor fusion algorithms. By offloading
computationally heavy calculations from the main processor, the system can be more power-efficient.
The lack of control of the sensor fusion and calibration is a significant drawback. By implementing our own
sensor fusion and calibration, we can implement the most suited fusion algorithms and have full control
over the calibration. Some systems use sensor fusion algorithms like a Kalman filter [7], which provide
very accurate results but can be computationally intensive. A complementary filter, which is very easy
to process but typically provides less accurate results than a Kalman filter, is sometimes used. It uses a
high pass filter for the gyroscope values and a low pass filter for the accelerometer values. This method of
sensor fusion is inaccurate during long measurements with a lot of movement. In [8] for example, [8] use a
complementary filter for measuring static angles, thus primarily depending on the accelerometer values.
We need high dynamic accuracy with low processing power thus implemented a Madgwick filter [11],
which combines the best of both worlds.

The algorithm runs on the central microcontroller (ARM Cortex M0+ microcontroller (EFM32HG)
from Silabs) [12]. It is designed by [11]. By combining the efficiency of this algorithm with a high accuracy,
a bit of battery power is saved. Quaternions, a very good way of representing orientations, are used for the
calculations. Figure 2 illustrates the functional block diagram of this filter with ⊗ a quaternion product,
q̇ a quaternion derivative and q̂ a normalized vector. The algorithm has two adjustable parameters, β and
f . β represents the error on the gyroscope measurements as the magnitude of a quaternion derivative.
It determines the proportion of the correction value for the gyroscope. f represents the frequency of the
measurements. The orientation is mainly calculated by integrating the changes in angular velocity from
the gyroscope (1). At the same time, an orientation is calculated using the accelerometer and magnetometer
values. A gradient descent algorithm, represented by 5, is used to find the most likely solution in the

Figure 1. Overview of the hardware: The sensor node built around an Inertial Measurement Unit
(IMU), wirelessly rechargeable and with wireless connectivity to a receiver base station.

2.1. Sensors

Motion can be monitored in several ways. A camera-based motion capturing system such as [6]
can be used. These systems are highly accurate but expensive and cannot be used anywhere. Another
method of monitoring movement that is more suited for our requirements, is by using an IMU. This type
of sensor consists of several internal sensors. A 6 Degrees of Freedom (DoF) IMU is commonly used in
recent works [7,8]. It has a constant drift in the resulting measurement data that cannot be corrected for.
To eliminate this problem, our design uses a 9 DoF IMU in which the additional magnetometer provides
a fixed reference. It consists of a Microelectromechanical Systems (MEMS) gyroscope, accelerometer,
and compass. The IMU (ICM-20948 from Invensense ) [9] was chosen for its ultra-low power operating
current and high accuracy. The gyroscope is set to ±2000 dps full scale, the accelerometer is set to ±4 G
full scale and the magnetometer is set to ±4900 µT. The sample rate of all sensors is set to 50 Hz.

To obtain accurate orientation data, sensor fusion is needed. As used in [10], a Digital Motion
Processor (DMP) can be very efficient for running specialized sensor fusion algorithms. By offloading
computationally heavy calculations from the main processor, the system can be more power-efficient.
The lack of control of the sensor fusion and calibration is a significant drawback. By implementing
our own sensor fusion and calibration, we can implement the most suited fusion algorithms and
have full control over the calibration. Some systems use sensor fusion algorithms like a Kalman
filter [7], which provide very accurate results but can be computationally intensive. A complementary
filter, which is very easy to process but typically provides less accurate results than a Kalman filter,
is sometimes used. It uses a high pass filter for the gyroscope values and a low pass filter for the
accelerometer values. This method of sensor fusion is inaccurate during long measurements with
a lot of movement. In [8] for example, [8] use a complementary filter for measuring static angles,
thus primarily depending on the accelerometer values. We need high dynamic accuracy with low
processing power thus implemented a Madgwick filter [11], which combines the best of both worlds.

The algorithm runs on the central microcontroller (ARM Cortex M0+ microcontroller (EFM32HG)
from Silabs) [12]. It is designed by [11]. By combining the efficiency of this algorithm with a high
accuracy, a bit of battery power is saved. Quaternions, a very good way of representing orientations,
are used for the calculations. Figure 2 illustrates the functional block diagram of this filter with ⊗
a quaternion product,

.
q a quaternion derivative and q̂ a normalized vector. The algorithm has two

adjustable parameters, β and f. β represents the error on the gyroscope measurements as the magnitude
of a quaternion derivative. It determines the proportion of the correction value for the gyroscope.
f represents the frequency of the measurements. The orientation is mainly calculated by integrating
the changes in angular velocity from the gyroscope (1). At the same time, an orientation is calculated
using the accelerometer and magnetometer values. A gradient descent algorithm, represented by 5,
is used to find the most likely solution in the set of infinite solutions. (3) represents the measured
orientation from the earth’s magnetic field. In (4), the measurements are normalized and mapped to
the plane of the earth. In (5) = 5 f , the orientation from magnetometer and accelerometer values is
calculated using a gradient descent algorithm. These values are normalized in (6) and used to correct
gyroscope values with a factor β. These corrected gyroscope values are integrated in (2). Everything is
further normalized in (7) to form unit quaternions and the results form is given as in Equation (1).
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q = a + b · i + c · j + d · k (1)
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set of infinite solutions. (3) represents the measured orientation from the earth’s magnetic field. In (4),
the measurements are normalized and mapped to the plane of the earth. In (5) =5 f , the orientation from
magnetometer and accelerometer values is calculated using a gradient descent algorithm. These values are
normalized in (6) and used to correct gyroscope values with a factor β. These corrected gyroscope values
are integrated in (2). Everything is further normalized in (7) to form unit quaternions and the results form
is given as in Equation (1).
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Fig. 2. Block diagram representation of the complete orientation estima-
tion algorithm for an MARG implementation including magnetic distortion
compensation

representing the maximum gyroscope measurement error of
each axis. Using the relationship described by equation (2),
β may be defined by equation (33) where q̂ is any unit
quaternion.
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IV. EXPERIMENTAL EQUIPMENT

The algorithm was tested using the xsens MTx orientation
sensor [13] containing 16 bit resolution tri-axis gyroscopes,
accelerometers and magnetometers. Raw sensor data was
logged to a PC at 512 Hz and imported accompanying software
to provide calibrated sensor measurements which were then
processed by the proposed orientation estimation algorithm.
The software also incorporates a propriety Kalman-based
orientation estimation algorithm. As both the Kalman-based
algorithm and proposed algorithm’s estimates of orientation
were computed using identical sensor data, the performance
of each algorithm could be evaluated relative to one-another,
independent of sensor performance.

A Vicon system, consisting of 8 MX3+ cameras connected
to an MXultranet server [36] and Nexus [37] software, was
used to provide reference measurements of the orientation
sensor’s actual orientation. To do so, the sensor was fixed to
an orientation measurement platform. The positions of optical
markers attached to the platform were logged at 120 Hz and
then post-processed to compute the orientation of the measure-
ment platform and sensor. In order for the measurements of an
orientation in the camera coordinate frame to be comparable
to the algorithm estimate of orientation in the earth frame, an
initial calibration procedure was required where the direction
of the earth’s magnetic and gravitational fields in the camera
coordinate frame were measured using a magnetic compass
and pendulum with attached optical markers.

V. EXPERIMENTAL RESULTS

It is common [19], [21], [13], [14], [15], [16] to quantify
orientation sensor performance as the static and dynamic RMS
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TABLE I
STATIC AND DYNAMIC RMS ERROR OF KALMAN-BASED ALGORITHM

AND PROPOSED ALGORITHM IMU AND MARG IMPLEMENTATIONS

Euler parameter Kalman-based MARG IMU
algorithm algorithm algorithm

RMS[φε] static 0.789◦ 0.581◦ 0.594◦

RMS[φε] dynamic 0.769◦ 0.625◦ 0.623◦

RMS[θε] static 0.819◦ 0.502◦ 0.497◦

RMS[θε] dynamic 0.847◦ 0.668◦ 0.668◦

RMS[ψε] static 1.150◦ 1.073◦ N/A
RMS[ψε] dynamic 1.344◦ 1.110◦ N/A

(Root-Mean-Square) errors in the decoupled Euler parameters
describing the pitch, φ, roll, θ and heading, ψ components of
an orientation, corresponding to rotations around the sensor
frame x, y, and z axis respectively. A total of 4 sets of Euler
parameters were computed, corresponding to the calibrated op-
tical measurements of orientation, the Kalman-based algorithm
estimated orientation and the proposed algorithm estimates
orientation for both the MARG and IMU implementations.
The errors of estimated Euler parameters, φε, θε and ψε, were
computed as the difference between estimated values and the
calibrated optical measurements. Results were obtained for a
sequence of rotations around each axis preformed by hand.
The experiment was repeated 8 times to compile a dataset rep-
resentative of system performance. The proposed algorithm’s
adjustable parameter, β, was set to 0.033 for the MARG
implementation and 0.041 for the IMU implementation. Trials
summarised in Fig.4, found these values to provide optimal
performance. Fig.3 shows the Kalman-based algorithm and
proposed algorithm MARG implementation results, typical of
the 8 experiments.

The static and dynamic RMS values of φε, θε, and ψε

were calculated assuming a static state when the measured
corresponding angular rate was < 5◦/s, and a dynamic when
≥ 5◦/s. This threshold was chosen to be sufficiently greater
than the noise floor of the data. The results are summarised
in Table I where each value, represents the mean of all 8
experiments.

The results of an investigation into the effect of the ad-
justable parameter β on algorithm performance are sum-
marised in Fig.4. The experimental data was processed though
the separate proposed algorithm IMU and MARG implanta-
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Figure 2. Block diagram Madgwick algorithm [11].

By using quaternions, we avoid the gimbal lock problem, the inability to uniquely represent an
orientation, of Euler angles. When for example the pitch angle is 90°, yaw and roll cause the sensor to
move in exactly the same fashion. Another problem is the inability to produce reliable estimates when an
angle approaches 90° [13]. The benefit of the Madgwick algorithm is that we can run it at a very low speed
and still get accurate results. At 50 Hz, the sample rate used by the sensor node, we get a static error of
±1° and a dynamic error of ±2° [11].

The sensor node goes to sleep as much as possible to conserve battery energy. When the sensor node
is picked up, the always-on accelerometer generates an interrupt and wakes up the system. Figure 3
illustrates this procedure. When the Madgwick parameters are set correctly, just a small portion of the
accelerometer and compass values are used to correct the gyroscope error. When the sensor node wakes
from sleep, the gyroscope has no reference orientation thus it would take approximately 30 s to obtain
a correct orientation, depending on how much the actual orientation, when the sensor is picked up,
differs from the orientation in sleep. After wake-up, the parameters of the Madgwick filter are dynamically
adjusted to obtain a correct orientation quicker. The accelerometer and compass are used in the first few
seconds of activity to obtain a correct reference frame. After this, the parameters are automatically adjusted
to a high accuracy mode. In this mode, the integration of changes in angular velocity from the gyroscope
is mostly relied on for calculating the orientation of the node. The accelerometer and the compass are only
used to make small corrections.

Figure 2. Block diagram Madgwick algorithm [11].

By using quaternions, we avoid the gimbal lock problem, the inability to uniquely represent an
orientation, of Euler angles. When for example the pitch angle is 90◦, yaw and roll cause the sensor to
move in exactly the same fashion. Another problem is the inability to produce reliable estimates when
an angle approaches 90◦ [13]. The benefit of the Madgwick algorithm is that we can run it at a very
low speed and still get accurate results. At 50 Hz, the sample rate used by the sensor node, we get a
static error of ±1◦ and a dynamic error of ±2◦ [11].

The sensor node goes to sleep as much as possible to conserve battery energy. When the sensor
node is picked up, the always-on accelerometer generates an interrupt and wakes up the system.
Figure 3 illustrates this procedure. When the Madgwick parameters are set correctly, just a small portion
of the accelerometer and compass values are used to correct the gyroscope error. When the sensor
node wakes from sleep, the gyroscope has no reference orientation thus it would take approximately
30 s to obtain a correct orientation, depending on how much the actual orientation, when the sensor is
picked up, differs from the orientation in sleep. After wake-up, the parameters of the Madgwick filter
are dynamically adjusted to obtain a correct orientation quicker. The accelerometer and compass are
used in the first few seconds of activity to obtain a correct reference frame. After this, the parameters
are automatically adjusted to a high accuracy mode. In this mode, the integration of changes in
angular velocity from the gyroscope is mostly relied on for calculating the orientation of the node.
The accelerometer and the compass are only used to make small corrections.

As a low power design consideration, inactivity is detected by checking the gyroscope values
every second in an interrupt service routine, called from an Real Time Counter (RTC) interrupt.
The gyroscope values are supposed to be zero when idle. This procedure automatically puts the sensor
node in sleep when it is not used.
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Figure 3. Flowchart code: The sensor node is calibrated once at initialization, a Wake On Motion (WOM)
interrupt wakes up the system and measurements can start, an Real Time Counter (RTC) timer is used to
periodically check the status of the sensor node to maximize autonomy.

As a low power design consideration, inactivity is detected by checking the gyroscope values every
second in an interrupt service routine, called from an Real Time Counter (RTC) interrupt. The gyroscope
values are supposed to be zero when idle. This procedure automatically puts the sensor node in sleep
when it is not used.

2.2. Calibration

Calibration is an essential part of motion capturing systems. With calibration, the accuracy of
the measurements can be drastically increased. In this design, a manual one-time calibration is used.
The manual calibration allows the use of a very energy-efficient microcontroller and can yield calibration
values with high accuracy. First, the gyroscope and the accelerometer are calibrated. This happens by
simply putting the sensor node on a flat, leveled surface. During these measurements, no changes
in angular velocity from the gyroscope or acceleration forces from the accelerometer are expected.
The accelerometer and gyroscope are temporarily set to the most sensitive measurement range of
±250 dps full scale and ±2 G full scale to obtain the highest calibration accuracy possible. A few
thousand measurements are taken by filling the First In First Out (FIFO) buffer of the IMU. From these
measurements, a gyroscope and accelerometer bias offset is calculated and further subtracted from the
actual measurements. After calibration of the gyroscope and accelerometer, the measurement ranges are
changed back to ±2000 dps full scale and ±4 G full scale.

The compass is calibrated by rotating the device 360° around its three axes or performing a figure-8
movement. For these measurements, the maximum sampling frequency of 100 Hz is temporary used to
have more data to work with and therefore obtain a better calibration. After calibration, the magnetometer
sample rate is changed back to 50 Hz. The result of such a measurement is shown in Figure 4, a 2D
visualization of the three planes of the 3D sphere after rotating the sensor node. Two types of distortions
can occur on the IMU measurements: hard and soft iron distortions [14]. Hard iron distortions, caused by
a permanent magnetic material, create a constant offset on the sphere. These offsets can be determined by
calculating the center of the sphere and subtracting this value from the measurements. Soft iron distortions
are caused by materials like iron. These materials do not create their own magnetic field but create a
deformation on one or more axes. This will generally create an ellipse instead of a circle in a 2D plot.
Soft iron distortions are more difficult to correct. Each axis is multiplied with a scale factor to calibrate the
measurements. The minimal and maximal compass values captured in the calibration procedure of each
axis are measured determined. The span of the compass values for all three axes is calculated, as well as
the mean span for the three axes. The scale factor per axis is thus mean divided by the span of the axis
that will be corrected. Equation (2) provides the equation for the x-axis scale factor, exemplary for the

Figure 3. Flowchart code: The sensor node is calibrated once at initialization, a Wake On Motion
(WOM) interrupt wakes up the system and measurements can start, an Real Time Counter (RTC) timer
is used to periodically check the status of the sensor node to maximize autonomy.

2.2. Calibration

Calibration is an essential part of motion capturing systems. With calibration, the accuracy
of the measurements can be drastically increased. In this design, a manual one-time calibration
is used. The manual calibration allows the use of a very energy-efficient microcontroller and can
yield calibration values with high accuracy. First, the gyroscope and the accelerometer are calibrated.
This happens by simply putting the sensor node on a flat, leveled surface. During these measurements,
no changes in angular velocity from the gyroscope or acceleration forces from the accelerometer are
expected. The accelerometer and gyroscope are temporarily set to the most sensitive measurement
range of±250 dps full scale and±2 G full scale to obtain the highest calibration accuracy possible. A few
thousand measurements are taken by filling the First In First Out (FIFO) buffer of the IMU. From these
measurements, a gyroscope and accelerometer bias offset is calculated and further subtracted from the
actual measurements. After calibration of the gyroscope and accelerometer, the measurement ranges
are changed back to ±2000 dps full scale and ±4 G full scale.

The compass is calibrated by rotating the device 360◦ around its three axes or performing a
figure-8 movement. For these measurements, the maximum sampling frequency of 100 Hz is temporary
used to have more data to work with and therefore obtain a better calibration. After calibration,
the magnetometer sample rate is changed back to 50 Hz. The result of such a measurement is shown
in Figure 4, a 2D visualization of the three planes of the 3D sphere after rotating the sensor node.
Two types of distortions can occur on the IMU measurements: hard and soft iron distortions [14].
Hard iron distortions, caused by a permanent magnetic material, create a constant offset on the sphere.
These offsets can be determined by calculating the center of the sphere and subtracting this value from
the measurements. Soft iron distortions are caused by materials like iron. These materials do not create
their own magnetic field but create a deformation on one or more axes. This will generally create an
ellipse instead of a circle in a 2D plot. Soft iron distortions are more difficult to correct. Each axis
is multiplied with a scale factor to calibrate the measurements. The minimal and maximal compass
values captured in the calibration procedure of each axis are measured determined. The span of the
compass values for all three axes is calculated, as well as the mean span for the three axes. The scale
factor per axis is thus mean divided by the span of the axis that will be corrected. Equation (2) provides
the equation for the x-axis scale factor, exemplary for the three axes. The result of these corrections,
with the three circles perfectly round and centered, is given in Figure 5, showing that the calibration
procedure operates correctly.

Scalefactor =
maxx −minx + maxy −miny + maxz −minz

3 · (maxx −minx)
(2)
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three axes. The result of these corrections, with the three circles perfectly round and centered, is given in
Figure 5, showing that the calibration procedure operates correctly.

Scale factor =
maxx −minx + maxy −miny + maxz −minz

3 · (maxx −minx)
(2)100 50 0 50 100X/Y/Z-axis [µT]6040200204060Y/Z/X-axis [µT]

Figure 4. 2D plot of a sphere after rotating the sensor node around each axis before calibration. The circles
are not perfectly round (elliptical sphere in 3D) caused by soft iron distortions. Also, offsets between the
centers of the circles and the origin, caused by hard iron distortions, are present.60 40 20 0 20 40 60X/Y/Z-axis [µT]402002040Y/Z/X-axis [µT]
Figure 5. 2D plot of a sphere after rotating the sensor node around each axis after calibration. The circles
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Many wireless connectivity standards for Wireless Body Area Networks (WBAN) are available.
We here briefly comment on the most considered technologies given the application focus of the
presented design.

ZigBee operates with very low power usage. It works on top of the IEEE 802.14.4 standard, has a range
of up to 100 m, and can be implemented as a mesh network. The low data rates of up to 250 kbps at 2.4 GHz
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2.3. Wireless Connectivity

Many wireless connectivity standards for Wireless Body Area Networks (WBAN) are available.
We here briefly comment on the most considered technologies given the application focus of the
presented design.

ZigBee operates with very low power usage. It works on top of the IEEE 802.14.4 standard,
has a range of up to 100 m, and can be implemented as a mesh network. The low data rates of up
to 250 kbps at 2.4 GHz make ZigBee less suited [15]. A second wireless standard is Z-Wave, a low
data rate communication protocol with data rates of 40 kbps—100 kbps and a range of up to 30 m.
Since it uses the 900 MHz band, it is not bothered by interference from 2.4 Ghz wireless communication
like WiFi. It is commonly used in home automation for interconnecting energy efficient sensor nodes.
The master-slave type network has a typical latency of 200 ms [16]. A third wireless standard is
Bluetooth. It is based on the IEEE 802.15.1 standard, has a higher data rate of up to 2 Mbps and a
range of up to 100 m. The more advanced Bluetooth protocol is widely used for data and audio
transmission. It uses a master-slave model for communication [17]. For the design of the low power
sensor node, Bluetooth Low Energy (BLE) is more appropriate. This special Bluetooth version is
specifically designed for applications with very low power usage. A maximal data rate of 1 Mbps
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and a range of a few tens of meters can be achieved. BLE can use a master-slave model in a star
topology or BLE devices can form a mesh network [16]. The advantage of BLE is its ability to directly
connect to a smartphone or Bluetooth enabled device without the need for a separate receiving station.
Following up with WiFi, based on the IEEE 802.11 standard with a very high data rate of 54 Mbps.
The high power consumption makes WiFi less suited for a low power design [17]. We also studied the
possibility of using a proprietary solution. The advantages are a possible further reduction in power
consumption by packets with increased information density. Table 1 summarises the different wireless
connectivity options in terms of power consumption, range, data rate and price. BLE is chosen for its
low power consumption, sufficient range, relatively high data rate, low price, and high compatibility
with existing devices.

Table 1. Comparison between available wireless technologies: ZigBee, Z-Wave, Bluetooth 5, BLE, and
WiFi [15–17].

ZigBee Z-Wave Bluetooth 5 BLE WiFi

Power consumption (max) 100 mW 1 mW 100 mW 10 mW >100 mW
Range (max) 100 m 30 m 100 m <100 m 1000 m
Data rate (max) 250 kbps 100 kbps 2 Mbps 1 Mbps 54 Mbps
Price Low High Very low Very low Average

A WBAN is necessary for transmitting the measured data. BLE is chosen for its high throughput,
minimal power consumption, and interoperability with other devices [16]. The Proteus II module
(AMB2623 module from WE based on an nRF52832) [18] is chosen for its small form factor and
integrated PCB antenna. The data is transmitted at 0 dBm.

The data packet, sent out at 50 Hz, contains a preface, the module ID of the receiver, the RSSI,
the data, and a checksum for error correction. This is clarified in Figure 6.
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three floats each take up four bytes in memory [19]. Exactly those bytes will be read from memory and
transmitted wirelessly to ensure no loss in accuracy. One byte is added to transmit the battery status.

Figure 6. Bluetooth Low Energy (BLE) data packet structure: The data is composed of a preface,
the module ID, three Euler angles, the remaining battery charge (percentage) and a checksum.

The quaternions from the Madgwick sensor fusion filter are converted to Euler angle floats.
The three floats each take up four bytes in memory [19]. Exactly those bytes will be read from
memory and transmitted wirelessly to ensure no loss in accuracy. One byte is added to transmit the
battery status.

To guarantee a low power design, some software features are added. When the sensor node is
picked up and cannot connect to a receiving device within five seconds, the sensor node enters sleep
mode. The automatic reconnection of the sensor node with the receiving device is also built-in.

The receiving device is based on a development board (STM32L4+ microcontroller on an ST
NUCLEO L45ZI development board) [20]. The same BLE module is chosen for this device. To be
able to receive the transmitted data fast enough, an interrupt-based method is used together with a
circular buffer [21]. The UART interrupt receives data and stores it in the buffer in the background.
The received data is processed independently in the main program. A second UART transmits the
data to a pc. A 3D representation of the orientation is written in VPython for visualization purposes.

2.4. Wireless Charging

Inductive wireless energy transfer is mainly used to recharge batteries of smartphones, wearables
or, Internet of Things (IoT) devices. Implementation standards such as Qi, PMA, or AirFuel ensure a safe,
efficient transfer of energy. Low power applications, below 5 W, often use e.g., proprietary solutions such
as the “LinkCharge Low Power” technology from Semtech. Wearable devices, Electric toothbrushes,
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or LoRa based sensors are some of the many applications for the implementation of this technology [22].
ST Microelectronics also offers wireless power solutions for Smartwatches, or IoT battery-powered
smart devices. The last option is to design your own Wireless Power Transfer (WPT) system without
using existing standards. Building more efficient systems is time-consuming and not necessary since a
lot of research has already been carried out in the 5 W WPT range.

In recent years, it has been generally accepted that the Qi is preferred over all other standards.
The Wireless Power Consortium (WPC) manages and develops this standard. In the meantime,
PMA, AirFuel and WPC have started a collaboration. All Qi-certified devices can communicate
with each other. Charging a Qi-supported device can be performed by any Qi-certified charger.
A series of functions in the standard ensures a safe charge cycle, such as thermal shutdown protection,
foreign object detection, and overvoltage AC clamp protection [23].

The first wirelessly rechargeable smartwatches used proprietary WPT standards. New wearables
switched to the Qi standard in contrast to wirelessly rechargeable smartphones, which were immediately
equipped with the Qi standard. Recent smartphones are available with the option “Reverse Charging”,
which means that the internal smartphone coil can be used to charge devices that support Qi [24].
This new feature offers the possibility of recharging smartwatches with a smartphone. It makes sense
that Qi was chosen above all other options for the sensor module. In most households, a Qi charger or
a smartphone that supports reverse charging is available. Future measurements with this sensor can
be used within families, as they can recharge their sensor modules at home.

We here further discuss the actual implementation of the battery charging circuit in the design of
the sensor node presented in this paper. Since energy is transferred wirelessly via the Qi protocol, a Qi
receiver IC was used. A TI Qi receiver IC (BQ51050) [23] was selected because of its high efficiency,
wireless power receiver, integrated rectifier, and battery charger in a single package. The BQ51050A
variant, combined with a Li-Ion battery is chosen because of its 4.20 V output voltage limitation. It is
paired with an inductor coil (760308101214 coil from WE) [25], chosen for its very small size and
a relatively decent Q-factor. The charging current is 200 mA with a termination current of 20 mA
to ensure fast and safe charging. Temperature control with automatic cut-off functionality at 60◦ is
implemented by using a Negative Temperature Coefficient (NTC) resistor. Because of the small coil,
we implemented some extra shielding to ensure a more optimal WPT.

Figure 7 shows the two coils in the system with corresponding resonant circuits. A power
transmitter coil is present in each charger pad and a receiver coil in each battery-powered device.
Wireless charging achieves higher link efficiencies when implementing LC resonant circuits on both the
receiver and transmitter. The coupling factor between the two coils is very low. Therefore implementing
a resonant circuit can filter out the leak inductance and improve the link efficiency drastically [26]. A Qi
charger pad has a built-in amplifier connected to an LC series resonant circuit. The energy receiver
side consists of an LC resonant circuit with L, Cs1, and Cs2. These capacities can be calculated with the
Equations (3) and (4). L′s represents the inductance measured when the receiver coil is placed on top of
a charger pad. Ls is the free-space inductance. fs and fD are fixed values respectively 100 kHz and
1 MHz [23].

C1=
1

(2π · fs)
2
·L′s

(3)

C2=

(
( fD · 2π)

2
·Ls −

1
C1

)−1
(4)

Filling in the formula and converting to values for which actual hardware components are
commercially available gives 100 nF for Cs1 and 1 nF for Cs2. Three other types of capacitors have an
important function in the circuit. The BOOT, COMM, and CLAMP capacitors. The BOOT or bootstrap
capacitors are used for driving the high-side FETs of the synchronous rectifier. The COMM capacitors
allow communication with the charger pad. Here, capacitive load modulation is used. An extra
capacitance is connected to the resonance circuit, which changes the resonance frequency. This change



Sensors 2020, 20, 6362 9 of 17

is visible on the charger pad side. Load modulation allows communication between the power receiver
charging circuit and the power delivery pad circuit. Guidance values for resistive load modulation can
be found in the datasheet. The CLAMP capacitors ensure overvoltage protection. Above the rectified
voltage of 15 V, the CLAMP capacitors are switched to change the resonance frequency and protect the
circuit against high voltages. The datasheet provides suggestions for these values. Values of 10 nF,
470 nF and 47 nF were used for the BOOT, CLAMP and COMM capacities, respectively [23].
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2.5. Optimization for Low Energy

One of the main focuses of this work is the realization of a node with a convenient autonomy. A Li-Ion
battery is chosen for its high energy density and low weight. The round battery with a capacity of 200 mAh
is ideal for this prototype. This battery is rechargeable. With compatibility and ease of use in mind,
Qi-compatible wireless charging is implemented. The whole system is powered at 2 V with an ultra-low Iq
buck converter. In this configuration, a buck converter is much more efficient than a Low-dropout (LDO)
regulator, even in sleep mode. The IMU works at 1.8 V. Here, the use of an LDO for the voltage drop of
0.2 V is more efficient. By running the whole system at 2 V instead of the traditional 3.3 V, a theoretical
power difference of 9.610 mW is calculated when quiescent currents are neglected. This translates to a
gain in the autonomy of 29.3 %. The sensor node consumes 0.102 mW in sleep mode and 25.839 mW in
active measurement mode. This is reflected in an autonomy of 28 h in operation and of 261 days in sleep
mode, which is well above the five hours put forward. An active power consumption of 25.839 mW is
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2.5. Optimization for Low Energy

One of the main focuses of this work is the realization of a node with a convenient autonomy.
A Li-Ion battery is chosen for its high energy density and low weight. The round battery with a
capacity of 200 mAh is ideal for this prototype. This battery is rechargeable. With compatibility and
ease of use in mind, Qi-compatible wireless charging is implemented. The whole system is powered
at 2 V with an ultra-low Iq buck converter. In this configuration, a buck converter is much more
efficient than a Low-dropout (LDO) regulator, even in sleep mode. The IMU works at 1.8 V. Here,
the use of an LDO for the voltage drop of 0.2 V is more efficient. By running the whole system at
2 V instead of the traditional 3.3 V, a theoretical power difference of 9.610 mW is calculated when
quiescent currents are neglected. This translates to a gain in the autonomy of 29.3 %. The sensor node
consumes 0.102 mW in sleep mode and 25.839 mW in active measurement mode. This is reflected in
an autonomy of 28 h in operation and of 261 days in sleep mode, which is well above the five hours
put forward. An active power consumption of 25.839 mW is very low for this kind of system and
can’t be significantly improved with the hardware we are currently using. This power consumption
in combination with a 200 mAh battery allows for a long enough time between charges. The sleep
current of 0.102 mW can possibly be improved by disabling the Qi-wireless charger completely when
it’s not being used, thus eliminating quiescent currents. This can be done by using a MOSFET.

2.6. Prototype

A small physical design that is easy to place on the body is crucial. The sensor node features a
round design with no sharp edges. The final prototype weighs 38 g and has dimensions ø6 cm × 1.5 cm.
The structure of the case is shown in Figure 8. The wireless charging coil is positioned at the bottom
(1). It is held in place by some offsets in the case (2). On top of that is the battery (3). Above the battery
is the PCB (4) which is supported by four pins in the case (5). Everything is fastened nicely by the
cover (6), which can be attached with a twist top. We did not yet hermetically seal the case for the
initial experiments. By applying some sealant on the twist top, one can make the case more waterproof.
Figure 9 shows the assembled prototype of the sensor node. The total cost of components is 28€with
case and 22€without the case.
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3. Validation with Easily Accessible Equipment

For the validation of the accuracy of the motion measurements realized by the sensor node, it is
common to use professional equipment. The static verification process of the IMU has already been
performed by using a computer monitored pan-tilt unit to place the sensor node in specific angles or by
using a Vicon motion capturing system [6,8,27]. In the validation of the Madgwick filter for example,
a Vicon motion capture system is also used [28]. Sensor validation on this equipment in general yields
very accurate results but it is less accessible, expensive and time-consuming.

We propose an alternative, very accessible way of validation using convenient equipment in the
context of designing a low-cost system that is user-friendly. With photogrammetry, one can get a fairly
accurate representation of the performance of the sensor node. In this method, we take and interpret
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3. Validation with Easily Accessible Equipment

For the validation of the accuracy of the motion measurements realized by the sensor node, it is
common to use professional equipment. The static verification process of the IMU has already been
performed by using a computer monitored pan-tilt unit to place the sensor node in specific angles or by
using a Vicon motion capturing system [6,8,27]. In the validation of the Madgwick filter for example,
a Vicon motion capture system is also used [28]. Sensor validation on this equipment in general yields
very accurate results but it is less accessible, expensive and time-consuming.

We propose an alternative, very accessible way of validation using convenient equipment in the
context of designing a low-cost system that is user-friendly. With photogrammetry, one can get a fairly
accurate representation of the performance of the sensor node. In this method, we take and interpret
photographic images of positions of the sensor. By comparing the data from the IMU with the data
extracted from images, the static error on the measurements can be derived. The advantages are that this
method can be performed almost anywhere and can be used with consumer off-the-shelf equipment.
Since, in contrast to professional cameras, lower-cost equipment, such as a smartphone camera,
suffers from lens distortions and lower quality recordings, some measures must be taken. To minimize
the effect of the lower quality equipment, the camera is placed horizontally and perpendicular to the
wall. This way, foreshortening effects are eliminated. Furthermore, the sensor is positioned such that
its projection lies near the center of the image where radial distortion is minimal. This eliminates the
need for a camera calibration procedure. Finally, we add several markers to the scene as shown in
Figure 10. The relative position of these markers is measured up to ±2 mm.

Since all we need is angles, we can perform measurements in the image and transfer them to
the reference system of the sensor node. By attaching a lever to the sensor node, the accuracy of the
readings in the image increases. The angle of the sensor can easily be measured by indicating front and
endpoints of the lever (red and green points in Figure 10) and mapping these points in the image to
points on the wall, using the coordinate system defined by the surrounding markers. By comparing
the data from the IMU with the data extracted from the images, the static error on the measurements
can be derived for the pitch and roll axis. In our experiments, only static measurements are performed.
Dynamic measurements are possible as well, in which case video instead of images should be recorded
and the video frames must be synchronized with the output data of the sensor node. Doing so, one can
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obtain angles at frame level. Instead of manually indicating points in each video frame, this process
can be automated using image tracking [29,30].
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pitch axis is 3.06°, the average error on the roll axis is 2.75° and the average error on the yaw axis is 4.04°.

Figure 10. Method for sensor validation based on photogrammetry using convenient, commercial
off-the-shelf equipment. By comparing the data from the IMU with the data extracted from images,
the static error on the measurements can be derived for the pitch and roll axis.

Table 2 gives an overview of the measurements. For roll and pitch angles, the setup as shown in
Figure 10 is used with the sensor node rotated 90◦ between roll and pitch measurements. Since the yaw
values have no real fixed orientation, relative measurements are taken by using the setup as shown
in Figure 11 where the sensor and markers are positioned on the floor instead of against the wall.
Several static measurements were performed. The static sensor drift is 2◦ per half hour. The average
error on the pitch axis is 3.06◦, the average error on the roll axis is 2.75◦ and the average error on the
yaw axis is 4.04◦.

Table 2. Result of pitch, roll, and yaw static measurements with their respective error at different angles.

Target Angle [◦] Reference [◦] Sensor [◦] Error [◦]

Pitch 0 0.08 −3.2 3.28
45 44.76 42.5 2.26
90 90.19 95.04 −4.85
180 178.45 176.6 1.85

Roll 0 0.47 1.8 −1.33
45 48.41 44.8 3.61
90 90.15 87 3.15
180 180.01 177.1 2.91

Yaw 45 48.03 45.1 2.93
90 95.49 88.9 6.59
180 182.18 185.2 −3.02
270 274.12 270.5 3.62

Alternatively, it is possible to measure all three (roll, pitch, yaw) angles at once by measuring the
position of the lever endpoints in 3D using a stereo or multi-camera setup. However, drawbacks of
such a method are the much higher complexity, the need for calibration and synchronization, and the
lower accuracy in the depth dimension.

There are some irregularities in the measurements. The yaw value at 90◦ seems to be off. A root
cause could be the influence of a nearby magnetic object. The sensor can get disturbed in the near
proximity of magnetic objects such as speakers and smartphones. These magnets create a distortion in
the magnetic field which isn’t fixed to the reference frame of the sensor node, thus can’t be corrected
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for in calibration. The user can perform reliable measurements when staying half a meter away from
these objects to obtain accurate measurements. The pitch error at 90◦ is also too large. The reason is
that Euler angles are not good at representing orientations in the neighborhood of 90◦ [13].Sensors 2020, xx, 5 12 of 18
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4. Validation with Real-Life Exercises

To evaluate and validate the dynamic behavior of the sensor node and real-life operation, two back
exercises are performed. The first exercise starts with a person kneeling with hands on the ground.
The back is periodically rounded and made hollow, thus demonstrating the periodic concavity of the
spine. This is illustrated in Figure 12.
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Figure 13 presents the result of the measurements. The exercise has been performed in a set of
3 repetitions. A periodic movement with a variation of ±45° on the roll axis can be observed. The pitch
axis shows a little bit of sideways rotation in the lower back. The yaw axis is stable, which is to be expected.
A second captured exercise is the lateral rotation of the back, illustrated in Figure 14. The patient should
rotate the hull sideways, while maintaining stable lower limbs. The measured result is represented in
Figure 15. An angular deviation of ±50° is present in the yaw axis data. Small changes in roll and pitch
values are also observed. These two exercises provide a first evaluation of the dynamic characteristics of
the sensor node. We clearly see that the amount of samples taken is appropriate to acquire accurate results.
However, more testing, either by dynamic photogrammetry or with specialized equipment, is needed
before a firm conclusion on accuracy can be made.
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Figure 13. Exercise: Rounded back—hollow back. A periodic movement with a variation of ±45° on the
roll axis can be observed. The pitch and yaw axis are stable.

Figure 12. Illustration of the first exercise: periodic concavity of the spine (Images provided by Pocket
Yoga (www.pocketyoga.com)). The arrows indicate the position of the sensor node. (a) Start position.
(b) End position.Illustration of the first exercise: periodic concavity of the spine

Figure 13 presents the result of the measurements. The exercise has been performed in a set of
3 repetitions. A periodic movement with a variation of ±45◦ on the roll axis can be observed. The pitch
axis shows a little bit of sideways rotation in the lower back. The yaw axis is stable, which is to
be expected. A second captured exercise is the lateral rotation of the back, illustrated in Figure 14.
The patient should rotate the hull sideways, while maintaining stable lower limbs. The measured
result is represented in Figure 15. An angular deviation of ±50◦ is present in the yaw axis data.
Small changes in roll and pitch values are also observed. These two exercises provide a first evaluation
of the dynamic characteristics of the sensor node. We clearly see that the amount of samples taken is
appropriate to acquire accurate results. However, more testing, either by dynamic photogrammetry or
with specialized equipment, is needed before a firm conclusion on accuracy can be made.

www.pocketyoga.com
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Figure 14. Illustration of the second exercise: lateral rotation of the back (Images provided by Pocket Yoga
(www.pocketyoga.com)). The arrow indicates the position of the sensor node.
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5. Opportunities in e-Treatment Applications and Extended Functionalities

We here first explain the opportunities opened up by stand-alone low-cost and low-complexity
sensor nodes in physio-therapeutic e-treatment. We benchmark the current solution and introduce further
extensions of the system that can bring interesting features for both private and professional users.

5.1. Opportunities in Supporting e-Treatment in Physiotherapy

The presented wireless sensor node has been designed to meet the particular needs to support
physiotherapy treatment. We wish to introduce technical support at the patient’s side to improve both
curative and preventive treatment. The sensor thus enables e-treatment, which we define as (remote)
physical therapy that is supported by measurements made by wireless sensors. In a curative treatment,
the patient can wear the sensor to assist the physiotherapist in the evaluation of (eventual take-home)
rehabilitation exercises. A preventive treatment could consist of monitoring a person’s daily movements or
measuring a patient’s flexibility. We specifically expect measurements at work to be interesting, knowing
that the large majority of neuromusculoskeletal disorders result from repetitive movements and bad
posture at work [31].

Also important in our definition of e-treatment, is the word remote. In the case of remote treatment,
the patient is not physically present in the physiotherapist’s practice, but for example at home and possibly
assisted with one or more sensors. Especially because of the increasing cost of healthcare in our ageing
society, it is important to look at efficient and low-cost alternatives. The connection is then real-time
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5. Opportunities in e-Treatment Applications and Extended Functionalities

We here first explain the opportunities opened up by stand-alone low-cost and low-complexity
sensor nodes in physio-therapeutic e-treatment. We benchmark the current solution and
introduce further extensions of the system that can bring interesting features for both private and
professional users.

5.1. Opportunities in Supporting e-Treatment in Physiotherapy

The presented wireless sensor node has been designed to meet the particular needs to support
physiotherapy treatment. We wish to introduce technical support at the patient’s side to improve
both curative and preventive treatment. The sensor thus enables e-treatment, which we define as
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(remote) physical therapy that is supported by measurements made by wireless sensors. In a curative
treatment, the patient can wear the sensor to assist the physiotherapist in the evaluation of (eventual
take-home) rehabilitation exercises. A preventive treatment could consist of monitoring a person’s
daily movements or measuring a patient’s flexibility. We specifically expect measurements at work to
be interesting, knowing that the large majority of neuromusculoskeletal disorders result from repetitive
movements and bad posture at work [31].

Also important in our definition of e-treatment, is the word remote. In the case of remote treatment,
the patient is not physically present in the physiotherapist’s practice, but for example at home and
possibly assisted with one or more sensors. Especially because of the increasing cost of healthcare
in our ageing society, it is important to look at efficient and low-cost alternatives. The connection
is then real-time through a conference call, or non real-time by exchanging exercises over a manual
for example. There are several reasons why a remote session can be preferred over a conventional
consultation:

• The patient can perform the session more or less independently.
• The patient is abroad and wants to continue the treatment with the same physiotherapist.

For example, elite athletes who have to travel a lot.
• A patient is not allowed to leave the house. The COVID-19 pandemic proved this to be a

realistic scenario.

The effectiveness of e-treatment in a remote sense is exhaustively discussed in [32]. A last
important field of application is the education of physiotherapists. With the help of our technology in a
bigger ecosystem, we want to reach physiotherapist with e-learning and help them train and improve.
In summary, the sensor can enable remote treatment, as well as support conventional consultations or
even acquire measurement data for preventive purposes.

5.2. Extension to Multiple Sensor Nodes

Richer information and support in rehabilitation and e-treatment could be offered by the
combination of multiple sensor nodes, either of the same type or using heterogeneous sensors.
An especially relevant type is an Surface Electromyography (sEMG) sensor module for measuring
muscle activity. While we have designed the first prototype for this sensor type, in a future version we
will combine the IMU and the sEMG sensor into one module. By combining these sensors, we can
capture a more complete picture of what the human body is doing. However, this generates extra
technological challenges, especially with respect to synchronization, both intra- and inter-module,
required to ensure concurrent measurements. Synchronization between the sEMG and the IMU can
be implemented using a shared clock. Both sensors will experience the same clock drift. BLE beacon
packets from a central node, in this case the receiver, or a custom protocol can be used to synchronize
the clocks between sensor nodes [33]. The data can be transmitted using unidirectional beacon packets
without re-transmission. This type of data transfer is very simple but does not guarantee the packet
arrives at the receiver. A better way would be to use the BLE re-transmission functionality to ensure
the packets are received properly. Time synchronization beacon packets could be sent in between. It is
evident that both the electrical and the mechanical design will be more complicated, not in the least
because of the need to integrate the functions in a small space.

6. Conclusions and Future Work

Conclusion. In this paper, a wireless on-body sensor node for measuring movement is presented.
The careful choice of components, software optimizations, and overall low power design considerations
lead to a sensor node with an autonomy of 28 h. An ‘always-on’ buttonless design, with a standby
time of 8 months is developed that is ready to measure whenever it is picked up. We explained the
calibration of the sensor node and zoomed in, in particular on a photogrammetric procedure to validate
the sensor with easily accessible, low-cost equipment. On-device sensor fusion by using a Madgwick
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filter yields static results of on average 3.28◦ with a drift of 2◦ per half hour. The final prototype weighs
38 g and measures ø6 cm × 1.5 cm. The result of this work can be used in a broad range of applications.
It allows doctors and physiotherapists to have an easy to use device to pass along with patients and
afterward interpreting the results, it can be used for live monitoring of rehabilitation exercises or
anything motion tracking related.

Future work. We see multiple opportunities in future work to both the current sensor node, and
to extend it with new functionality and features. Firstly, we plan to further examine the accuracy
of the sensor node by checking it against specialized equipment. We will add other sensors to
get a more in-depth view of the human body. We also designed a sEMG sensor for measuring
muscle activity. These two sensors could be integrated into one module to perform simultaneous
measurements. Synchronization, both inter- and intra-sensor node, will be implemented to ensure
precise, simultaneous measurements. A future upgrade could also implement a real-time calibration by
using artificial intelligence [34]. This could well be implemented on a low power microcontroller with
an ARM Cortex M4 chip (nRF52832 from Nordic Semiconductor), which is already used in the BLE
module. By running the Bluetooth stack and the peripheral code on the same chip, we could eliminate
the central Cortex M0+ microcontroller and further reduce the power consumption. We could also
design our own PCB antenna. In the current design, the data is, other than being visualized, not further
processed. To detect and analyze complex movements, further data analysis as well as learning
algorithms can be implemented. Another extension to the system is a direct communication between
the sensor nodes and a smartphone through an app. This eliminates the need for a separate receiver.
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The following abbreviations are used in this paper:
BLE Bluetooth Low Energy
DMP Digital Motion Processor
DoF Degrees of Freedom
FIFO First In First Out
IMU Inertial Measurement Unit
IoT Internet of Things
LDO Low-dropout
MEMS Microelectromechanical Systems
NTC Negative Temperature Coefficient
RTC Real Time Counter
sEMG Surface Electromyography
WBAN Wireless Body Area Networks
WOM Wake On Motion
WPC Wireless Power Consortium
WPT Wireless Power Transfer
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