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Competition between antigen-specific T cells for peptide:MHC
complexes shapes the ensuing T cell response. Mouse model stud-
ies provided compelling evidence that competition is a highly
effective mechanism controlling the activation of naïve T cells.
However, assessing the effect of T cell competition in the context
of a human infection requires defined pathogen kinetics and track-
able naïve and memory T cell populations of defined specificity. A
unique cohort of nonmyeloablative hematopoietic stem cell trans-
plant patients allowed us to assess T cell competition in response
to cytomegalovirus (CMV) reactivation, which was documented
with detailed virology data. In our cohort, hematopoietic stem cell
transplant donors and recipients were CMV seronegative and posi-
tive, respectively, thus providing genetically distinct memory and
naïve T cell populations. We used single-cell transcriptomics to
track donor versus recipient-derived T cell clones over the course
of 90 d. We found that donor-derived T cell clones proliferated
and expanded substantially following CMV reactivation. However,
for immunodominant CMV epitopes, recipient-derived memory T
cells remained the overall dominant population. This dominance
was maintained despite more robust clonal expansion of donor-
derived T cells in response to CMV reactivation. Interestingly, the
donor-derived T cells that were recruited into these immunodomi-
nant memory populations shared strikingly similar TCR properties
with the recipient-derived memory T cells. This selective recruit-
ment of identical and nearly identical clones from the naïve into
the immunodominant memory T cell pool suggests that competi-
tion is in place but does not interfere with rejuvenating a memory
T cell population. Instead, it results in selection of convergent
clones to the memory T cell pool.
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The human T cell compartment is estimated to contain 1012

cells (1). This T cell compartment consists of clonally
expanded memory T cells and a pool of naıve T cells with an
estimated ∼108 unique T cell receptor (TCR) β chains (1).
Competition between different T cell populations for resources
and niches has been studied for nearly 50 y (2). With the devel-
opment of the peptide:MHC (p:MHC) tetramer and TCR
transgenic mouse models, assessing competition between differ-
ent T cell populations for a given p:MHC epitope has become
more nuanced in the past 20 y (3–5). Initial observations
focused on T cell responses against alloantigens in a transplant
context (2, 6, 7), while subsequent studies examined competing
T cell responses during infections or mimicking infection-like
scenarios by using peptide-pulsed antigen-presenting cells
(APCs) (8, 9). T cell fitness and competition are shaped by
TCR affinity for p:MHC, the T cell precursor frequency, and
even epitope-independent cross-competition (3, 10, 11). In
cross-competition, T cells compete for access to APCs instead

of just their specific p:MHC (3, 9). Cross-competition does not
appear to occur in all infections (12), but the mechanisms that
control the extent of cross-competition remain poorly defined.
Of note, a memory T cell population specific for just one single
epitope can very effectively limit de novo T cell responses to
other epitopes present in a subsequent heterologous infection or
vaccine boost scenario as reported using different mouse model
systems (4, 5). Similar findings were reported in a human study
with a cohort that was suitable to examine the effects of T cell
competition (13). In this latter study, Frahm et al. found that
preexisting T cell memory to adenovirus serotype 5 (Ad5) could
substantially limit the response to HIV-derived epitopes deliv-
ered by an Ad5-vectored HIV vaccine (13).

Addressing T cell competition in human cohorts is challeng-
ing as it requires distinction between memory T cell responses
versus de novo responses in context of a well-defined priming
event. Furthermore, it requires strong T cell responses, so anal-
ysis of a limited number of T cells from the peripheral blood is
sufficient to detect antigen-specific T cell clones. One of the
strongest and best-characterized human T cell responses occurs
in response to cytomegalovirus (CMV) infection. Given that T
cell responses to the immunodominant CMV proteins pp65
and IE1 can be found in most CMV-seropositive individuals
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(14–19), we reasoned that assessing T cell competition for
pp65- and IE1-derived epitopes could be feasible. To study
competition, we examined cryopreserved peripheral blood
mononuclear cells (PBMCs) from patients undergoing a non-
myeloablative hematopoietic stem cell transplant (nmHSCT)
with concomitant monitoring for CMV reactivation. Importantly,
an nmHSCT preserves a substantial amount of the patient’s
immune system compared to conventional hematopoietic stem
cell transplants (HSCTs) (20–22). Although CMV-seropositive
individuals are highly prevalent (23), we identified a small cohort
of nmHSCT patients with CMV-seronegative donors. Given that
recipient and donor cells are genetically distinct, samples from
this cohort represent a unique opportunity to measure competi-
tion between recipient-derived CMV-specific memory Tcells and
donor-derived naıve Tcells. To simultaneously distinguish donor-
and recipient-derived cells and assess T cell repertoire and spe-
cificity, we utilized single-cell transcriptomics, ex vivo stimulation
assays, and computational analysis approaches. Overall, we
found that T cells specific for CMV immunodominant epitopes
remained predominantly recipient-derived, while overall clonal
expansion following CMV reactivation was mainly driven by
donor-derived T cells. We also observed that donor-derived T
cells were not excluded from entering the immunodominant
(pp65 and IE-1) CMV-specific memory CD8+ T cell pool.
Finally, some donor-derived T cell clones showed stunning
similarities in TCR α and β V(D)J usage, including highly con-
served (and in one instance even identical at the amino acid
level) CDR3 regions with the recipient-derived memory T cell
pool. Overall, our data suggest that the recipient-derived,
CMV-specific memory T cell pool is rejuvenated by newly
recruited donor-derived clones. The prevalence of recipient-
derived CMV-specific T cells and the clonal convergence sup-
port the notion that mechanisms of competition are in place
and likely dictated by affinity of the TCR for antigen/MHC.
We discuss basic immunology implications as well as clinical
relevance of our findings.

Results
Patient Cohort, Sample Processing, and Virology Data. To study
competition between memory and naıve T cells for the same
antigen, we obtained longitudinal samples from patients who
underwent nmHSCT (Fig. 1A). The patients were selected
based on the following criteria: 1) recipients were CMV sero-
positive; 2) donors were CMV seronegative, allowing us to track
the naıve Tcell response to CMV; 3) both donors and recipients
expressed the HLA-A*02:01 allele, allowing us to identify
CMV-specific CD8+ T cells using published TCR sequences
and a p:MHC tetramer (epitope NLVPMVATV from CMV);
and 4) CMV reactivation occurred between 30 and 90 d after
transplant. Following nmHSCT, each of the four patients under-
went regular peripheral blood draws and weekly CMV surveil-
lance by PCR (24). Blood draws were used to assess white blood
cell (WBC) counts and processed to cryopreserve PBMCs (Fig.
1B). Cryopreserved PBMCs from each patient at three different
time points—days 30, 60, and 90 post-nmHSCT (red lines indi-
cate PBMC draws that were used for each patient, Fig.
1C)—were run through our single-cell analysis pipeline. This
pipeline included assays to determine cellular phenotypes, tran-
scriptional profiles, TCR sequences, and TCR specificities. We
utilized transcriptional and machine learning analysis, such as
TCRdist (25), to determine how clonal populations respond to
CMV reactivation over time and predict shared epitope specific-
ity of distinct clones. Finally, detailed virologic data were col-
lected for each patient (Fig. 1C). Patients 1, 2, and 4 had CMV
reactivation events between days 60 and 90. Patient 3 had a
CMV reactivation event between days 30 and 60 (Fig. 1C).

Immune Compartment Composition of the nmHSCT Cohort on Days
30, 60, and 90 Posttransplant. First, we established baseline values
of the immune compartment in our patient cohort by evaluating
the nmHSCTrecipients prior to CMV reactivation. Using hema-
tology reports and flow cytometry data, we calculated absolute
numbers of WBCs, T cells, and CD8+ T cells for each patient
(Fig. 2A). In three of the four patients, the number of both T
cells and CD8+ T cells increased over time. While Patient 2 had
decreasing absolute numbers of T cells over time, all patients
had an increase in the percentage of Tcells (Fig. 2B).

In order to assess competition between memory and naıve T
cells for the same p:MHC, we needed to delineate recipient
cells from donor cells in the nmHSCT patients. First, we
attempted to do this by examining sex-linked gene expression
from our single-cell RNA-sequencing (scRNA-seq) data as
three out of four of the patients (1, 2, 4) received sex-
mismatched transplants (Fig. 1A). In particular, we utilized
expression of two genes: the male-specific RPS4Y1 (a Y
chromosome–linked ribosomal protein) and the female-specific
XIST (a long noncoding RNA used for X chromosome inactiva-
tion). Both RPS4Y1 and XIST transcripts could be found in
Patient 2 and 4, allowing us to use sex-mismatched transplants
to differentiate donor from recipient in these patients (Fig.
2C). However, due to low detection and high dropout rates
inherent in scRNA-seq (26–28), the vast majority of cells was
of undetermined origin (Fig. 2C, blue bars). Of note, Patient 1
was male but had undergone a previous HSCT procedure,
and we could not detect any RPS4Y1-expressing (recipient-
derived) Tcells in this patient. Further, Patient 3 of our cohort
had a sex-matched donor and recipient. In an effort to
improve donor versus recipient identification, we used single
nucleotide polymorphisms (SNPs) within the scRNA-seq data
to differentiate donor from recipient cells. SNP analysis had
already been conducted on Patient 3 (29), which allowed us to
match SNPs in our scRNA-seq data to these previously
acquired data and define donor versus recipient. To resolve
recipient and donor within Patients 2 and 4, we utilized the
scRNA-seq data to find SNPs (n = 823 and 700 for Patients 2
and 4, respectively) within the transcripts for each cell. We
employed these identified SNP markers to assign each cell
one of two different genotypes (�1 or 1). Once each cell was
assigned a genotype, we then designated recipient or donor by
using sex-linked gene expression for each genotype (Fig. 2D).
Together, this allowed us to observe the contribution of recipi-
ent and donor to the CD8+ T cell compartment (Fig. 2E).
Overall, each patient contained proportionally more donor
than recipient-derived CD8+ Tcells (Fig. 2E).

Assessing the Presence of Donor and Recipient-Derived pp65:A02:01-
Specific T Cells. As a first step, we wanted to ensure that we
could indeed detect CMV-specific CD8+ T cell responses in all
four patients. We used a p:MHC tetramer to identify CD8+ T
cells that were specific for the immunodominant pp65 peptide
NLVPMVATV presented in the context of HLA-A02:01 for all
four patients. We detected pp65:A02:01-specific T cells in all
four patients across all three time points (Fig. 3A). We next
asked whether any of these pp65:A02:01-specific T cells were
donor-derived by day 90. To address this, we sorted
pp65:A02:01-specific T cells and then analyzed the sorted cells
using 30 scRNA-seq to determine whether each cell originated
from the donor or recipient, as described previously. We found
that 90 d after nmHSCT, the vast majority of pp65:A02:01-spe-
cific T cells were still recipient-derived in Patients 2 and 3 (Fig.
3B) despite the majority of the immune compartment being
donor-derived. Of note, Patient 1 had more pp65:A02:01+ T
cells that were donor-derived, but since this patient had under-
gone a transplant procedure prior to the nmHSCT, the vast
majority of the immune compartment was donor-derived (Fig.
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2E). Due to a technical issue, we only interrogated a fairly lim-
ited population of pp65:A02:01+ T cells of Patient 4 in our
scRNA-seq analysis (Fig. 3B).

Overall, these data indicate that the cohort is suitable to
examine T cell competition and also provide a first line of evi-
dence that although T cell competition appears to occur, it is
permissive and allows for the recruitment of new T cell clones
from the donor-derived, antigen-naıve Tcell population.

Assess Clonal Expansion in the CD8+ T Cell Compartment. After
establishing that the cohort is suitable to address competition,
we first wanted to determine how many expanding T cell clones

we could detect in the entire CD8 T cell compartment. We rea-
soned that assessing expanding TCR clones would provide a
general overview of the CD8+ T cell dynamics, which was
needed as a reference to subsequently assess and interpret
CMV-specific Tcell responses.

To accomplish this, we performed 50 scRNA-seq on CD8+
T cells to acquire V, D and J gene segment (VDJ) and tran-
scriptome data, followed by identifying TCR clones that
expand over time (Fig. 4A). Note that this CD8 Tcell popula-
tion did not contain any pp65:A02:01 tetramer+ Tcells, since
these cells were sorted and analyzed separately (Fig. 3B). We
defined “expanding clones” as having twofold more cells
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than the previous timepoint and having at least 10 cells at
any time point. We observed that the majority of these
expanding clones were donor-derived (Fig. 4A). We next
quantified the fold change in frequency of these expanding
clones between day 60 and 90, and we observed that donor-
derived expanding clones had a ∼10-fold increased rate of
fold expansion compared to recipient-derived clones (Fig.
4B). Together, these data indicate that clonal expansion is
dominated by donor-derived T cells, which also appear to
expand more vigorously. We next wanted to estimate the

number of cell divisions that occurred within each donor-
derived expanding clone. We first determined the relative
abundance of each expanding clone within the CD8+ T cell
compartment using our scRNA-seq data. We used the flow
cytometry data and the absolute WBC numbers from each
patient’s hematology reports to extrapolate the absolute
numbers of each clone per cubic millimeter of blood. Assum-
ing an average of 5 L of blood per person and assuming each
CD8+ T cell clone was only present as a single cell at the
time of priming, we found that on average, expanding clones
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would undergo nearly 24 rounds (±1.56 SD) of cell division
(Fig. 4C). The number of rounds of cell division was calcu-
lated by determining absolute numbers, then determining
the number of doubling events that would occur to lead to
that number of cells. The clones that were included were
considered “expanding clones” and had zero clones detected
at day 30 posttransplant. Although this number may be an
overestimate if the single clone progenitor assumption is
incorrect, it indicates that clonal expansion was robust and
did not appear to be stifled by mechanisms related to compe-
tition or cross-competition.

Additional CD8+ T Cell Clonal Analysis Reveals the Presence of
Stable, Expanding, and Contracting Clones. We next wanted to
better define the overall dynamics of CD8+ T cell clone abun-
dance and determine the relative abundance of expanding, sta-
ble, and contracting clones. First, we examined the trends of all
CD8+ Tcell clones over time. To do this, we plotted each clone
that had at least five cells per clone for each time point (Fig.
5A). We then separated each of the clones by behavior, with
four different behaviors: 1) clones that expanded at 60 d post-
transplant, 2) clones that expanded at 90 d posttransplant, 3)
clones that contracted, and 4) clones that remained stable
over time. Our criteria for clones that expanded at 60 d

posttransplant were that the clone must have had at least five
cells at one time point and the number of cells at day 60 had to
be twice the number of cells at day 30. We found that each
patient had clones that expanded at day 60, but the majority of
the clones that expanded at day 60 were recipient-derived
clones from Patient 3. In contrast, the majority of clones that
expanded at day 90 were donor-derived. Contracting clones
were defined as those clones that decreased twofold between
any two time points and had at least five cells at any time point.
Clones that were considered stable had at least five cells at any
time point and did not vary by more than twofold at any
time point.

To further illustrate how the frequencies of each clone
changed over time, we used frequency maps of the clones from
each patient with donor-derived clones shown in the top row
and recipient-derived clones in the bottom row (Fig. 5B). We
found that all patients contained at least some donor-derived
clones that reached peak frequency at 90 d postnmHSCT. In
contrast, most recipient-derived clones remained stable or con-
tracted over time, although some recipient-derived clones from
Patient 3 reached peak frequency at either 60 or 90 d
postnmHSCT, respectively. Overall, these data further highlight
that clonal expansion is predominantly observed in the donor-
derived Tcell population.
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Expanding Clones Have Similar Transcriptional Profiles Regardless
of Donor or Recipient Origin. Although most expanding clones
were of donor origin, some expanding T cells were recipient-
derived clones. We next wanted to assess if donor- and
recipient-derived expanding T cells had congruent or distinct
transcriptional programs. We considered that transcriptional
differences could result from distinct epitope specificity, distinct
cell origin (donor vs. recipient), and differentiation status at the
time of activation (naıve vs. memory). We examined how tran-
scriptional profiles change over time by focusing on clones
(either donor-derived or recipient-derived) that expanded at 90
d postnmHSCT. To visualize gene expression changes for these
single cell data, we used uniform manifold approximation and
projection (UMAP) (30). CD8+ T cells were then placed into
clusters identified by a shared nearest neighbor modularity
optimization-based clustering algorithm. Each clone was visual-
ized on the CD8+ T cell UMAP at each time point, and each
cell within that clone was colored by cluster (Fig. 6). Note that
for Patients 1 and 4, all plots shown are of donor origin. In gen-
eral, the clones which expanded at 90 d postnmHSCToccupied
the same five clusters in the UMAP, which are displayed as
green, blue, brown, purple, and red. This pattern could be
observed regardless of whether clones were donor- or
recipient-derived, indicating a shared transcriptional pheno-
type. We used singleR to perform cell type calling (31), which
suggested that cells occupying these clusters featured an effec-
tor memory CD8+ T cell phenotype. There was a unique phe-
notype seen in some recipient-derived clones of Patient 3 that
occupied an “orange” cluster that fell into a distinct spatial
region and contains a transcriptome suggestive of a terminal
effector phenotype (based on singleR designation). Overall,
these data suggest that T cell clones which expanded at 90 d

postnmHSCT had a similar transcriptional profile, regardless of
epitope specificity or donor versus recipient origin. Of note,
these expanding clones share the same transcriptional space
even across patients. Similarly, CMV-Tetramer+ CD8+ T cells
had similar transcriptional profiles and resided in the same
UMAP space (SI Appendix, Fig. 1). The main characteristics of
this transcriptional profile as characterized by gene ontology
analysis include “effector molecules” (including GZMH,
GZMB, IFNG), “TCR-mediated signaling” (including CD3D,
LCK, LAG3), and “memory T cell formation” (including ZEB2,
CCL5, LGALS1).

Exploring CMV-Specific T Cell Responses. We next wanted to
examine if we could identify CMV-specific T cells within these
expanding clones. To achieve this, we needed to expand our
analysis to T cells beyond those that we already identified by
pp65 peptide (NLVPMVATV) loaded HLA-A*02:01 tetramers.
As an overall strategy, we used a combination of searching for
previously published sequences, identifying CMV-specific T
cells in ex vivo stimulation experiments, and using TCRdist
analysis to assign CMV-specificity to TCR clones.

First, we compared the V(D)J full chain sequences of clones
from our cohort to previously published V(D)J sequences of
CMV-specific CD8+ T cells (32). We identified 15 clones in our
cohort with sequences that had been previously described as being
CMV-specific (9 recipient-derived, 6 donor-derived) (Fig. 7A).

Second, to identify additional CMV-specific TCRs, we stimu-
lated T cells from Patient 3 using overlapping peptide pools from
two CMV proteins: pp65 and IE-1. We chose Patient 3 given the
high abundance of pp65:A02:01-specific Tcells (Fig. 3A) and rea-
soned that this would likely yield the highest number of new
CMV-specific TCR specificities. PBMC were incubated with
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either dimethyl sulfoxide (DMSO; carrier control), pp65 peptide
pool, or IE-1 peptide pool for 18 h (Fig. 7B). Following incuba-
tion, we used CD137 as a surrogate marker for responding
antigen-specific Tcells (33). Overall, the frequency of pp65(NLV)-
tetramer+ CD8 T cells was similar to the frequency of CD137+
CD8 T cells following stimulation with the pp65 peptide pool (SI
Appendix, Fig. 2). We used flow cytometry to sort the following
populations after stimulation: CD137-CD8+ T cells (DMSO),
CD137+CD8+ Tcells (pp65 peptide pool), and CD137+CD8+ T
cells (IE-1 peptide pool). Each sorted population was then ana-
lyzed by 50 scRNA-seq to determine the V(D)J sequences. Of
note, CD8+ T cells that were treated with either peptide pool
expressed more effector molecule transcripts compared to DMSO
treated controls (SI Appendix, Fig. 3A). Sequencing of the
CD137+CD8+ Tcells from the pp65 stimulation conditions iden-
tified a total of 27 clones. Fourteen clones were identified by
sequencing CD137+CD8+ T cells from the IE-1 peptide pool
stimulation. We compared the TCR sequences of these new
clones to the original longitudinal Patient 3 samples (SI Appendix,
Fig. 3B). Out of these 41 new clones, we found 5 clones that were
also present in our initially generated ex vivo data set (Fig. 7C).
One of the clones was specific for a pp65-derived epitope, and the
other four clones were specific for IE-1–derived epitopes. We did
not expect a complete overlap between these datasets given that
the sampling itself is inherently limited (number of T cells
sequenced in each experiment as a snapshot of the entire CD8
repertoire), but we were initially surprised by this rather limited
congruence. However, since we did not sequence pp65:A02:01-
specific Tcells in our initial experiment (since the tetramer+ CD8

T cells were sequenced separately), the low number of pp65:
MHC-I-specific clones could indicate that most pp65-specific T
cells are truly pp65(NLVPMVATV):A02:01-specific. Finally, of
the five pp65- and IE1-specific clones identified, only two clones
met our criteria for expanding clones, and both of those clones
expanded from day 30 to day 60 posttransplant, which aligns
with the CMV reactivation kinetics for donor 3 (between day 41
and 76).

We next determined recipient and donor contribution of
both pp65:MHC-I and IE-1:MHC-I specific CD8+ T cells.
CD137- CD8+ T cells (DMSO control) were mostly donor
derived (723 recipient cells and 1,375 donor cells, Fig. 7C) and
yielded a comparable donor-to-recipient distribution, as initially
observed in Fig. 2E. However, pp65 or IE-1–specific Tcells had
an increased frequency of recipient cells similar to our observa-
tion with the pp65(NLVPMVATV):A02:01-tetramer (Figs. 7D
vs. 3B). IE-1–specific T cells were ∼51% recipient-derived (25
recipient cells and 24 donor cells), and pp65-specific T cells
were mostly recipient-derived (142 recipient cells and 20 donor
cells). Taken together, these data highlight that some epitope-
specific competition does appear to occur and is more stringent
for pp65-specific Tcells compared to IE-1–specific Tcells.

Some Donor and Recipient-Derived Clones Have Nearly to Fully
Identical TCR Properties. Finally, we wanted to assess how similar
(in regard to TCR usage and transcriptome) newly recruited,
CMV-specific T cells were compared to the recipient-derived
memory population. We found 21 donor–recipient clone pairs
with a statistically significant degree of TCR similarity. One of
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these pairs, specific for CMV IE-1, had identical TCR α and β
gene usage (TRAV8-6*01, TRAJ30*01, TRBV30*01, TRBJ2-
7*01) including identical CDR3 regions on the amino acid level
while still differing on the nucleotide level as one would expect
(Fig. 8A). We compared the transcriptome of these identical
TCR clones and found that the recipient-derived clones had
more of an effector-like phenotype (granulysinhi, NKG7hi, but
CD27lo; Fig. 8A). Another pair of IE-1–specific clones also had
identical TCR α and β gene usage (TRAV8-6*01, TRAJ30*01,
TRBV30*01, TRBJ2-7*01) and a very similar CD3 regions
(Fig. 8B). Finally, we identified an expanding clonal pair with
identical TCR α and β gene usage (TRAV17*01, TRAJ33*01,
TRBV28*01, TRBJ1-4*01) and highly similar CDR3 regions to
which a putative specificity for the HLA-B*35:01-presented
CMV pp65 epitope IPSINVHHY could be assigned by
TCRdist matching to the VDJdb (Fig. 8C) (25, 32). Of note, as
a trend, donor-derived T cells were expanding, while recipient-

derived T cells appeared stable in abundance. Thus, a compari-
son at the TCR level reveals transcriptional heterogeneity and
differences that were not necessarily apparent when examining
all expanding clones (Fig. 6). These transcriptional differences
appeared to be independent of the TCR, but instead depended
on the T cell’s differentiation status. Finally, Patient 4 had eight
donor–recipient clone pairs specific for HLA-B*35:01-
IPSINVHHY. The donor-derived clones surpassed the
recipient-derived clones in abundance by day 90 in all of these
pairs, indicating that the donor-derived clones have an advan-
tage that is likely to be independent of the TCR.

Discussion
We analyzed clonal T cell expansion in a unique set of longitudi-
nal PBMC samples from patients treated with minimal myeloa-
blative conditioning and HSCT. Following nmHSCT, patients
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Fig. 8. Donor- and recipient-derived T cells with identical or highly similar TCRs. (A) Shown are the CDR3 amino acid and nucleotide sequences for a
donor- and recipient-derived IE-1–specific T cell clone that expanded over time with the following TCR gene usage: TRAV8-6*01, TRAJ30*01, TRBV30*01,
TRBJ2-7*01. The transcriptome of each detected clone is shown in a UMAP projection. Differentially expressed genes between donor- and recipient-
derived clones are highlighted in the heatmap. (B) Shown are the CDR3 amino acid and nucleotide sequences for an IE-1 specific donor- and recipient-
derived T cell clone that expanded over time with the following TCR gene usage: TRAV8-6*01, TRAJ30*01, TRBV30*01, TRBJ2-7*01. The transcriptome of
each detected clone is shown in a UMAP projection. Differentially expressed genes between donor- and recipient-derived clones are highlighted in the
heatmap. (C) Shown are the CDR3 amino acid and nucleotide sequences for a donor- and recipient-derived T cell clone with predicted shared antigen-
specificity that expanded over time with the following TCR gene usage: TRAV17*01, TRAJ33*01, TRBV28*01, TRBJ1-4*01. The transcriptome of each
detected clone is shown in a UMAP projection. Differentially expressed genes between donor- and recipient-derived clones are highlighted in the
heatmap.
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harbored two populations of genetically unique T cells, derived
from the recipient or donor. In our cohort, all recipients were
CMV seropositive, and hence the recipient-derived T cell com-
partment contained CMV-specific memory Tcells. In contrast, all
donors were CMV seronegative, and we thus considered the
donor-derived T cell compartment to be antigen-naıve. This
notion is also supported by a lack of donor-derived CMV-specific
clones until after CMV reactivation occurred. Of note, donor
and recipient pairs were not fully HLA-matched, but all donors
and recipients expressed the HLA-A*02:01 allele. This is impor-
tant because it allowed us to interpret our data in context of
HLA-A*02:01–restricted, naıve, and memory competing T cell
responses. Overall, we found that lymphocyte numbers were typi-
cally stable for the first 90 d following nmHSCT for three of the
four patients indicating that homeostatic expansion during that
time period was not a major driver of Tcell proliferation in these
patients. Furthermore, the donor-derived T cells were the pre-
dominant population in the overall CD8+ Tcell compartment.

In an effort to reveal the overall clonal dynamics of the CD8+
T cell compartment, we first assessed when and how many
CD8+ Tcells expanded. We used a rather stringent definition of
expansion, which was defined as a twofold increase of a clone
between two time points with at least 10 cells at any time point.
This analysis revealed that expanding T cells were predomi-
nantly of donor origin and arose specifically following CMV
reactivation. Although we did observe clonal expansion of
recipient-derived T cells, donor-derived T cell clones expanded
more vigorously. If we assume that each donor-derived clone
started from a single naıve progenitor (as opposed to a small
population of memory-like, homeostatically expanded T cells),
then each clone would undergo ∼24 rounds of cell division. The
number of cell divisions also aligns with studies evaluating Tcell
expansion in mice, where a brief antigen encounter is sufficient
to induce 7 to 10 rounds of cell division by naıve CD8+ T cells
(34, 35). Prolonging the duration of TCR stimulation beyond a
brief activating encounter will drive additional rounds of cell
division for CD8+ T cells (34). Further mouse studies indicate
that a single naıve antigen-specific T cell can generate an effec-
tor population of ∼104 T cells in context of an acute bacterial
infection, indicating at least 14 rounds of cell division (36). This
robust clonal expansion of donor-derived Tcells following CMV
reactivation indicates that effective clonal expansion still
occurred despite the presence of recipient-derived CMV-spe-
cific memory T cells. Of note, naıve and memory T cells may be
activated by distinct dendritic cell subsets, as shown in a mouse
model of influenza infection (37). Such compartmentalized acti-
vation could allow for naıve T cell priming in the presence of a
large antigen-specific memory Tcell population.

To specifically identify CMV-specific T cell responses in the
CD8 T cell compartment, we used a combination of previously
published TCR sequences and, for Patient 3, ex vivo stimulation
with pp65 and IE-1 peptide pools. We focused on these immuno-
dominant epitopes to ensure that we could reliably detect
antigen-specific T cells despite the inherent numeric limitations
of sampling the T cell compartment with currently available
single-cell sequencing–based approaches (that allow for sequenc-
ing of ∼103 to 104 T cells per run). Of note, we used CD137
expression to identify CMV peptide pool-specific T cells, but
CD137 expression can also be driven by cytokines (38), similar to
other biomarkers typically considered to indicate TCR-mediated
activation (39). We thus compared these clones to the VDJdb
database and 8 (out of the 27 clones from the pp65 stimulation)
matched a literature TCR sequence (32), and all were annotated
as pp65-NLV specific. Of note, we searched for, but did not iden-
tify, matches with other TCR specificities (EBV, flu). These data
suggest that most, and possibly all, of these clones are CMV-
specific, but it is a limitation of our study that we cannot formally
ascertain the TCR specificity of all clones. While the overall

CD8+ T cell compartment largely consisted of donor-derived T
cells (from CMV seronegative donors), strikingly, the pp65-
specific T cell response was heavily dominated by recipient-
derived memory T cells. Of note, the efficiency of competition
appeared to be epitope-dependent as recipient-derived T cells
were less abundant in the IE-1–specific T cell population com-
pared to the pp65-specific T cell population – the IE-1–specific T
cell response had essentially equal contributions of donor and
recipient-derived T cells. These data highlight that an existing
memory T cell population does not prevent de novo T cell
responses of the same specificity. CMV-specific donor-derived T
cells appear to have a competitive advantage over recipient-
derived Tcells, which could be in part related to the more termi-
nally differentiated phenotype of the recipient-derived T cells.
However, we cannot formally rule out that the condition regimen
and/or graft-versus-host disease prophylaxis treatment (outlined
in the Materials and Methods section) affected T cell function or
clonal selection. Potential treatment-mediated effects are inher-
ent confounders for which we cannot control in our study.

Remarkably, some of the newly recruited donor-derived T
cells were highly similar to CMV-specific recipient clones.
When comparing all donor versus recipient-derived clones, we
observed additional instances of stunning TCR similarity,
including a donor-derived and recipient-derived pair with fully
identical TCR sequences on the amino acid level (but still
showing differences on the nucleotide level). Together, these
data suggest that the selection process that allows for T cell
expansion may be driven by TCR affinity for peptide/MHC and
is highly reproducible in humans, similar to previous observa-
tions in a mouse model system (40). Of note, the donor-derived
T cells were the more abundant clones in most of the highly
similar 21 donor–recipient clone pairs, indicating that the
donor-derived Tcells have a competitive advantage that is unre-
lated to TCR specificity. Transcriptome analysis of these donor-
derived clones indicates that they may be more sensitive to
costimulation (CD27) and less terminally differentiated
(KLRG1, NKG2C), which may provide the observed competi-
tive advantage (41, 42). Overall, the T cell response patterns
across the four patients we analyzed were remarkably similar,
which allowed us to draw conclusions regarding competition
and clonal selection. The unique features of our cohort (CMV
seronegative donors and CMV-seropositive recipients with an
nmHSCT, well-defined viral reactivation kinetics, and available
longitudinal samples) also limited our sample size. The inher-
ent limitations of our small sample size precluded a more
in-depth analysis of epitope-specific differences.

Finally, clonal expansion coincided with CMV reactivation,
but it is possible that some of the donor-derived expanding
clones were alloreactive and not CMV-specific. In nmHSCT
patients, donor-derived alloresponses are essential to eliminate
recipient-derived blood malignancies but can also cause graft-
versus-host disease. We attempted to determine if any expand-
ing donor-derived clones had distinct transcriptional profiles
that could potentially help to discern allo-specific from CMV-
specific responses, but we could not detect any signatures to
potentially delineate these responses.

Overall, our study shows that CMV reactivation is sufficient
to elicit strong de novo T cell responses despite the presence of
CMV-specific memory T cells. While the CMV-specific T cell
compartment remained predominantly recipient-derived, the
overall T cell compartment was dominated by donor-derived T
cells. We furthermore observed remarkable TCR similarity
between clonally expanded donor- and recipient-derived CMV-
specific T cells, suggesting reproducible selection of T cell
clones with congruent TCR specificities, which overall appears
to lead to a rejuvenation of the memory T cell pool without a
pronounced change in the TCR repertoire.
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Materials and Methods
Human Cohort and Sample Processing. This study was approved by the Fred
Hutchinson Cancer Research Institutional Review Board, and all subjects
signed informed consent. The patient cohort contained four recipient–donor
pairs with CMV reactivation events between day 30 and 90 after transplanta-
tion each with the following clinical diagnosis prior to nmHSCT. We list donor
and recipient age as an age range to prevent potential identification. Patient
1 was diagnosed with myelodysplasia (recipient 66 to 70 y, donor 36 to 40 y;
this was the patient’s second HSCT procedure); Patient 2 was diagnosed with
mantle cell lymphoma (recipient 56 to 60 y, donor 26 to 30 y); Patient 3 was
diagnosed with acute lymphocytic leukemia (recipient 56 to 60 y, donor 50 to
55 y); and Patient 4 was diagnosed with non-Hodgkin’s lymphoma (recipient
60 to 65 y, donor 20 to 25 y). Patients received fludarabine and 200 to 300 cGy
of total body irradiation for pretransplant conditioning. Peripheral blood
stem cells served as the graft source. Patients 2, 3, and 4 received cyclosporine
and mycophenolate mofetil (MMF) for graft versus host disease prophylaxis.
Patient 1 was treated with sirolimus in addition to cyclosporine and MMF.
CMV surveillance was done weekly by PCR, and patients were preemptively
treated with (val)ganciclovir as recently described (24). PBMCs from each
patient and for each time point were obtained as cryopreserved samples from
the Infectious Disease Sciences Biospecimen Repository, Vaccine and Infectious
Disease Division, Fred Hutchinson Cancer Research Center. Vials with cryopre-
served cells were thawed at 37 °C until a tiny ice crystal was left in the tube
and then carefully diluted in 1 mL of prewarmed complete Roswell Park
Memorial Institute (RPMI) medium (Gibco, #18875119) with 10% fetal bovine
serum (FBS) (Nucleus Biologics, #AU FBS-500 mL L1 HI) and 1% penicillin-
streptomycin (Gibco, #15140122) and transferred to a new tube. An additional
13 mL of prewarmed complete RPMI was added drop by drop, followed by
centrifugation for 5 min at 400 g and resuspension in 1 mL of complete RPMI.

T Cell Stimulation Assay. Freshly thawed PBMCs were resuspended at 107

cells/mL. A total of 100 μL of cells was added into a 96-well round-bottom
plate. A 50 μL stimulation mixture was added to each well containing cells.
Stimulation mixture was made by adding 1 μg/mL of both anti-CD28 and anti-
CD49d (BD Biosciences) with 2 μg/mL of either overlapping peptide pools of
pp65, IE-1 (pp65 and IE-1 PepMix, JPT peptide technologies), or DMSO into
complete RPMI. PBMCs with stimulation mixture were incubated at 37 °C for
18 h. Cells were then prepared for fluorescence-activated cell sorting (FACS).

Flow Cytometry and Cell Sorting. For flow cytometric analysis, good practices
were followed as outlined in the guidelines for use of flow cytometry (43). Fol-
lowing thawing or stimulation, PBMCs were incubated with Fc-blocking
reagent (BioLegend Trustain FcX, #422302) and fixable Aqua Live/Dead
reagent (Thermo Fisher, #L34957) in phosphate buffered saline (PBS) (Gibco,
#14190250) for 15 min at room temperature. If required, cells were stained
with an CMV-Tetramer reagent (peptide NLVPMVATV; NIH Tetramer Core)
diluted in FACS buffer (PBS with 2% FBS, Nucleus Biologics, #AU FBS-500 mL
L1 HI) for 30 min at room temperature, followed by two washes. After this,
cells were incubated for 20 min at room temperaturewith 100 μL total volume
of antibody master mix freshly prepared in Brilliant Stain Buffer (BD Biosci-
ence, #563794), followed by two washes. All antibodies were titrated and
used at optimal dilution, and staining procedures were performed in 96-well
round-bottom plates. Stained PBMCs were resuspended in FACS buffer
and sorted.

All cell sorting was performed on a FACSAria III (BD Biosciences) equipped
with 20 detectors and 405 nm, 488 nm, 532 nm, and 628 nm lasers. For all
sorts, an 85 μm nozzle operated at 45 psi sheath pressure was used. Single-
stained controls were prepared with every experiment using antibody capture
beads diluted in FACS buffer (BD Biosciences anti-mouse, #552843 and anti-
rat, #552844), or cells for Live/Dead reagent. Cells were sorted into chilled
Eppendorf tubes containing 500 μL of complete RPMI, washed once in PBS,
and immediately used for subsequent processing.

Single-Cell Library Preparation and Sequencing. Complementary DNA
(cDNA) libraries of CMV-Tetramer+ CD8+ T cells were generated using the
Chromium Single Cell 30 Reagent Kits v2 while CMV-Tetramer� CD8+ T
cells and CD8+ stimulated T cells were generated using the Chromium Sin-
gle Cell 50 Reagent Kits v1 with Human T cell V(D)J enrichment kits (10×
Genomics). The Chromium Single Cell protocol targeting 10,000 cells per
well was followed. Briefly, single cells were isolated into oil emulsion drop-
lets with barcoded gel beads and reverse transcriptase mix. cDNA was gen-
erated within these droplets, and then the droplets were dissociated.
cDNA was purified using DynaBeads MyOne Silane magnetic beads
(Thermo Fisher, #370002D). cDNA amplification was performed by PCR (10
cycles) using reagents within the Chromium Single Cell 30 Reagent Kit v2

(10× Genomics). Amplified cDNA was purified using SPRIselect magnetic
beads (Beckman Coulter). If necessary, target enrichment was also per-
formed by PCR (10 cycles) and cDNA purification via SPRIselect beads.
cDNA was enzymatically fragmented and size selected prior to library con-
struction. Libraries were constructed by performing end repair, A-tailing,
adaptor ligation, and PCR (12 cycles). Quality of the libraries was assessed
by using Agilent 2200 TapeStation with High Sensitivity D5000 ScreenTape
(Agilent). Quantity of libraries was assessed by performing digital droplet
PCR with Library Quantification Kit for Illumina TruSeq (BioRad,
#1863040). Libraries were diluted to 2 nM and paired-end sequencing was
performed on a HiSeq 2500 sequencer (Illumina). Stimulation libraries
were diluted to 3 nM and paired-end sequencing was performed on a
NovaSeq 6000 (Illumina).

Sequencing Data Processing. Raw base call (BCL) files were demultiplexed to
generate Fastq files using the cellranger mkfastq pipeline within Cell Ranger
2.1.1 (10× Genomics). Targeted transcriptome Fastqs were further analyzed
via Seven Bridges (BD Biosciences). Whole transcriptome Fastq files were proc-
essed using the standard cellranger pipeline (10× Genomics) within Cell
Ranger 2.1.1. Briefly, cellranger count performs alignment, filtering, barcode
counting, and Unique Molecular Identifier (UMI) counting. The cellranger
count output was fed into the cellranger aggr pipeline to normalize sequenc-
ing depth between samples. The final output of cellranger (molecule per cell
matrix) was then analyzed in R using the package Seurat (version 2.3 and 3.0)
as described below.

Sequencing Analysis. The R package Seurat (44) was utilized for all down-
stream analysis. For whole transcriptome data, based on commonly used cut-
offs suggested by Butler et al., only cells that had at least 200 genes (with
≤20% being mitochondrial genes) were included in analysis (removing 182
out of a total of 5,416 cells). A natural log normalization using a scale factor
of 10,000 was performed across the library for each cell. UMIs and mitochon-
drial genes were linearly scaled to remove these variables as unwanted sour-
ces of variation. Doublets and low-quality cells were identified by their outlier
UMI and gene counts on a per patient basis, and their high percentage of
mitochondrial genes (more than 20%).

For whole transcriptome analysis, dimensionality reduction using UMAP
and clustering was performed on a subset of variable genes. When scaling
data, UMI was the only regressed variable. Dimensionality reduction using
UMAP and clustering was based on either all genes or all proteins. For differ-
ential gene expression analysis, we utilized the Seurat implementation of
MAST (model-based analysis of single-cell transcriptomics) with the number of
UMIs included as a covariate (proxy for cellular detection rate) in the model
(45). To combine datasets, Harmony was used (46).

Genotype-informative SNPs in single-cell transcripts were identified by cor-
relation analysis of heterozygous positions across cells followed by clustering
to define groups of covarying SNPs. Sex-specific gene expression (Patients 2
and 4) was then used to disambiguate donor and recipient. For Patient 3, both
the donor and recipient were female, precluding the use of sex-specific gene
expression; in this case, genome-wide SNP genotyping data from a previous
study of bone marrow transplant outcomes (29) were used to assign patient
versus donor. Genotype calls at the single-cell level were compared with out-
put from the Sourporcell algorithm (47) and found to be greater than 99%
concordant. TCR sequence matching was performed using the TCRdist algo-
rithm as implemented in the Clonotype Neighbor Graph Analysis (CoNGA)
python package’s find_significant_tcrdist_matches function (https://github.
com/phbradley/conga) (48). In this approach, the TCRdist score for a match is
compared to a background distribution of TCRdist scores for the same TCRs
matched to random TCR sequences generated using a probabilistic model of
the V(D)J recombination process.

Data Availability. The sequencing data discussed in this publication have been
deposited in the National Center for Biotechnology Information’s Gene
Expression Omnibus (GEO) (49) and are accessible through GEO series acces-
sion number GSE167825 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE167825) (50). All scripts used for data processing and plot genera-
tion are available at GitHub (https://github.com/Jami-Erickson/scRNAseq_
CD8Tcells_CMV).
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