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Abstract: (1) Background: The new SARS-COV-2 pandemic overwhelmed intensive care units,
clinicians, and radiologists, so the development of methods to forecast the diagnosis’ severity became
a necessity and a helpful tool. (2) Methods: In this paper, we proposed an artificial intelligence-based
multimodal approach to forecast the future diagnosis’ severity of patients with laboratory-confirmed
cases of SARS-CoV-2 infection. At hospital admission, we collected 46 clinical and biological variables
with chest X-ray scans from 475 COVID-19 positively tested patients. An ensemble of machine
learning algorithms (AI-Score) was developed to predict the future severity score as mild, moderate,
and severe for COVID-19-infected patients. Additionally, a deep learning module (CXR-Score)
was developed to automatically classify the chest X-ray images and integrate them into AI-Score.
(3) Results: The AI-Score predicted the COVID-19 diagnosis’ severity on the testing/control dataset
(95 patients) with an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity
of 97.93%. The CXR-Score module graded the severity of chest X-ray images with an average
accuracy of 99.08% on the testing/control dataset (95 chest X-ray images). (4) Conclusions: Our study
demonstrated that the deep learning methods based on the integration of clinical and biological data
with chest X-ray images accurately predicted the COVID-19 severity score of positive-tested patients.

Keywords: COVID-19; artificial intelligence; deep learning

1. Introduction

The emergence and extremely rapid spread of the new coronavirus, COVID-19, has
led to the existence of a global problem, a problem never seen before. International
organizations have come to the aid of the states of the world and have proposed numerous
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legislative instruments for combating and spreading this virus. The pandemic context
made its presence felt at a rather difficult time nationally and globally [1]. This global
challenge, SARS-CoV-2, overcomes several intensely debated issues, such as respect for
human rights and freedoms, environmental protection, respect for democracy, and the
reduction of social and economic imbalances that can influence the spread of the disease [2].

Researchers have tried developing more effective prediction models to control the
spread of COVID-19 and discovered new, unexpected factors that can influence the severity
of the disease [3,4]. With the appearance of COVID-19, more attention has been paid
to improve automatic recognition systems based on artificial intelligence methods. It
is difficult to provide an easy solution to this problem. However, precise and effective
artificial intelligence techniques can be useful in overcoming this pandemic and providing
adequate care to patients.

Forecasting the severity of COVID-19 patients is a crucial step in patients’ management
since the patients’ treatment depends on it: The mild and moderate COVID−19 cases
necessitate antivirals and oxygen therapy, while severe ones necessitate intensive care units
or ventilator support [5].

Many studies showed how important is to anticipate the COVID-19 severity since
the evolution to critical disease stage could be quick, due especially to the immune mech-
anisms [6,7]. Systems based on deep learning algorithms were developed to diagnose
COVID-19 disease, using different medical imaging modalities like Computer Tomography
(CT) and X-ray [8].

In [9,10], chest X-ray images were investigated to differentiate lung changes produced
by COVID-19 disease. These studies demonstrated that the prediction of COVID-19 disease
severity could be also established based on lung changes as ground-glass opacity, lungs’
involvement, consolidation, bilateral infiltration, and vascular enlargement.

Together with the patterns of lung CT or X-ray images, other parameters taken into
consideration for predicting the severity were symptoms and clinical and biological tests
of COVID-19-infected patients [11].

In [12–14], the authors investigated different machine learning algorithms to inves-
tigate the correlations between usual blood routines and COVID-19 diagnosis. In [12],
an ensemble of four machine learning algorithms (support vector machines, adaptive
boosting, random forest, and k-nearest neighbours) was developed to investigate if nor-
mal, usual blood medical tests can be used to detect COVID-19 infection. The conclusion
of the study [12] was that only the usual blood tests did not help in accurate detection
of COVID-19.

In [15], a screening method based on machine-learning was proposed to predict a
positive SARS-CoV-2 infection, taking into consideration eight symptoms and features,
such as sex, age, cough, fever, sore throat, shortness of breath, headache, and known contact
with a person confirmed to have COVID-19.

The scope of the study proposed in [16] was to develop an artificial intelligence
algorithm capable of correlating possible findings on chest CT of patients, symptoms of
respiratory syndromes, and positive epidemiological factors with the evolution of the
COVID-19 disease.

In our study, we designed a multimodal approach for predicting the future severity
of diagnosis of COVID-19-infected patients at early disease stages. The proposed method
integrated information from multiple sources (chest X-ray images, symptoms, clinical and
biological variables), using an ensemble of deep learning (DL), pre-trained models and
ensemble with stacking of machine learning (ML) algorithms.

For classifying chest X-ray images (CXR), we developed an ensemble (CXR-Score)
composed of four pre-trained models: VGG-19, ResNet50, DenseNet121, and Inception
v3. These DL models were trained on the ImageNet dataset, being capable of recognizing
1000 object classes. Using transfer learning with fine-tuning, they can be used in diverse
domains. The method consists of removing the final set of fully connected layers of the
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pre-trained network and replacing them with a new set of fully connected layers with
random initializations [17,18].

For classifying the patients’ symptoms and biological and clinical data, we developed
an ensemble called AI-Score based on stacking. This module combined four base mod-
els (Ada Boost, Random Forest, and XGBoost) and their configurations to make better
predictions than a single model [19].

The ensemble-based method was successfully applied to improve the accuracy of
individual DL models and ML algorithms, even if we had a small patient dataset.

2. Materials and Methods
2.1. Multimodal Approach Description

Our multimodal approach consisted of the following steps, described in Figure 1.

1. At admission, from positive-tested COVID-19 patients, we collected the symptoms,
clinical variables, blood tests, and chest X-ray scans together with a radiologist’ report.

2. During hospitalization, each patient was diagnosed with a COVID-19 severity score
(mild, moderate, and severe) assessed by the oxygen flow rate, the necessity of
mechanical ventilation, or patient death.

3. We constructed modules based on artificial intelligence that were trained on data
collected from patients with COVID-19 and could predict the future severity of
the diagnosis.
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2.2. Retrospective Study

The retrospective study included 475 patients with laboratory-confirmed cases of
SARS-CoV-2 infection, admitted between September 2020 and May 2021 to Victor Babes
University Hospital (Craiova, Romania), the only COVID Hospital in the Oltenia Region.
Patients were included in the study if they were admitted directly into one of the two
Infectious Disease Clinics or into one of the two Pneumology Departments. Patients
confirmed with SARS-CoV-2 infection and transferred from other non-profile hospitals in
the region were also included.

Patients who did not undergo laboratory confirmation of SARS-CoV-2 or who tested
negative in the laboratory of Victor Babes University Hospital or Human Genomics Lab-
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oratory as part of the Craiova Center of Diagnostic and Treatment were excluded from
this research.

Epidemiological and clinical data were analyzed among those with abnormal or
normal imaging findings. The chest X-ray scans were performed using three different
radiography systems, one of which was mobile and two of which were fixed.

This study was carried out following the Helsinki Declaration of 1975 and was ap-
proved by the Review Ethics Board of the Victor Babes University Hospital.

2.3. Clinical and Biological Variables

We collected data from electronic patient records, using custom queries to extract the
values from the database. All values were measured at admission to the hospital. These
input parameters were age, sex, respiratory parameters (oxygen saturation, respiratory
rate), cardiovascular parameters (systolic pressure, diastolic pressure, cardiac frequency),
body temperature, symptoms (coughing, sore throat, headache, shortness of breath, ver-
tigo, palpitations, physical asthenia, abdominal pain, myalgia, inappetence, diarrhoea),
associated comorbidities (diabetes, cardiac disease, kidney disease, asthma, hypertension,
autoimmune thyroid, obesity), full blood count, biochemical parameters (aspartate amino-
transferase (AST), alanine aminotransferase (ALT), glucose, total bilirubin, creatinine, urea),
inflammatory parameters (erythrocyte sedimentation rate (ESR), C reactive protein (CRP),
fibrinogen), and D-dimers.

To assess the severity of diagnosis we used chest X-ray images, parameters of respira-
tory function (oxygen saturation), and hematological parameters based on World Health
Organization (WHO) COVID-19 disease severity: mild disease (symptomatic patients
confirmed with SARS-CoV-2 infection but without signs of viral pneumonia or hypoxia),
moderate disease (patients with clinical signs of pneumonia but on the chest X-ray no signs
of severe pneumonia and SpO2 ≥ 90% on room air), severe disease (patients with clinical
and radiological signs of severe pneumonia plus SpO2 < 90% on room air or respiratory
rate >30 breaths/min) [20].

The correlation between chest X-ray and COVID-19 severity in our patients’ cohort
can be visualized in Figure 2:
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2.4. Chest X-ray Image Acquisition and Radiologist Report

Many current types of research established that opacity and lung involvement were
important guidelines for the future evolution of COVID-19 disease [21,22].

The Italian Society of Radiology (SIRM) strongly recommends using chest X-ray as a
first-line imaging tool and reserved CT examination for more severe cases [23–25]. In our
center, the CT scan is usually performed after the chest X-ray and only in specific situations.
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In our study, the chest X-ray images were collected from patients who were positive
tested for COVID-19. The X-ray images were labelled by radiologists with more than
10 years of experience. The severity score of lung illness was based on opacity degree and
the lung involvement established from chest X-ray images of the COVID-19 patients.

The CXR severity score was adapted from Irmak [9] and Wong et al. [26], and it was
between 0 and 14 by summing up the opacity (0–6) and involvement (0–8). The total
severity score summed the individual scores of both lungs.

Therefore, the chest X-ray images used for training our models were manually classi-
fied by the radiologists as normal (without modifications, with a total severity score of 0),
mild (total severity score of 1–6), moderate (total severity score of 7–12), or severe (total
severity score of >12).

In Figure 3, chest X-ray images with different severity scores can be observed.
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2.5. Datasets

We used two datasets (CXR-Dataset and SCB-Dataset) for training and testing the
proposed method.

From 475 patients, 380 patients were used for training and validation, while 95 control
patients were used for testing.

The image dataset (CXR) contained the chest X-ray images of our patients’ cohort
(475); the images were labelled by a radiologist with four severity grades (normal, mild,
moderate, severe). The initial chest X-ray image dataset was split into training (380) and
testing (95) datasets. Only the training dataset was augmented to obtain the desired
invariance and robustness of algorithms, using the following methods: brightness changes,
contrast adjustment, and parallel shifting. The augmented training dataset (CXR-Dataset)
contained 2092 images, which were used to learn (80% images) and validate (20% images)
the algorithms. The testing dataset contained the images of those 95 control patients and
was used only for testing the ability of DL models.

The second dataset consisted of patients’ symptoms and clinical and biological vari-
ables collected at patients’ admission and labelled with the diagnosis (mild, moderate, or
severe) established at patients’ discharge. This initial dataset was split into two indepen-
dent patients’ datasets: training (380) and testing (95). In the training dataset, together with
symptoms and clinical and biological variables, the radiologic lung degree of severity was
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taken into consideration, while in the testing dataset we used the deep learning CXR-Score.
The SCB training dataset was used for learning and validation of the proposed ML methods,
while the SCB testing dataset was used only for testing the methods. The transformations
applied on the SCB Dataset were binarization and normalization transformations, while
the problem of missing values was resolved by replacing them with the mean values.

The datasets were constructed as in Figure 4.
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Additionally, the distribution of patients between diagnoses can be observed in Table 1.

Table 1. The distribution of patients in the training and testing/control datasets.

Diagnosis Training
(No Patients)

Testing/Control
(No Patients) Total (No Patients)

Mild 114 30 144
Moderate 127 30 157

Severe 139 35 174
Total 380 95 475

2.6. CXR-Score Module

This module was able to automatically classify the CXR images with four severity
scores: mild, moderate, severe, and normal.

We proposed an ensemble that fused four pre-trained models (VGG, ResNet, DenseNet,
and Inception) fine-tuned with our train dataset. The performance of classifying the sever-
ity of CXR images was improved using an ensemble method that reduced the variance
by training four models instead of a single model and by combining the predictions of
the models.

A generic architecture of a DL convolutional neural architecture can be observed in
Figure 5. The convolutional layers were interposed with pooling and batch normalization
layers for the feature extraction task, whereas the fully connected (FC) layers were used for
the classification task [18].
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2.6.1. VGG Model

The VGG architecture was proposed by Simonyan et al. [27], having a depth between
16 and 19 layers and consisting of very small convolution filters. For our proposed VGG
model with transfer learning, we used the configuration consisting of 19 convolutional
layers, with filters of size 3 × 3.

The proposed VGG-19 model is described in Algorithm 1.

Algorithm 1. The VGG-19 model description.

Input: CXR images of dimension 500 × 500 pixels from the Training CXR Dataset
Output: VGG model weights
1. epochs← 100
2. for each image in the dataset do
3. resize the image to 224 × 224 pixels
4. normalize the image pixels values from (0,255) to (0,1)
5. end
6. Load the VGG-19 model pre-trained on the ImageNet dataset
7. Remove the last layer of the model
8. Make non-trainable all the layers of the model
9. Add a Flatten layer to the model output to obtain 1-D array of features
10. Apply a batch normalization to the 1-D array of features
11. Add a fully connected layer with 256 hidden neurons
12. Apply a dropout for inactivate units (40%) in the previous layer
13. Add a fully connected layer with 128 hidden neurons
14. Apply a dropout for inactivate units (60%) in the previous layer
15. Apply a batch normalization
16. Add a fully connected layer with four hidden units and a softmax activation function.
17. Optimize the model with Adam with learning_rate = 0.01 and a decay = learning_rate/epochs
18. Train the model for the given number of epochs and a batch size of 32
19. Save the final model

2.6.2. ResNet Model

What makes convolutional neural networks (CNNs) very effective is their hierarchical
structure capable of recognizing visual patterns and features. Therefore, He et al. proposed
the ResNet [28] and reformulated the layers as learning residual functions. By comparison
to VGG, ResNet is eight times deeper, but still has a lower complexity. In our implementa-
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tion, we used the ResNet50 version, which has 50 blocks, and each convolutional block has
three convolutional layers. The proposed ResNet50 model is described in Algorithm 2.

Algorithm 2. The ResNet50 model description.

Input: CXR images of dimension 500 × 500 pixels from the Training CXR-Dataset
Output: ResNet model weights
1. epochs← 100
2. for each image in the dataset do
3. resize image to 224 × 224 pixels
4. normalize the image pixels values from (0,255) to (0,1)
5. end
6. Load the ResNet50 model pre-trained on the ImageNet dataset
7. Make non-trainable all the layers of the model
8. Add a Flatten layer to the model output to obtain 1-D array of features
9. Apply a batch normalization to the 1-D array of features
10. Add a fully connected layer with 256 hidden neurons
11. Apply a dropout for inactivate units (50%) in the previous layer
12. Add a fully connected layer with 128 hidden neurons
13. Apply a dropout for inactivate units (50%) in the previous layer
14. Apply a batch normalization
15. Add a fully connected layer with four hidden units and a softmax activation function.
16. Optimize the model with Adam optimizer using a learning_rate = 0.0001 and a
decay = learning_rate/epochs
17. Train the model for the given number of epochs and a batch size of 32
18. Save the final model

2.6.3. Inception Model

In 2015, Szegedi et al. in [29] proposed the GoogLeNet consisting of 22 convolutional
layers including nine Inception modules. An Inception module has three types of kernel
filters 5 × 5, 3 × 3, and 1 × 1 for convolution and a 3 × 3 filter for pooling. GoogLeNet
uses stochastic gradient descent (SGD) algorithms during the training stage to extract
higher-level features. For our proposed Inception model, we used the version InceptionV3.
The proposed InceptionV3 model is described in Algorithm 3.

Algorithm 3. The InceptionV3 model description.

Input: CXR images of dimension 500 × 500 pixels from the Training CXR-Dataset
Output: Inception model weights
1. epochs← 100
2. for each image in the dataset do
3. resize the image to 224 × 224 pixels
4. normalize the image pixels values from (0,255) to (0,1)
5. end
6. Load the InceptionV3 model pre-trained on the ImageNet dataset
7. Make non-trainable all the layers of the model
8. Add a Flatten layer to the model output to obtain a 1-D array of features
9. Apply a batch normalization to the 1-D array of features
10. Add a fully connected layer with 256 hidden neurons
11. Apply a dropout for inactivate units (40%) in the previous layer
12. Add a fully connected layer with 128 hidden neurons
13. Apply a dropout for inactivate units (60%) in the previous layer
14. Add a fully connected layer with 4 hidden units and a softmax activation function.
15. Optimize the model with RMSprop optimizer using a learning_rate = 0.001 and a decay =
learning_rate/epochs
16. Train the model for the given number of epochs and a batch size of 32
17. Save the final model
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2.6.4. DenseNet Model

DenseNet was proposed by Huang G. and is an extension of ResNet architecture [30].
A DenseNet is a type of convolutional neural network that utilises dense connections
between layers, connecting all layers with matching feature-map sizes directly with each
other. Each layer obtains additional inputs from all preceding layers and passes on its
feature maps to all subsequent layers.

The proposed DenseNet121 model is described in Algorithm 4.

Algorithm 4. The DenseNet121 model description.

Input: CXR images of dimension 500 × 500 pixels from the Training CXR-Dataset
Output: DenseNet model weights
1. epochs← 100
2. for each image in the dataset do
3. resize the image to 224 × 224 pixels
4. normalize the image pixels values from (0,255) to (0,1)
5. end
6. Load the DenseNet121 model pre-trained on the ImageNet dataset
7. Make non-trainable all the layers of the model
8. Add a Flatten layer to the model output to obtain a 1-D array of features
9. Apply a batch normalization to the 1-D array of features
10. Add a fully connected layer with 512 hidden neurons
11. Apply a dropout for inactivate units (20%) in the previous layer
12. Add a fully connected layer with 256 hidden neurons
13. Apply a dropout for inactivate units (65%) in the previous layer
14. Apply a batch normalization
15. Add a fully connected layer with four hidden units and a softmax activation function.
16. Optimize the model with Adam optimizer using a learning_rate = 0.001 and a decay =
learning_rate/epochs
17. Train the model for the given number of epochs and a batch size of 32
18. Save the final model

2.6.5. CXR-Score Ensemble Model

To improve the accuracy of chest X-ray images, we developed an automated method
considering the ensemble of the previously described deep convolutional neural networks.

The probabilities of the four trained models (VGG-19, ResNet50, InceptionV3, and
DenseNet121) were averaged to generate new probabilities P(n) for the final diagnosis
decision, as in Equation (1):

P(n) = Average(P1n + P2n + P3n + P4n) (1)

where n = 1 . . . 4 represents the number of diagnostics.
The combined predictions from multiple deep learning architectures could introduce

a bias, but also reduced the variance of the ensemble model [31].
The algorithm steps for the proposed ensemble are described in Algorithm 5.

Algorithm 5. The CXR-Score ensemble description.

Input: CXR images of dimension 500 × 500 pixels from the Testing CXR Dataset
Output: prediction probabilities for each diagnosis class (Normal, Mild, Moderate, Severe)
1. for each image in the dataset do
2. resize the image to 224 × 224 pixels
3. normalize the image pixels values from (0,255) to (0,1)
4. end
5. Load the trained VGG-19 model
6. Load the trained InceptionV3 model
7. Load the trained ResNet50 model



Life 2021, 11, 1281 10 of 19

8. Load the trained DenseNet121 model
9. Predict the images with VGG-19 resulting in a list of probabilities (P11, P12, P13, P14)
10. Predict the images with InceptionV3 resulting in a list of probabilities (P21, P22, P23, P24)
11. Predict the images with ResNet50 resulting in a list of probabilities (P31, P32, P33, P34)
12. Predict the images with DenseNet121 resulting in a list of probabilities (P41, P42, P43, P44)
13. Average the four lists of predictions of the four models.
14. for each class in the set of diagnoses do
15. output prediction probability
16. end

2.7. AI-Score Module

To integrate the symptoms, laboratory tests, and chest characteristics of X-ray scans,
we developed the machine learning module (AI-score) using a super learner ensemble [16].
The method was capable of detecting and using the interactions among these numerous
attributes for our small dataset.

The proposed super learner (AI-score) is an ensemble of machine learning algorithms
with two levels. To construct a robust model, we combined in the first level four models
that have different prediction methodologies: Ada Boost [32], Random Forests [33], and
XGBoost [34]. In the second level, we used the CatBoost algorithm [35].

2.7.1. AdaBoost Model

The AdaBoost algorithm was first introduced by Freund and Schapire in 1996 and
belongs in part to the family of boosting algorithms [32]. The algorithm methodology is to
sequentially grow decision trees as weak learners. The algorithm is learned from previous
mistakes by penalizing incorrectly predicted samples by assigning them a larger weight
after each round of prediction.

For parameters’ tuning, in our implementation, we set the maximum depth to 15 and
the estimators to 200.

2.7.2. Random Forests Model

The random forests algorithm was developed by Breiman in 2001 and is based on
the bagging method [33]. The data are bootstrapped by randomly choosing subsamples
for each iteration of growing trees. By comparison to AdaBoost, the growth is realized in
parallel for Random forests. The reduction of overfitting is realized by combining many
weak learners that underfit because they only use a subset of all training samples.

For parameters’ tuning, in our implementation, we set the maximum depth to 15 and
the estimators to 200.

2.7.3. XGBoost Model

XGBoost (eXtreme Gradient Boosting) was introduced by Chen and Guestrin in
2016 and uses the concept of gradient tree boosting [34]. XGBoost has the advantages of
increased speed and performance and reduced overfitting by introducing regularization
parameters. The algorithm is based on gradient-boosted trees that use regression trees in a
sequential learning process as weak learners.

For parameters’ tuning, we set the maximum depth to 15, the estimators to 200, and
the learning rate to 0.2.

2.7.4. CatBoost Model

CatBoost is a recently open-sourced machine learning algorithm from Yandex [35].
The algorithm is based on a gradient boosting library and returns very good results with
less data, even if the deep learning models necessitate an immense amount of data for
learning. The algorithm does not need an extensive hyper-parameter tuning and lowers
the chances of overfitting, creating more generalized and robust models.

In our implementation, we tuned the following hyper-parameters: Iterations were 15,
depth was 3, and the learning rate was 0.1.
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2.7.5. AI-Score Ensemble Model

The AI-score model is an application of stacked generalization with two levels.

• In the first level, the base machine learning models (AdaBoost, RandomForests, XG-
Boost) used the same 5-fold splits of the training data.

• In the second level, a meta-model (CatBoost) was fit on the out-of-fold predictions
from each model of the previous level.

In Algorithm 6, we describe the proposed super learner ensemble AI-score.

Algorithm 6. The AI-Score ensemble description.

Input: SCB training dataset, SCB testing dataset.
Output: prediction probabilities for each diagnosis class (Mild, Moderate, Severe)
1. Select a 5-fold split of the train SCB Dataset.
2. base_models = [“Ada Boost”, “Random Forests”,” XGBoost”]
3. meta_model = “CatBoost”
4. For each model in base_models:
5. Evaluate the model using 5-fold cross-validation.
6. Save all out-of-fold predictions.
7. Fit the model on the full training dataset and save.
8. Fit the meta-model on the out-of-fold predictions from the previous layer.
9. Evaluate the model on the SCB testing dataset.
10. For each class in the set of diagnoses do
11. output prediction probability

2.8. Software and Statistical Tools

For selecting the symptoms and clinical and biological variables relevant for diagnosis
severity, we used the existing studies, which aimed to identify the importance of various
variables in predicting COVID-19 disease severity. All statistical calculations were per-
formed using the software STATA (StataCorp LLC, USA). We used two approaches. One
was to apply the Chi2 test and calculate risk ratio (RR) as effect size (for discrete variables)
or Student’s t test and calculate Cohen’s d as effect size (for continuous variables) to mea-
sure association with the variable severe disease. A second approach was to use logistic
regression with the backward elimination based upon likelihood ratio, which retained in
the model several parameters.

The performance metrics used to evaluate the proposed methods were accuracy,
sensitivity, specificity, positive predictive value, and negative predictive value.

The area under the receiver operating characteristic curve (AUC-ROC) and Preci-
sion/Recall curve were also taken into consideration to evaluate the ability of the method
of classification. Additionally, we calculated the optimal thresholds for the ROC curves by
seeking the maximum of Geometric mean (G-Mean) scores. For the Precision-Recall curves,
we calculated the optimal threshold by seeking the maximum of F-measure (F-Score).

We used the TensorFlow and Keras frameworks [36] to implement the deep learning
models and the scikit-learn package [37] to implement the machine learning models and
to calculate the performance metrics, while matplotlib [38] was used to plot the ROC and
Precision/Recall curves.

3. Results
3.1. Selection of Patient Variables through Statistics

The severe COVID-19 disease was significantly associated with CXR severity, sex,
parameters of respiratory function (oxygen saturation, respiratory rate), cardiovascular
function (systolic and diastolic pressure, cardiac frequency), associated disease (diabetes,
cardiac disease, kidney disease, hypertension, autoimmune thyroid, and obesity), and
presence of symptoms (coughing, headache, shortness of breath, vertigo, palpitations,
abdominal pain, myalgia, and inappetence). From the hematological parameters, severe
disease was associated with the decrease of white blood cells (WBC), lymphocytes (LYM)%,
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monocytes (MON)%, eosinophils (EOS)%, and basophiles (BAS)%. Regarding biochemical
parameters, the severe disease was significantly associated with ALT and glucose decrease.
The inflammatory markers (fibrinogen, CRP, and ESR) were also increased in severe disease.
There was significant coagulation in the periphery, as shown by D-dimers’ (products of
fibrin degradation) increase. Therefore, from 46 initial variables, only 34 variables were
found strongly associated with COVID-19 diagnosis’ severity, as in Table 2.

Table 2. Our cohort description and association between variables measured at admission and
COVID-19 severity diagnosis.

Variable RR Difference Cohen’s d Statistic p Value

Age ≥ 65 years 1.28 - - 4.27 0.039 *
Male sex 0.47 - - 38.04 0.001 *

Oxygen saturation (%) - −5.66 −1.29 10.47 0.001 *
Systolic pressure (mm Hg) - 7.39 0.80 15.1 0.001 *
Diastolic pressure (mm Hg) - 13.74 1.57 17.51 0.001 *

Respiratory rate (/min) - 1.18 0.96 9.72 0.001 *
Cardiac frequency (/min) - 16.15 1.34 12.89 0.001 *

Body temperature (◦C) - 0.14 0.18 1.93 0.054
Coughing 1.57 - - 12.77 0.001 *
Sore throat 1.19 - - 1.34 0.246
Headache 1.69 - - 18.53 0.001 *

Shortness of breath 2.78 - - 48.75 0.001 *
Vertigo 1.53 - - 11.34 0.001 *

Palpitations 1.33 - - 4.13 0.042 *
Physical asthenia 1.34 - - 2.91 0.088
Abdominal pain 1.35 - - 4.74 0.029 *

Myalgia 2.83 - - 72.64 0.001 *
Inappetence 1.35 - - 5.95 0.015 *

Diarrhea 1.86 - - 17 0.001 *
Diabetes 1.71 - - 19.21 0.001 *

Cardiac disease 3.06 - - 78.46 0.001 *
Kidney disease 1.77 - - 7.99 0.004 *

Asthma 0.61 - - 2.96 0.085
Hypertension 4.24 - - 124.02 0.001 *

Autoimmune thyroid 2.88 - - 39.3 0.001 *
Obesity 2.53 - - 56.41 0.001 *

WBC (white blood cells)
(×103/mmc) - 2.60 0.16 1.64 0.010 *

LYM (Lymphocytes) (%) - 3.43 0.30 2.85 0.005 *
MON (Monocytes) (%) - −1.38 −0.48 −5.35 0.001 *

NEU (Neutrophiles) (%) - −1.95 −0.17 −1.65 0.100
EOS (eosinophiles) (%) - 0.31 0.52 5.7 0.001 *
BAS (Basophiles) (%) - 0.06 0.25 2.67 0.008 *

HGB (Hemoglobin) (g/dL) - 0.09 0.08 0.78 0.437
PLT (Thrombocytes)

(×103/mmc) - 7568 0.07 0.67 0.500

AST (UI/L) - 3.13 0.09 1.07 0.285
ALT (UI/L) - 5.26 0.24 2.3 0.022 *

Glucose (g/dL) - 33.97 0.27 2.76 0.006 *
ESR (mm/h) - 13.65 0.52 5.08 0.001 *

Total bilirubin (g/dL) - 0.003 0.01 0.09 0.924
CRP (mg/L) - 63.09 3.1 30.26 0.001 *
Creatinine - 0.07 0.11 1.06 0.289

Urea - −2.15 −0.10 −0.93 0.352
Fibrinogen - 86.83 2.17 24.67 0.001 *
D-Dimers - 1371 2.37 19.54 0.001 *

CXR Severity - 1.67 2.89 36.1 0.001 *

* Significant variable.
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Additionally, the regression analysis revealed a strong association between oxygen
saturation and COVID-19 severity, as in Table 3. Other associations were discovered
between the risk of severe COVID-19 disease and various risk factors as female sex, diabetes,
obesity (very strong association, Odds Ratio = 166). Severe disease was also associated
with an increase in white blood cell numbers.

Table 3. Logistic regression analysis of factors associated with disease severity.

Severe Disease Odds Ratio Std. Err. z p > z [95% Conf. Interval]

Oxygen saturation 0.695636 0.030356 −8.32 <0.001 * [0.638613, 0.757751]
Sex 0.047451 0.024916 −5.8 <0.001 * [0.016955, 0.132799]

Age group 1.236799 0.51204 0.51 0.608 [0.549412, 2.784198]
Diabetes 0.052452 0.044864 −3.45 <0.001 * [0.009811, 0.280428]
Obesity 166.5959 183.348 4.65 <0.001 * [19.26948, 1440.319]

WBC 1.001285 0.000306 4.2 <0.001 * [1.000686, 1.001885]
Creatinine 6.825661 10.79885 1.21 0.225 [0.307229, 151.6449]

Urea 1.029222 0.029315 1.01 0.312 [0.973341, 1.088312]
Constant 0.279416 2.470919 −0.14 0.885 [8.3 × 10−9, 9409517]

* Significant variable.

3.2. Interpretability of CXR-Score Module

Each DL model (ResNet50, VGG-19, Inceptionv3, and DenseNet121) was trained
on the CXR training dataset and evaluated on the CXR testing dataset. The CXR-Score
ensemble model was also evaluated on the CXR testing dataset.

As for performance measures, accuracy, sensitivity, specificity, and positive and neg-
ative predictive values were computed, and the quantitative results are summarized in
Table 4. By comparison, the best results were obtained using the CXR-Score, with an
average accuracy of 99.08%, followed by the DenseNet model with an average accuracy of
99.02%. Additionally, the other three models performed very well for all diagnosis’ classes.
The ResNet model perfectly classified the normal diagnosis class.

Table 4. The results of the proposed methods used to classify chest X-ray images.

ResNet50 VGG-19 Inceptionv3 DenseNet121 CXR-Score

Acc_severe (%) 99 98.85 99.31 99.31 99.54
Se_severe (%) 99.05 97.17 98.11 98.11 98.11
Sp_severe (%) 99.09 99.39 99.69 99.69 100

PPV_severe (%) 97.22 98.09 99.04 99.04 100
NPV_severe (%) 99.69 99.09 99.39 99.39 99.4

Acc_moderate (%) 97.26 97.94 97.71 98.17 98.4
Se_moderate (%) 94.35 94.35 95.16 95.16 96.77
Sp_moderate (%) 98.4 99.36 98.72 99.36 99.04

PPV_moderate (%) 95.9 98.31 96.72 98.33 97.56
NPV_moderate (%) 97.78 97.8 98.10 98.11 98.73

Acc_normal (%) 100 99.54 99.77 99.54 99.54
Se_normal (%) 100 99.08 100 99.08 99.08
Sp_normal (%) 100 99.69 99.69 99.69 99.69

PPV_normal (%) 100 99.08 99.09 99.08 99.08
NPV_normal (%) 100 99.69 100 99.69 99.69

Acc_mild (%) 98.17 98.63 98.63 99.08 98.85
Se_mild (%) 95.95 100 96.96 100 97.97
Sp_mild (%) 98.82 98.23 99.11 98.82 99.11

PPV_mild (%) 95.95 94.28 96.96 96.11 97
NPV_mild (%) 98.82 100 99.11 100 99.40

Acc: Accuracy; Se: Sensitivity; Sp: Specificity; PPV: Positive Predictive Value; NPV: Negative Predictive Value.
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Additionally, each individual DL model and CXR-Score ensemble were evaluated
according to the overall scores, computed as the average of the area under the receiver
operating characteristic curve (AUC) and the average of G-mean scores, as in Figure 6.
CXR-Score and Inception v3 recorded the best G-mean scores and AUCs on the CXR
testing dataset.
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In Figure 7, the Precision/Recall curves together with average precision were evalu-
ated for each model. The CXR-Score ensemble recorded an average precision of 0.99, with
the greatest F-measure (F-score) of 0.96 on the CXR testing dataset.

3.3. Interpretability of AI-Score Module for Predicting the Final Diagnosis Severity

Each ML model (Random Forests, Ada Boost, XGBoost) was trained on the SCB
training dataset and evaluated on the SCB testing dataset. The AI-Score ensemble model
was evaluated on the SCB testing dataset. The CXR-Score module was used to predict the
chest X-ray severity score for each patient in the SCB testing dataset.

The AI-Score ensemble model recorded the best results for all diagnosis classes, having
an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity of
97.93%. By comparison, the XGBoost algorithm recorded also excellent results, having an
average accuracy of 97.89%, average specificity of 98.46%, and average sensitivity of 95.77%.
The random forests algorithm obtained an average accuracy of 96.48%, while AdaBoost
obtained inferior results for classifying the severe and moderate diagnosis’ classes with an
average accuracy of 93.67%. All metrics are summarized in Table 5.

Additionally, each ML model and AI-Score ensemble were evaluated according to
the overall scores, computed as the average of the area under the receiver operating
characteristic curve (AUC), as in Figure 8. The AI-Score recorded an AUC of 1 and a
maximum G-mean of 0.98 for the SCB testing dataset.
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Table 5. The results of the proposed methods used to classify COVID-19 patients.

Random Forests XGBoost Ada Boost AI-Score

Acc_severe (%) 96.84 98.94 91.57 98.94
Se_severe (%) 91.42 97.14 77.14 97.14
Sp_severe (%) 100 100 100 100

PPV_severe (%) 100 100 100 100
NPV_severe (%) 95.23 98.36 88.23 98.36

Acc_moderate (%) 97.89 97.89 90.52 98.94
Se_moderate (%) 93.33 93.33 100 96.66
Sp_moderate (%) 100 100 86.15 100

PPV_moderate (%) 100 100 76.92 100
NPV_moderate (%) 97.01 97.01 100 98.48

Acc_mild (%) 94.73 96.84 98.94 97.89
Se_mild (%) 100 100 96.66 100
Sp_mild (%) 92.30 95.38 100 96.92

PPV_mild (%) 85.71 90.90 100 93.75
NPV_mild (%) 100 100 98.48 100

Acc: Accuracy; Se: Sensitivity; Sp: Specificity; PPV: Positive Predictive Value; NPV: Negative Predictive Value.
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4. Discussion

Many previous types of research focused on diagnosing patients’ infection with SARS-
CoV2 based on chest CT, X-ray scans, symptoms, or blood tests, whereas there were few
studies to predict the future COVID-19 severity [10].

In the present study, we developed an artificial intelligence-based method for grading
the COVID-19 severity based on multimodal features taken at admission.

We found 34 symptoms and clinical and biological variables that are strongly related
to future COVID-19 severity, confirmed also by other studies [39–41]. Exploring the
clinical features of our patients’ dataset, we found that male and older patients were
at risk to develop severe disease. Other clinical variables strongly related to COVID-19
severity were parameters of respiratory function (oxygen saturation, respiratory rate)
and cardiovascular function (systolic and diastolic pressure, cardiac frequency). In our
study cohort, comorbidities, such as diabetes, cardiac disease, kidney disease, hypertension,
autoimmune thyroid, and obesity, were related to the severity and they were also confirmed
by studies in [42,43]. Other connections, which we found, were between several symptoms
(coughing, headache, shortness of breath, vertigo, palpitations, abdominal pain, myalgia,
and inappetence) and COVID-19 severity [44,45].

The hematological parameters, WBC, LYM%, EOS%, and BAS%, increased in severe
disease, while MON% and NEU% decreased. PLT (Thrombocytes) were not associated with
severity in our study cohort. We also found relationships between D-dimers, fibrinogen,
ESR, and severity.

Together with these clinical and biological variables, the chest X-ray images offered
important features of disease severity. The lung characteristics that we included were
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opacity and lung involvement [9,26]. The advantage of the deep learning classification
of the chest X-ray images into normal, mild, moderate, and severe was the speed and
good classification accuracy, which were even higher than those of a radiologist [10]. Our
CXR-Score module had accuracy in identifying the severe and mild pattern in CXR images
of 99.54%, while in identifying the moderate pattern in CXR images it was 98.4%. The
normal CXR images were classified with an accuracy of 98.85%.

The final prognosis of diagnosis’ severity was established using AI-Score module,
in which we integrated 34 variables: symptoms, clinical and biological variables, and
CXR-Score. The AI-Score module classified the severe diagnosis with an accuracy of 98.94%
and a sensitivity of 97.14%, while the moderate diagnosis was classified with an accuracy
of 98.94% and a sensitivity of 96.66%. Regarding the mild diagnosis, the obtained accuracy
was 97.89% with a sensitivity of 100%.

Our results suggest that the proposed AI-Score method can become a useful tool
in forecasting the future severity of diagnosis at a patient’s admission. Ultimately, this
improved diagnosis can be used for assessing the efficacy of vaccination or to evaluate new
emerging treatments for COVID-19 [46].

Even if the obtained results were satisfactory, our study had some limitations. Firstly,
the machine learning and deep learning methods still need human intervention in the
processes of image and data collection.

Second, the dataset known in advance was another limitation because there was
a risk of overfitting, even if the training and testing datasets were patient-independent.
Future research will evaluate and refine the proposed method on a larger patient database
collected from other hospitals.

Third, to improve the resolution quality of CXR images, the wavelet denoising tech-
nique and super-resolution deep learning methods will be taken into consideration [47].
Even if they improve the results, they are time consuming in real-time computer-assisted
methods, due to computations. So, the trade-off between their complexity and performance
in real time will be considered in the future.

Fourth, the severity grading of CXR images could be improved by segmentation to
detect more precisely the lung involvement [48].

5. Conclusions

The novel COVID-19 has become one of the most acute and severe health problems of
the past century. Artificial intelligence-based methods already play an important role in
combating the pandemic’s terrible effects.

In this study, we proposed an artificial intelligence-based AI-Score solution, which
provides fast and powerful assistance to physicians. We integrated ensemble ML and
DL algorithms for forecasting the severity of the COVID-19 diagnosis’ evolution based
on 34 input variables. AI-Score consists of an ensemble of machine learning algorithms
developed to predict the future severity score as mild, moderate, or severe for COVID-19-
infected patients. Additionally, a deep learning module (CXR-Score) was developed to
automatically classify the chest X-ray images and integrate them into AI-Score.

Our method achieved good accuracy in retrospective chest X-ray images, symptoms,
and clinical and biological blood tests. Based on these promising preliminary results and
further testing on larger patients’ cohort, our AI-based method could become an important
tool for the computer-aided diagnosis of COVID-19 severity in early stages.
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