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Abstract

Leishmaniasis is a tropical disease threatening 350 million people from endemic regions. The available drugs for treatment
are inadequate, with limitations such as serious side effects, parasite resistance or high cost. Driven by this need for new
drugs, we developed a high-content, high-throughput image-based screening assay targeting the intracellular amastigote
stage of different species of Leishmania in infected human macrophages. The in vitro infection protocol was adapted to a
384-well-plate format, enabling acquisition of a large amount of readouts by automated confocal microscopy. The reading
method was based on DNA staining and required the development of a customized algorithm to analyze the images, which
enabled the use of non-modified parasites. The automated analysis generated parameters used to quantify compound
activity, including infection ratio as well as the number of intracellular amastigote parasites and yielded cytotoxicity
information based on the number of host cells. Comparison of this assay with one that used the promastigote form to
screen 26,500 compounds showed that 50% of the hits selected against the intracellular amastigote were not selected in
the promastigote screening. These data corroborate the idea that the intracellular amastigote form of the parasite is the
most appropriate to be used in primary screening assay for Leishmania.
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Agency for International Development Cooperation (AECID)/Spain and Médecins Sans Frontières (Doctors without Borders)/International. The funders had no role
in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author EC is an employee of the funder DNDi. Otherwise the funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

* E-mail: freitasjunior@ip-korea.org (LHFJ); cechetto@ip-korea.org (JC); auguste@broad.mit.edu (AG)

. These authors contributed equally to this work.

¤ Current address: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America

Introduction

Leishmaniasis is a tropical disease caused by parasites of the

genus Leishmania, with clinical manifestations ranging from

localized cutaneous ulcers to systemic visceral organ damage.

The visceral form of the disease is the most severe and is lethal if

not treated. The organs targeted by the parasites are determined

mainly by the infecting parasite species and the patient’s immune

system. In the human host, the parasite is able to infect different

cell types, with macrophages as the final host in which the

parasites differentiate from promastigotes into amastigotes and

multiply [1]. Leishmaniasis is endemic to 88 countries in tropical

and sub-tropical areas and threatens 350 million people [2].

There is no available vaccine [3], and the drugs used for

treatment have major drawbacks, including parasite resistance and

high toxicity, with strong side effects for the patient [4,5]. New

drugs or formulations are therefore urgently needed [6,7]. High-

throughput screening (HTS) is an efficient way of identifying active

compounds among large numbers of small molecules, thereby

feeding drug discovery pipelines with new candidates and

optimizing both research costs and time [8]. High-content

screening (HCS) combines the efficiency of HTS with informa-

tion-rich assays to provide several measures of a compound’s effect

in the assay system. The requirements for HCS assays include

quantifiable and reproducible measurements of compound activity

compared to standard reference drugs in concentrations achiev-

able in serum/tissues, handling of ultra-small (nanogram) amounts

of compound, and adaptation of the assay to standard microplate

formats and laboratory automation platforms.

Here we report the development and validation of a protocol for

in vitro drug screening and automated image mining for

leishmaniasis using the intracellular amastigote form of Leishmania

to infect human macrophages. We applied an image-based

approach and developed computer-assisted algorithms to interpret

the infection and quantify the activities of the anti-parasitic

compounds. Other assays in medium- to high-throughput format
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have already been developed for anti-leishmanial drug screening

using promastigotes (insect forms) or axenic amastigotes

[9,10,11,12]. While these forms of the parasite are easier to adapt

to an HTS assay format, promastigotes are not representative of

the human disease, and the use of axenic amastigotes as a model of

intracellular amastigotes is controversial because amastigotes are

exclusively intracellular in vivo [13]. To confirm the importance of

the parasite stage used in an HTS assay with a large number of

compounds, we compared screening data for a subset of 26,500

compounds obtained using either this newly developed assay or a

previously developed HTS assay that used the promastigote form

of the parasite.

Materials and Methods

Parasites and cells
Leishmania donovani MHOM/ET/67/HU3, Leishmania amazonen-

sis MHOM/BR/73/M2269, Leishmania braziliensis MHOM/BR/

2903 and Leishmania major MHOM/IL/81/FRIEDLIN promasti-

gotes were axenically cultivated at 28uC in 199 Culture Medium

(Sigma M5017) with 40 mM Hepes (Gibco 15630), 0.1 mM

adenine (Sigma A5251), 0.0001% biotin (Sigma B329) and

4.62 mM NaHCO3 (Sigma S5761), supplemented with 10% (or

20% for L. braziliensis) heat-inactivated fetal bovine serum (FBS,

Gibco 16000) and 1% streptomycin/penicillin (Gibco 15140). The

cultures were diluted every 3 or 4 days to maintain the parasite

density between 106 parasites/ml and 46107 parasites/ml. To

avoid generation of genetic variability, we kept the parasite for a

maximum of 20 sub-cultured dilution cycles, thawing new vials

from the same frozen stock. THP-1, the human acute leukemia

monocyte cell line (ATCC TIB-202), was cultivated in RPMI

medium (Gibco 61870-036) supplemented with 10% heat-inacti-

vated FBS (Gibco 16000) and 1% streptomycin/penicillin (Gibco

15140) at 37uC and 5% CO2. The cultures were diluted every 3 or

4 days to maintain the cell density between 105 cells/ml and

86105 cells/ml. Cells were kept for a maximum of 20 sub-cultured

dilution cycles, thawing new vials from the same frozen stock.

Infection
The Leishmania culture at a density of 106 parasites/ml was

incubated for 6 days before infection to enrich the proportion of

metacyclic promastigotes. THP-1 cells at 56105 cells/ml were

differentiated with 50 ng/ml of phorbol 12-myristate 13-acetate

(PMA, Sigma P1585) for 48 hours at 37uC, 5% CO2. Differen-

tiated THP-1 cells are adherent and were seeded at a confluence

of 1.86105 cells/cm2. Trypsinized THP-1 cells were mixed with

the 6-day-old Leishmania promastigotes at a final density of 46105

THP-1/ml and 26107 parasites/ml in RPMI medium supple-

mented with 10% FBS. This homogeneous mixture of differen-

tiated THP-1 cells and parasites was seeded in 384-well plates at

50 ml/well using a WellMate (Thermo Scientific) liquid handler

and incubated for 5 days at 37uC, 5% CO2.

Intramacrophagic Leishmania amastigote replication
assay

To visualize amastigote replication, differentiated THP-1 cells

were seeded on coverslip slides in 24-well plates (86104 cells/well)

and infected with 46106 parasites in a final volume of 200 ml

RPMI supplemented with 10% FBS. The cells were washed 3

times with PBS 12 hours after parasite addition. To detect DNA

replication, 5-bromo-2-deoxyuridine (BrdU) was used. A mixture

of 1 mM BrdU and 1 mM deoxycytidine (dC) was added to the

infected THP-1 culture and incubated for 12 hours. The cultures

were then washed with PBS, fixed with cold 100% methanol for

5 minutes and air dried for 5 minutes at room temperature. Next,

1.5 M HCl prepared in PBS was added to the samples and

incubated for 15 minutes, followed by PBS washing and

permeabilization with 0.1% Triton X-100 in PBS for 10 minutes.

After another PBS wash, the cells were incubated for 1 hour at

4uC with mouse anti-BrdU conjugated monoclonal antibody

(Invitrogen, 1:400 dilution) in PBS containing 4% BSA, washed 3

times with PBS and further incubated for 1 hour at 4uC with

Alexa FluorH 488 goat anti-mouse IgG (Invitrogen, 1:400

dilution), 2 mM DAPI (Sigma D9564) and 2.5 mM Syto60

(Invitrogen MOP-S-11342) in PBS containing 4% BSA. The

samples were washed 3 times with PBS and mounted over slides

with Vecta-shield (Vector H-1000). Staining was visualized with a

Leica confocal TCS SP2 fluorescence microscope, taking pictures

in different focal planes (z-stack). Imaris (Bitplane) software was

used to develop the 3D model after acquisition of a series of images

in different focal planes.

Reference compounds, nuclei staining and fluorescence
microscopy

The anti-leishmanial reference drugs used were amphotericin B

(Sigma A9528), miltefosine (Merck 475841), paromomycin sulfate

(Sigma P9297) and sodium stibogluconate (Sigma S5319). The

reference drugs and tested compounds were added 24 hours after

infection and incubated at 37uC and 5% CO2 for 4 days. The cells

and parasites were then fixed with 2% paraformaldehyde and

stained with 5 mM Draq5 (Biostatus DR50200) in PBS. Fluores-

cent images (4 images per well) were acquired from each assay well

using an Opera confocal microscope (Perkin Elmer) with a

635 nm laser at 206 lens magnification.

Data analysis (software development)
The acquired images were analyzed with an Image Mining (IM)

platform developed in-house. The IM software directly accessed

the databases of image acquisition platforms and created a flow of

images, which were sequentially analyzed by dedicated algorithms

Author Summary

Leishmaniasis, one of the most neglected tropical diseases,
affects over 2 million people each year. Visceral leishman-
iasis (VL), also known as Kala-azar, is caused by the
protozoan parasites Leishmania donovani and Leishmania
infantum and is fatal if left untreated. Because existing
treatments are often ineffective due to parasite resistance
and/or toxicity new drugs are urgently needed. Leishman-
iasis is transmitted to humans by the bite of an infected
sandfly. In the insect vector, parasites exist as flagellated
forms—promastigotes, which infect macrophage cells of
the human host, where they differentiate to round forms
known as amastigotes. Amastigotes and promastigotes are
substantially different from a molecular perspective. Drug
discovery for leishmaniasis has traditionally been compli-
cated by the unavailability of validated drug targets and of
relevant drug assays. Whole cell-based assays have been
widely used, as they bypass the need for a validated target.
However, they use the insect form of the parasite; indeed,
the human form, the intracellular amastigote, is difficult to
obtain in the laboratory in quantities compatible with drug
screening. We describe here the technical advances that
made it possible to adapt the intracellular amastigote form
of L. donovani to a drug assay compatible with high-
throughput screening.

Leishmaniasis Drug Discovery
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developed as plugins of the software. The results of all analyses

were stored in a centralized database.

Using a simple DNA staining technique to permit the use of

wild-type parasites without any reporter gene was interesting

because its quantification relied solely on the accuracy of the

image analysis, and it permitted various parasite species to be used

without the need for genetic manipulation. The DNA staining

proved to be a simple and stable cell marker, and the image

analysis software plugin that was developed took into account both

the accuracy and speed constraints of HCS. Several methods were

tested, and some steps were necessary to detect cells and parasites

to obtain a robust separation between the positive and negative

controls. Fig. 1 presents a flow chart of those steps.

The quantification of the infection ratio consisted of cell

segmentation based on nuclei and parasite detection components.

The two components were processed independently from the same

raw input image (Fig. 1A) and merged to identify individual cells

and assign detected parasites to each cell object (Fig. 1J).

The cell segmentation was as follows (Fig. 1B–E): the raw input

image was smoothed with a Gaussian kernel [14] of standard

deviation 5, which roughly corresponds to the radius of the

nucleus (Fig. 1B). Then, the local extreme detection method [15]

was applied to the smoothed image to extract local maxima points,

which indicated the number and positions of nuclei (Fig. 1C).

Subsequently, the inner boundaries of the individual cells were

identified by computing the Voronoi diagram [16] on the

foreground area using the previously obtained set of local maxima

as seed points (Fig. 1D). Finally, a foreground mask (Fig. 1E) was

applied to the Voronoi diagram image to remove background

area. For the parasite detection (Fig. 1F–I), the algorithm

calculated the higher 50% cumulative intensity level of the raw

input image (Fig. 1F), used a threshold cut-off in the image based

on the intensity level to remove background area and the

cytoplasm of cells to isolate nuclei and parasites (Fig. 1G) and,

finally, used the connected component labeling method [17] to

filter out nuclei objects and other artifacts by detecting as parasites

the connected component objects that were simultaneously larger

than 4 pixels and smaller than 15 pixels (Fig. 1I). The final result

from a processed image is shown (Fig. 1J), with cell detection and

segmentation merged with parasite detection.

The IM software interface is shown in Fig. 2. A color-based

graphical representation of the 384-well plate enabled a quick

visual analysis of the results. Fig. 2A illustrates one DMSO control

plate, highlighting the infection ratio as the scaling factor for the

blue color. Algorithm parameters may be modified to optimize the

analysis of the images as shown in the window illustrated in Fig. 2B.

The software provides 7 output features that can be used for

statistical analysis (Fig. 2C). These features include the following:

1) number of cells; 2) number of infected cells (cells containing at

least one parasite); 3) infection ratio (the number of infected cells

divided by the number of cells); 4) total number of parasites per

cell; 5) standard deviation of the number of parasites per cell; 6)

total area of the cells (number of pixels occupied by cells), and 7)

average area per cell (average number of pixels per cell). Fig. 2D–

E shows images from the wells before (left) and after (right) IM

Figure 1. Parameters analyzed for automated image analysis
and infection level measurement. A) Input image: Raw image
input acquired with Opera confocal microscope. B–E) Cell segmen-
tation based on nuclei detection. B) Image denoising by a Gaussian
kernel of radius 5. C) Local maxima point detection from B to define
nuclei positions. D) Voronoi diagram computation based on the nuclei
positions to delineate the inner boundaries of the attached cells. E)

Threshold cut-off of pixels below a selected intensity level to make the
foreground mask. This image is an example of final cell segmentation.
F–I) Parasite detection. F) Calculation of the upper 50% cumulative
intensity level of the raw image (A). G) Threshold cut-off of pixels below
the intensity level of (F). H) Objects smaller than 4 or larger than 15
pixels are removed to classify parasites. I) Parasite positions are defined.
J) Result image: the merged images of cell segmentation (E) and
parasite detection (I).
doi:10.1371/journal.pntd.0001671.g001

Leishmaniasis Drug Discovery
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analysis, highlighting the identification of THP-1 cells and

Leishmania parasites.

Data normalization and assay quality control
The calculated activity was normalized to percentage infection

(Inf) based on the amphotericin B EC100 (effective concentration

showing 100% activity, meaning minimum measured infection

ratio) and 1% DMSO (0% activity, meaning maximum measured

infection ratio) controls according to the formula: % infection =

(measured IR2mAmpB EC100)/(m1%DMSO2mAmpB EC100)6100, in

which m1%DMSO is the average infection ratio of the 1% DMSO

controls and mAmpB EC100 is the average infection ratio of the

amphotericin B EC100 control.

The quality of the assay data was primarily assessed with the Z’

factor [18]. In addition to the Z’ factor, a number of other

parameters were taken into consideration to assess the robustness

of the developed assay. These include the following: i) pharma-

cological validation as assessed by dose response curves for the

reference drug amphotericin B. In the current assay, the EC50 for

amphotericin B was determined to be approximately 0.3 mM, in

agreement with previously published values [19]; ii) evaluation of

any type of plate pattern such as edge effects, particularly

important for assays with multi-day incubations, or other patterns

introduced, for example, by liquid handling devices; iii) quanti-

tative assessment of variability in the infection ratio, cell and

parasite number on different days and with different batches of

cells and parasites.

Results

Biological model development
The screening assay was based on the use of late-stage

promastigote Leishmania cultures to infect differentiated THP-1

macrophages and the quantification of the infection ratio 4 days

after compound addition. THP-1 human macrophages have been

used as a Leishmania host model for in vitro infection for over two

decades [20,21,22] and have been proposed to be suitable for drug

screening against the intracellular form of the parasite [12]. We

investigated different time points in the growth curve of the THP-1

cells and Leishmania parasites to determine the optimal develop-

ment stage for each cell line, in order to optimize the infection

ratio. Fig. 3A illustrates the growth curves and highlights the

optimal culture durations for the host cells and parasites prior to

infection. The use of 5- or 6-day-old late-log-phase promastigote

cultures resulted in higher infection ratios because of the

enrichment of metacyclic promastigotes in the culture media, as

previously reported [23]. A high infection ratio obtained with this

protocol is illustrated in Fig. 3B, with an average of 88.7%

(64.7%).

Reference drugs and assay compounds were added to the plate

24 hours after infection. The protocol was intended to select

compounds active against intracellular amastigotes. To demon-

strate that within this time interval the late stage promastigotes had

been phagocytized by macrophages and had differentiated into

amastigotes within the macrophages, we visualized the intracellu-

lar replication of the parasite using a BrdU incorporation assay.

The presence of incorporated BrdU, as detected by immunoflu-

orescence, demonstrated that 24 hours after infection, the

intracellular parasites were indeed differentiated into amastigotes

and were replicating inside the host cell. This result validated the

protocol of adding compounds 24 hours after infection to target

intracellular amastigotes. The same replication assay was also

performed 4 days after infection. Pictures were taken in different

focal planes, and a 3D model was built, as shown in Movie S1.

Fig. 3C shows snapshots of the 3D model. Parasites labeled in

green indicate replicating parasites.

Assay optimization and HTS adaptation
When high throughput is considered for biological experiments,

the assay must be adapted to best fit the requirements of the large

scale. However, to compare results from different laboratories, we

developed a Leishmania infection standard protocol adapted to an

HCS/HTS method, with the potential for implementation on a

smaller laboratory scale without the need for automation. To

Figure 2. Software interface. A) List of plates in the left and graphical representation of the infection ratio of a 384-well plate by gradient color
intensity: white is 0% infection, and blue is 100% infection, with the colors in between indicating an intermediate infection ratio. The first two
columns carry controls of amphotericin B EC100-treated wells and non-treated wells (1% DMSO), respectively. The last two columns (23 and 24) are
non-infected wells and contain non-infected THP-1 cells. B) The window control to set up the software parameters for optimal tuning. C) Table of
parameters generated by the software analysis, including, from left to right, ‘‘total number of cells,’’ ‘‘number of infected cells’’ and ‘‘infection ratio.’’
D) A raw image at left and colors highlighting element detection after software analysis: blue (THP-1 cells), red (nuclei of THP-1 detected cells) and
green (parasites). E) Close-up of a selected infected THP-1 from (D), highlighting the intracellular Leishmania parasite.
doi:10.1371/journal.pntd.0001671.g002
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define this standard protocol, several conditions were tested to find

the highest and most reproducible infection ratio, using L. donovani

parasites to define and validate the assay. The parasite containers

were one of the tested variables, comparing a T175 flask with a 1.0

L Erlenmeyer bottle under agitation, being the latter the best

option (Figure S1). We also tested the effect of PMA concentration

and incubation time on THP-1 cell differentiation, as illustrated in

Figure S2, showing that 50 ng/ml yielded best results. The

method for releasing differentiated THP-1 cells was also important

for the preservation and integrity of the cells, and different

approaches were tested, being trypsinization the chosen method

(Figure S3).

To evaluate the pharmacological relevance of the assay, we

tested four different anti-leishmanial reference drugs in our system:

amphotericin B, miltefosine, paromomycin and sodium stiboglu-

conate. Dose-response curves (DRC) were determined in three

independent experiments, with four replicates used to define the

EC50s. The results for each reference drug are given in Table 1.

The EC50s of all of the reference drugs were comparable to the

reported values [19,24], thus validating this new assay system for

compound screening. Miltefosine is a known anti-cancer drug

[25], and, at the EC100 dose, cytotoxicity was observed for the

THP-1 host cell, an acute monocytic leukemia cell line. Sodium

stibogluconate did not eliminate intracellular parasites in the

experiment; this compound is known to be poorly active in vitro,

and its slow effect was incompatible with the exposure time

window for our experiment [23,26]. Paromomycin was not

efficient either in eliminating intracellular L. donovani from the

THP-1 host; its activity was inconsistent, and it was inactive in

some experiments, as previously reported [19]. This variability is

not acceptable for HTS purposes. We chose amphotericin B as a

reference drug in the screening assay because it had an EC50 in the

target range for new active compounds (nanomolar), was stable,

was not cytotoxic up to 20 mM and showed reproducible results. In

addition, amphotericin B is a first-line drug used for the treatment

of visceral leishmaniasis in many endemic countries [4].

Assay automation and HTS validation
Because the assay was conducted with live parasites and host

cells over multiple days, a fully automated (i.e., unattended)

protocol was not feasible. However, several time-consuming and

repetitive steps in the assay were automated, enabling a potential

throughput of ,20,000 wells per screening day. An infection batch

of host cells and parasites was added to the plates with a bulk

dispenser (Wellmate, Thermo Scientific). The plates were then

loaded onto the automated platform for compound addition,

incubation and reading (all automated steps).

The first step in automation is the scale-up of the assay. In this

case, cells and reagents were prepared at the same scale as the one

to be used during an HTS campaign and compared to the results

for a small scale preparation (Figure S4). Each of the liquid

handling devices to be used in the automation process was

individually validated for accuracy and reproducibility. The assay

validation consisted of the simulation of 3 independent screening

days using only control plates. Each run was composed of 20

plates, 10 DRC plates containing amphotericin B as the reference

drug and 10 DMSO plates as the negative control. The validation

was performed on a cell::explorerTM automated platform with an

Opera confocal microscope (Perkin Elmer) for imaging.

The validation run using the semi-automated screening method

and the results indicated that the assay was robust, both within a

screening day and across screening days. Within a screening day,

the number of THP-1 cells in both the DMSO controls and the

amphotericin B (EC100) wells was similar, indicating that the cell

number was consistent between the control and DMSO wells,

within a plate and across multiple plates (Fig. 4A). Based on the

infection ratio, there was a clear window between the DMSO

controls and amphotericin B (Fig. 4B). This window was consistent

throughout the validation day and across multiple validation days

(Fig. 4C). The assay also showed a consistent EC50 in the range of

0.3 mM for the reference compound, amphotericin B, between

screening days (Fig. 4D). The Z’ factor within a validation day and

across multiple days was 0.5, indicating that the assay was high

Figure 3. THP-1 infection with L. donovani. A) Growth curves of
THP-1 and L. donovani, with the optimal development points for
infection highlighted by blue and red circles, respectively. B) Image
acquired with an Opera confocal microscope showing THP-1 infected
with L. donovani after Draq5 (DNA) staining. C) 3-D reconstitution of
multiple series confocal pictures illustrating from two different
perspectives THP-1 macrophages stained with Syto-60 (red) and
infected by L. donovani parasites. Dapi was used to stain the DNA
(blue) of both the host cells and the parasites. BrdU incorporation
detected by immunofluorescence (green) indicates the replication of
intracellular amastigote parasites.
doi:10.1371/journal.pntd.0001671.g003

Table 1. Anti-L. donovani reference drug activity.

EC50 (s.d.)

Amphotericin B 0.3 mM (60.2)

Miltefosine 3.1 mM (62.3)

Paromomycin .20 mM

Sodium stibogluconate .100 mg/ml

doi:10.1371/journal.pntd.0001671.t001
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quality. A flowchart of the entire screening methodology is

illustrated in Figure S5.

To determine the specificity of the compounds, we used the

same assay principle with species of Leishmania other than L.

donovani, which cause different clinical manifestations. We used L.

major, L. amazonensis and L. braziliensis as representatives of

cutaneous and mucocutaneous leishmaniasis. Images illustrating

the infection of THP-1 cells with these 3 species in addition to L.

donovani are depicted in Fig. 5A. The DRCs for amphotericin B

demonstrated that all of the species had similar in vitro sensitivities,

with the following EC50s: 0.30 mM for L. amazonensis, 0.28 mM for

L. braziliensis, 0.28 mM for L. donovani and 0.31 mM for L. major

(Fig. 5B).

We previously published an HTS screen with Leishmania

promastigote forms [12], and here we evaluated the correlation

between the results from that promastigote-based screen and the

amastigote-based screen (this work). We used a library of 26,500

compounds and evaluated the outputs from each approach. The

screen using L. major promastigotes with compounds at 10 mM

generated 124 hits after a 70% activity cut-off (3 standard

deviations from the negative control average) and the exclusion of

compounds that interfered with the growth of non-differentiated

THP-1 (potentially toxic), with only 5 compounds (4%) showing

activity against intracellular L. major amastigotes at concentrations

up to 20 mM [12]. An independent screen was performed using

the same compound library (26,500) at 20 mM against L. donovani

using the new infection assay described in this study. The number

of hits based on a 55% activity cut-off (3 standard deviations from

the negative control average), no cytotoxicity against differentiated

THP-1 (based on cell counting) and an EC50,20 mM was 123

compounds (Figure S6), coincidently almost the same number of

hits selected in the promastigote screening. From the 123 hit

compounds, 62 showed activity against promastigotes. We also

confirmed these data, in which only 51% of the hits obtained from

the intracellular amastigotes (24 compounds out of 47 hits) were

also active against the promastigote form, by screening a focused

library of 4,000 kinase and phosphatase inhibitors using L. donovani

(data not shown). The results from the 26,500 compounds are

illustrated in Figure S6 and provide evidence that performing

screens with intracellular amastigote forms would increase the

probability of finding compounds active against the human form

of the parasite (amastigote) and would be the most appropriate

way to find compounds that exclusively target the intracellular

form that infects the host cell.

Discussion

HTS technology has been primarily associated with target-

based assays. This approach requires substantial efforts prior to

screening to identify and validate a target involved in the disease

process. Once a target is identified and validated, compounds can

be screened against it to identify inhibitors in either biochemical

(e.g., purified enzyme) assays or cell-based (e.g., receptor

internalization) assays. For non-infectious diseases, for which

protein targets are known, a target-based screening approach is

very relevant. In contrast, targeting the causative infectious agent

as a whole is an interesting approach for parasitic or other

Figure 4. High-throughput screening validation. A) Plot of the
number of cells (Y-axis) in the controls: yellow (1% DMSO - compound
position in the plate), black (1% DMSO – control position in the plate)
and red (amphotericin B EC100). B) Plot of the infection ratio (Y-axis)
using the same color code as in A). The Z’ factor of 0.5 demonstrates the
statistical confidence of the assay. C) Plot of the infection ratios (Y-axis)
obtained from different validation days (red representing day 1 and
blue representing day 2) demonstrating low day-to-day variation in the
infection ratio and a clear window between non-treated controls (1%
DMSO in the upper portion of the plot) and amphotericin B EC100-
treated controls (lower portion of the plot). D) DRCs of amphotericin B
from two independent validation days (red and blue curves represent-
ing days 1 and 2, respectively), demonstrating the consistency in the
anti-leishmanial activity of the reference drug.
doi:10.1371/journal.pntd.0001671.g004

Figure 5. In vitro infection assay optimization for four
Leishmania species. A) Images illustrating the infection of THP1
human macrophages by Leishmania species that causes diseases with
different clinical manifestations: L. amazonensis (diffuse cutaneous), L.
braziliensis (mucocutaneous), L. donovani (visceral) and L. major
(cutaneous). B) Dose response curves for the reference drug
amphotericin B against all four species.
doi:10.1371/journal.pntd.0001671.g005
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infectious diseases. Indeed, if one considers the field of antibac-

terials, target-based screens have been fairly unsuccessful in recent

years [27].

We describe here the development of a new screening assay to

identify new compounds active against Leishmania. This assay

selects for a specific phenotype (absence or reduction of parasites

in macrophage host cells), and this parameter is used to measure

compound activity; all potential targets will thus be exposed to the

tested compounds, thereby increasing the probability of finding

active compounds with different modes of action in an optimized

fashion.

Reporter genes have been successfully developed for anti-

leishmanial HTS by various research groups [28,29]. However, a

major drawback of current reporter assay approaches was the

need for continuous drug selection to maintain expression of the

reporter gene over time. For Leishmania, this is particularly true for

both episomal transient transfection and integrated transgenes,

because the parasite has high genomic plasticity and a high

recombination ratio [30]. Furthermore, the use of selection drugs

can be problematic because they may directly or indirectly interact

with the tested compound, interfering with the screening results.

Recently, two independent research groups presented stable

modified Leishmania parasites expressing GFP that are suitable

for compound testing [31,32]. Although engineered parasites are

an invaluable tool in drug screenings, the use of wild-type

organisms should be prioritized whenever possible because of

potential for modifications in the general metabolism of the

organism, due to expression of the transgene, resulting, for

example, in a loss of virulence, as reported by de Toledo and

collaborators [33] and as observed during this study with GFP-

expressing L. donovani (data not shown). The use of wild-type

parasites allows for the anti-leishmanial activity of compounds to

be evaluated against different species of parasites, including clinical

isolates, without the need for any genetic modification of these

parasites. This approach required the development of a new tool

for the image analysis of the parasite-infected cells: because DNA

staining was the chosen method, the image analysis algorithm used

had to identify each host cell as an isolated object, while also

detecting intracellular parasites, all from the same image channel.

Cell segmentation was the first challenge. By choosing the Voronoi

diagram method, we were able to identify the inner boundaries of

individual cells. The foreground mask applied to the Voronoi

diagram image was then used to remove the background area,

excluding all extracellular parasites from the analysis. The

foreground mask was defined by pixels with intensity greater than

50. We observed that, given the stability of the image statistics

across the screen and the good contrast between foreground and

background, a fixed value was a robust way of separating

foreground and background across the entire set of images. We

tested several precise segmentation methods, such as region

growing or a watershed algorithm, to measure the influence of

the methods on the analysis results, and concluded that there was

no significant difference in the infection ratio when precise

segmentation methods or Voronoi diagrams were used. However,

computational cost was much lower when we used the Voronoi

diagram. In addition, Leishmania parasites could be detected inside

the boundaries of each cell in the same image.

Image-based processing is a promising approach for chemical

screening [34]. In our study, using a single channel for

fluorescence labeling of both the host cells and parasites

considerably simplified the technical complexity of the assay, but

created a computational challenge for selectively classifying cells

and parasites from the same fluorescence signal channel. An

algorithm was developed and implemented to automatically

process the readout images, allowing the analysis of the huge

amount of data generated from the screens (Figs. 1 and 2).

The development of an accurate tool to quantify the infection

ratio enabled the measurement and comparison of compound

activity against the intracellular stage of the parasite. This result, in

addition to validating the biological model by confirming that

replicative intracellular L. donovani can infect a human macrophage

cell line, establishes this system as the most relevant and promising

for the discovery of new compounds for leishmaniasis treatment.

In addition to the infection ratio and parasite number, another

parameter widely used to assess compound cytotoxicity is the

number of host cells. Potentially toxic compounds that affect

replication or cell multiplication will not be detected as toxic based

on host cell counting because THP-1 cells usually do not replicate

after differentiation, resulting in a constant cell number. However,

compounds that induce necrosis or apoptosis or interfere with the

adherence of the macrophages to the surface will be interpreted as

toxic because of the low host cell number.

Ultimately, this newly developed standard protocol for the

Leishmania infection model allowed the screening of 200,000

compounds at 20 mM for anti-parasitic activity in a high-

throughput mode using optimal conditions, to be reported

elsewhere. A subset of this library (26,500 compounds) has also

been screened at 10 mM by our group against the promastigote

form of Leishmania parasites in a fluorimetric assay [12].

Approximately 50% of the hits found in the intracellular

amastigote assay were not found in the hit list obtained against

the promastigote form. Conversely, only 4% of the hits from the

promastigote screen were active against the intracellular amasti-

gote. Even though the screenings used different species of parasites

(L. major promastigotes and L. donovani intracellular amastigotes),

we consider this difference relevant because we recently obtained

similar data when screening a focused library of 4,000 compounds

using only the L. donovani strain. These data are in accordance with

recently published work from Muylder et al., which shows that

using the promastigote form in a primary screen leads to a great

number of hits that are likely to be inactive on the amastigote, and

misses active compounds that are only found when using the

intracellular amastigote [35]. Taken together, these results

illustrate that a substantial number of compounds may be

specifically active against intracellular amastigotes and would only

be selected as true positive hits if tested in this screening system,

supporting the proposal that the intracellular amastigote model is

the most appropriate for drug discovery in leishmaniasis.

In conclusion, the development and validation of this HTS

protocol for Leishmania infection of human macrophages without

the need for a reporter gene is a major breakthrough in the field of

leishmaniasis drug discovery. It fills a major gap and should allow

the screening of diverse and focused compound library sets,

opening up a new avenue for the identification of new compound

series, which are critically needed to develop new drugs for the

treatment of Leishmaniasis. The combination of a infection model

with image-based analysis has proven to be a relevant method for

screening compounds for their activity against the intracellular

amastigote Leishmania.

Moreover, this protocol is well established for HTS and may be

used on a smaller scale, such as in 96-well plates or even in lower

throughput, in any research laboratory to test single compounds

and/or natural product extracts.

Supporting Information

Figure S1 Leishmania parasites growth in different
containers. The graph contains a comparison of parasites
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growth pattern in T.175 flask (blue curve) and in Erlenmeyer

bottle (red curve).

(TIFF)

Figure S2 Effect of PMA concentration on the infection
ratio. The graphs represent the results of cell number (top left),

parasite number (top right) and infection ratio (bottom right) after

THP-1 host cells had been differentiated with different PMA

concentrations. Large batch of cells and parasites (LB) simulating a

screening run and small batch (SB), as used in pilot assay

development, were used for comparison.

(TIFF)

Figure S3 Methods for differentiated THP-1 cells re-
lease from culture flask. The graphs show the results of

number of parasites, number of cells, infection ratio and total

number of infected cells obtained after the infection of THP-1 cells

harvested from different methods from the T.175 flasks, and

incubated with two different concentrations of PMA (20 ng/ml

and 50 ng/ml).

(TIFF)

Figure S4 Infection assay scale up. Results comparing the

infection ratio obtained from small scale and large scale

experiments.

(TIFF)

Figure S5 Screening standard operating protocol. Flow-

chart illustrating the linear process of the assay from cell culture to

data analysis. The steps in yellow are the ones performed manually

and the steps in orange are performed by robots in an automated

fashion.

(TIF)

Figure S6 Comparison of the results of screening assays
with promastigotes or intracellular amastigotes as the
parasite model. Selecting hits from screening using the

promastigote form (insect) generated 124 hits, 5 of which were

also active against intracellular amastigotes. Another screen using

intracellular amastigotes in the primary assay generated 123 hits,

62 of which were also active against promastigotes.

(TIF)

Movie S1 Three-dimensional reconstruction of a THP-1
cell infected with L. donovani. The movie highlights

replicating intracellular amastigotes (green) after BrdU incorpora-

tion assay. The blue color represents DNA staining (DAPI) and

red represents host cell cytoplasm (as a background of Syto60

staining).

(AVI)
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